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A method for separation of stresses in two and three-dimensional photo elasti- 
ity using the harmonisation o f j r s t  stress invariant along a straight section is deve- 

,dped. For two-dimensions, the equations of equilibrium are reformulated in terms 
ojsum and difference of normal stresses and relations are obtained which can be 
used for harmonisation of the first invariant of stress along a straight section. 

A similar procedure is adopted for three-dimensions by making use of the 
Beltrmi-MicheN equations. The new relations are used in finite d~yerence form to 
evaluate the sum of normal stresses along straight sections in a three-dimensional 
body. The method requires photoelastic data along the section as well ~rr adjacent 
sections. This method could be used as an alternative to the shear d@erence method 
for separation of stresses in photoelasticity. 7he accuracy and reliability of the 
method is ver$ed by applying the method to problems whose solutions are known. 
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It is well known that the pure photoelastic method cannot solve 
completely a general stress problem. The conventional photoelastic 
method provides two independent equations for a two-dimensional problem 
and five independent equations for a three-dimensional problem. Since 
there are three unknown stress components for a two-diinensional problem 
and six unknown stress components for a three-dimensional problem, the 
equations obtained by using photoelasticity are not sufficient to determine 
the complete state of stress at  any interior point. Hence with a view to 
obtain additional relation, several auxiliary methods have been developed 
both for two- and three-dimensional problems, which in conjunction with 
&toelastic analysis provides the complete information for solving a 
-1 stress problem. The description of these auxiliary methods, which 
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are also referred as separation methods, ~811 be found in several text books 
[I-31. Though there are several separation methods available for tlye 
dimensional problems, efforts are still being made to evolve betier and 
simpler techniques. In  this respect recently [4, 51 some efforts have hen 
made to develop methods for separation of stresses in two-dimensional 
problems. The situation is quite different as far as three-dimensional 
problems are concerned and only the shear difference method is widely used 
to determine aU the six stress components a t  any interior point. However 
it is known that the shear difference method gives results which may hayc 
appreciable error and hence used with some reservation. Recently the 
authors [6] have developed an experimental-numerical hybrid technique 
for the complete solution of three-dimensional problem using experi- 
mentally determined surface stresses. This method can be used when the 
stress distribution is required throughout the body. If the stress determi- 
nation is required only along some important sections, then it is preferable 
to use a method which conhes to the detelmination of stresses along thz 
required section. It is only with this point in view the method described 
in  this paper has been developed. 

In the suggested method of separation here, the sum of normal stresses 
is computed along straight sections by making use of the concept of har- 
monisation [4, 71. The method is first devsloped for two-dimensional 
problems and then extended to three-dimensional problcms. The method 
makes use of the photoeleastic data along the inleiior sections and can be 
used as an alternative to shear difference method. The application of the 
method suggested here has been explained through examples in which an 
estimate of the error in the results compared to the shear difference method 
has also been made. 

The equilibrium equations can be witten :or two-dimensional problem 
as (when body forces are absent) 

and the wmpatability equation as 
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using the concept of stress diffe~ence elasticity 15, 81 and operating on the 
equations (1) to (3) the following relations can be obtained. 

Equations (4) and (5) can be now rewritten as 

Equations (6) and (7) can be used to determine the values of Sl along sections 
parallel to x or y axis respectively. 

The values of D can be obtained along the section of integtatio11 and 
the adjacent sections ( j  - 1, j and j + 1) (Fig. 1) from the photoelastic data 
as 

Now the right hand side of equation (6) can be written in finite difference 
form for any point 0 (i. j )  as 

Equation (6) can now be written as 

%IS the recurrence formula for P at any point 0 (i, j) becomes 

Pi, j = [(Pi-, j $. Pi+,, j )  - he (fh, d/2. (12) 



The value of fl can be calculated for mesh points along the line of 
integration i = 1 to n - 1 (Fig. 1) using relations (8) and (9). nz vah 
of p along AB can then be calculated using the recurrence formula (111 

8 

. A 

FIG. 1. Finite Merence mesh for hamonisation of S, along a sect~on parallel to Mxis. 

and an iteration procedure. The values of P at the end points A and B 
of the section should be hown  apriori. After determining P values at 
all interior points, Sl can be computed at  any point on the section from 

(mi, j = [pi, j - Di, j1/2. (13) 

In case the section is choosen parallel to y-axis then equation (7) can 
be made use of to compute the values of S,. The recurrence relation for 
Q at any point 0 (i, j) becomes 

Qi.j = KQi. i,l-I+ Qi, j+3 - h2 (fJi, jJl2 (14) 
where 

(fh, j = ( D i ,  j + D,, j - 7-01, j)F12. (15) 

Now Sl can be computed from Q by 

(mi, j = (Qi, j + Di, j)P. (la) 
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3. PROCEDURE FOR 'DIREE-DIMENSIONS 

The first three of the Behami-Michell equations [9] can be written as 

Adding equations (17) to (191, we get 

V 2 ( u x + ~ y + ~ ) =  vas=O. 
The photoelastic data from slices taken normal to x, y and z axes 

give 

respectively. The normal stresses US, uy and uz may be obtained in terms 
of S, Dx, Dy and Dz as follows 

ox = (S  + 4 - &)I3 

9 = ( S  + Dx - Dz)/3 

UZ = ( S  + Dv - Dx)/3. 

Now equation (17) can be written in the form 

3 
(25) 

Substituting for us in terms of S, Dg and Dz we get after simpBcation 

a2 a2cl a2cz 
2 ( 3  + J = - ,,a . . 

(26) 
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Equation (26) can be used to compute values of S along a section paralie, 
to x axis. Equation (26) can also be written as 

where 

Rl = 35 + Cl 

and 

At any point 0 (i, j, k) the value of g, can be calculated from the phote 
elastic data using a k i t e  difference expansion as (Fig. 2) 
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m s  the value of gl can be computed at all points along the section of 
jnterest namely i = 1 to n - 1. (Fig. 2). Hence equation (27) in finite 
difference wi l l  be 

or the recurrence relation for R, is 

Quation (29) can be used to calculate the values of Rl a t  all points along 
a section parallel to x-axis. An iteration procedure can be used for 
determining R1 values at  all intekor points, while the values of R, should 
be h o ~ v n  a t  i = 0 and i = n. Once Rl is calculated S can be determined 
from 

In case the integration is done along sections parallel to y or z axis 
the other relations similar to (27) can be used. These relations are 

and 

R, = 3S S. C,, Ra - 3S + Cp 

The values of C, and Cg can be computed from 

Cz = (Dz - DD,) (1 + V )  

(73 6 (DT Dy)(l 3-'v). " 



338 K. CHANDRASHEKHARA AND K. ABRAHAM JACOB 

To iilustrate the application of the method suggested here and to verify 
the accuracy of the method, first a. two-dimensional problem for which the 
exact theoretical solution known is considered. A section parallel to 
(Fig. 3) is selected wlth in a semiintinite plane subjected to a concenttrated 
load. The section CD is divided into discrete points and the values offl 

'ire calculated at these points using equation (9). The values of D along 
P 

1 
0 

I 

0.5 1.0 
X 

Fro. 3. Distribution of S, along CD obtained using the harmonisation techf&lw and 
comparison with theoretical values. 
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CD and the adjacent sections as well as that of P at the end points are 
obtained from the Flamant's solution [g]. Using the recurrence relation 
given in equation (12) and an iteration procedure, the values of P are corn- 
puted at interior points. The S, values are then calculated using equation 
(15). The variation of Sx along section CD is shown in Fig. 3 in which 
the exact theoretical variation is also shown for comparison. 

A second example, that of a three-dimensional problem is considered 
to illustrate the application cf the proposed method. For this a section 
is taken parallel to x-axis within a semiinfinite elastic medium subjected to a 
ancentrated load (Fig. 4). The values of C, and g, are calculated for 

FICJ. 4. Distnhution of s along EF obtained using the harmonisati~q te~hcqve @Id 
*n with thwetical mdts, 
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every point on the section EF as well as R, values at end points are deter. 
mined using the Boussinesq solution [9]. Using recurrence relation given 
in equation (29) and an iteration procedure, the values of R, are determined 
at  all interior points. The S values are then computed using equabon (301, 
The variation of S along the section EF so obtained is shown in Fig, 4 in 
which the theoretical variation is also show1 for cornpanson. 

To illustrate the use of the method as an  auxiliary one for separation 
of stresses in two-and-three dimensional photolcasticity the following two 
examples have been considered. 

(i) Finite strip subjected to partially distributed load. 

A k i t e  strip was cut from a sheet of bi-cfrmgent material Araldite 
using the following composition: 

Araldite CY 230 . . 100 pbw 

Hardener Hy 951 . . 10 pbw. 

The material fringe value as well as the elastic constants at room tcmpz- 
rature were determined using clabration specimens. The following values 
were obtained for the material: 

Modulus of Elasticity . . 21,000 kg/cmz 

Poisson's ratio . . 0.35 

Material fringe value . . 12.45 kg/cm/fringe. 

The model was loaded at room temperature and the isoclinics and iso- 
chromatic data were obtained at a number of points along the centr2l and 
the two adjacent sections. The procedure described in section 2 was used 
to calculate the values of S along the central section. The individual values 
of normal stresses are determined from: 

Thc values of uz and CFU are also computed using the shear difference 
method. The values thus obtained are shown in Fig. 5 in which the theoretical 
results of Iyengm [lo] are also incorporated for comparison. 

(ii) Finite prism subjected to partially diatribnted load. 
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--- THEORETICAL [I I ]  

HARMONlSATlON TECHNIQUE 

o o 0 . 0  SHEAR DIFFERENCE TECHNIQUE 

FIG. 5. Distribution of normal stresses along central section of a finite strip subjected to 
partially distributed load. 

A finite prism was made using casting res@ Araldite having the follow- 
kog composition : 

Araldite CY 230 . . IOOpbw 

Pthalic Anhydride . . 30 pbw. 
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The casting was done at an elcvated temperature (110" C) [Ill. ~h~ 
stresses were frozen in the prism at a temperature of 120" C. The proper- 
ties of this material at the stress freezing temperature was detc&ed using 
calibration specimens. T h e  properties of the material were as follows: 

Modulus of Elasticity (120' C) . . 126 kg/cm2 

Poisson's ratio (120" C) . . 0.45 

Material fringe value (120" C) . . 0.302 kgicmifringe. 

Slices were then cut from the stress frozen model and the isochrmtic 
and isoclinic data were obtained along the central axis and the four adjacent 
sections. The procedure given under section 3 was used to compute values 
of S along the central axis. From the values of S so determined and the 
photoleastic data, the individual stresses are computed from: 

The stresses thus obtained along the central axis are shown in Fig. 6 
The stresses were also obtained using shear difference method for the same 
problem along the central axis and these results are also shown in Fig. 6 

THEORETICAL (11: 0.15) (I21 

- HORMONISATION TECHNIOUE 

o o e o  SHEAR DIFFERENCE 
TECHNIQUE 

.rL 
FIG. 6. Distribution of normal sacsscs &ng the wtral  smios of a finite prism sub@d 

to paltially Wributed load, 
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for comparison. Also some available theoretical results for the same 
problem 1121 is included for comparison. 

5.  DISCUSSION AND CONCLUSION 

An examination of equations (12) and (29) show that the grid or lattice 
$pacing (h or I )  present in these equations are virtual and will be eliminated 
when finite difference form for f, or g, is substituted. However, if the 
grid or lattice spacing is different in different directions, then a ratio of this 
will occur in these equations. An error analyses indicates that the trun- 
cation errors in omitting the higher order terms in the k i t e  difference 
expansion is less in the present method compared to the error involved in 
step by step integration of the equilibrium equation in shear difference 
method. 

The first two examples show that the method suggested here can be 
employed to compute the sum of normal stresses along straight sections 
with reasonable accuracy for both two-and three-dimensional aroblems. 
The examples of finite strip and prism illustrate the application of thk method 
for separation of stresses in two-and three-dimensional photoelasticity. 
It is interesting to note from Figs. 5 and 6 that the present method eliminates 
the cum lative error which is inherent in shear difference method. In 
shear difference method the cumulative error increases with the number of 
points taken for integration along a section where as in the harmonisation 
technique such a procedure only needs more number of iterations for 
convergence. It may be concluded that the method presented here can be 
used as an alternative to shear diierence method for separation of stresses 
in two-and three-dimensional photoelasticity. 
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ox - uy 
Material fringe value 
Grid spacing in y direction 
Grid spacing in x direction 
Integers denoting the position of a point 
Lattice spacing 
Isochromatic fringe order 
Any integer number 

ux -+ 0~ 

Cartesian coordinates 
be 3 2  
s+? 

Poisson's ratio 
Normal stress components 

Cartesian shear stress 

(Other symbols are defined in the text whereever they occur first). 




