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ABSTRACT

A method for separation of stresses in two and three-dimensional photo elasti-
ity using the harmonisation of first stress invariant along a straight section is deve-
wped. For two-dimensions, the equations of equilibrium are reformulated in terms
of sum and difference of normal stresses and relations are obtained which can be
used for harmonisation of the first invariant of stress along a straight section.

A similar procedure is adopted for three-dimensions by waking use of the
Beltrami-Michell equations. The new relations are used in finite difference form to
evaluate the sum of normal stresses along straight sections in a three-dimensional
body. The method requires photoelastic data along the section as well as adjacent
sections.  This method could be used as an alternative to the shear difference method
for separation of stresses in photoelasticity. The accuracy and reliability of the
method is verified by applying the method to problems whose solutions are known.
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1. INTRODUCTION

It is well known that the pure photoelastic method cannot solve
completely a general stress problem. The conventional photoelastic
method provides two independent equations for a two-dimensional problem
and five independent equations for a three-dimensional problem. Since
there are three unknown stress components for a two-dimensional problem
and six unknown stress components for a three-dimensional problem, the
equations obtained by using photoelasticity are not sufficient to determine
the complete state of stress at any interior point. Hence with a view to
obiain additional relation, several auxiliary methods have been developed
both for two- and three-dimensional problems, which in conjunction with
photoelastic analysis provides the complete information for solving a
gaeral stress problem. The description of these auxiliary methods, which
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are also referred as separation methods, can be found in several text books
[1-3]. Though there are several separation methods available for tyg.
dimensional problems, efforts are still being made to evolve better gng
simpler techniques. In this respect recently [4, 51 some efforts have beeg
made to develop methods for separation of stresses in two-dimensional
problems. The situation is quite different as far as three-dimensional
problems are concerned and only the shear difference method is widely used
to determine all the six stress components at any interior point. However
it is known that the shear difference method gives results which may have
appreciable error and hence used with some reservation. Recently the
authors {6] have developed an experimental-numetical hybrid technique
for the complete solution of three-dimensional problem using experi-
mentally determined surface stresses. This method can be used when the
stress distribution is required throughout the body. If the stress determi-
nation is required only along some important sections, then it is preferable
to use a method which confines to the determination of stresses along the
required section. It is only with this point in view the method described
in this paper has been developed.

In the suggested method of separation here, the sum of normal stresses
is computed along straight sections by making use of the concept of har
monisation [4, 7]. The method is first devzloped for two-dimensional
problems and then extended to three-dimensional problems. The method
makes use of the photoeleastic data along the inteiior sections and can be
used as an alternative to shear difference method. The application of the
method suggested here has been explained through examples in which an
estimate of the error in the results compared to the shear difference method
has alsc been made.

2. PROCEDURE ¥OR TwWO-DIMENSIONS

The equilibrium equations can be wiitten tor two-dimensional problem
as (when body forces are absent)

e e 0
E‘fsu + D"y - . )

and the compatability equation as
Vii(oz + cy) = V/4* Sy = 0. 3
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Using the concept of stress difference elasticity {5, 8] and operating on the
squations (1) to (3) the following relations can be obtained.

225, 2D 3D

szJ...-- RW —_ _b_y—z- (4)
2 2 2

228, 2D 2D ©)
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Equations (4) and (5) can be now rewritten as

WP 2D

Ty ®
22 2D

=5 g

vhere P=2S;+ D and Q =25, — D.

Equations (6) and (7) can be used to determine the values of $; along sections
parallel to x or y axis respectively.

The values of D can be obtained along the section of integration and
the adjacent sections (j — 1, j and j + 1) (Fig. 1) from the photoelastic data

s
D =op — oy = NF cos 26, [€3)

Now the right hand side of equation (6) can be written in finite difference
form for any point 0 (i.7) as

2D .
“\o7),; = (4,5 = — (Dy, 443 — 24,5 -+ Dy, 5-0/R% ()]

Equation (6) can now be written as

3P
55z =h (10)

or in finite difference form as
Ping, 5~ 223, 5 + Py, )hg® = (i, - Q)
Thus the recurrence formula for P at any point 0 (7, 7) becomes

Py j = [(Pyy, j + Paa, ) — f® (s, 3112, 12
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The value of f; can be calculated for mesh points along the line o
integration i = 1 to n — 1 (Fig. 1) using relations (8) and (9). The valugs
of P along AB can then be calculated using the recurrence formul 1y

8
TN

N =T .

D i,.j".'l e Y

&

o
L

10

S~ li=d
A

Fie. 1. Finite difference mesh for harmonisation of S, along a section parallel to x-axis.

and an iteration procedure. The values of P at the end points 4 and B
of the section should be known apriorl. After determining P values at
all interior points, §; can be computed at any point on the section from

(84,5 =[Py, 5 — Dy, 5)/2. (3
In case the section is choosen parallel to y-axis then equation (7) can
be made use of to compute the values of S;. The recurrence relation for
Q at any point 0 (i, /) becomes
04,5 = (3,54 + G4 54) — 12 (fDi, 5112 )
where
(fh, 5 = Disa, § + Dis, 5 — 25, i)y’ 9
Now S, can be computed from Q by

(4,5 =Gy, 5 + Dy, )2 (16
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3. PROCEDURE FOR THREE-DIMENSIONS

The first three of the Belirami-Michell equations [9] can be written as

A+ Vieg +35c—2—0 an

(14 v) Vzay+——~~—0 (18)
2

1+ Vo + 35 =0, (19

Adding equations (17) to (19), we get
Vioz +oy+o) = V?§=0. 20
The photoelastic data from slices taken normal to x, y and z axes
give
oy — oz = NypF cos 204 = Dqy
oy — o = NyF cos 20y = Dy @1
op — oy = NzF cos 26y = D,

respectively. The normal stresses oy, oy and o may be obtained in terms
of S, Dz, Dy and D, as follows

ox = (S 4 Dy — Dy)[3 (22
oy = (S + Dy — D3)/3 23)
oz = (S + Dy — Dg)/3. 24)

Now equation (17) can be written in the form

22 22 22
TalS+oe(+ 9= +n[- 35— 2] 25)
Subsﬁtuting for ox in terms of S, Dy and D, we get after simplification
B0 ¥ G
bxa (3S+ )=~ F T IR 26)

where
= (14 v) (D — Dy).
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Equatlon (26) can be used to compute values of S along a section parallel
to x axis. Equation (26) can also be written as

%:2 R =g @

where
R =35+C

and

(by2 Y ) G

At any point 0 (7, /, k) the value of g, can be calculated from the photo-
elastic data using a finite difference expansion as (Fig. 2)

z" *
z/ '
.. n
4
pd
Ui, k4 - ﬂ'?"-%
o ===~ O(L,J,K)
L.k : . -
e - 2 —o0 ¥ T A ”
Lok Lds1k /r 2
N T
P " "
) _ ‘ "// 4 Ik
AL
1,J.k1 ] q// {eo |
EATIN N R Y
' fa
K=¥

Fic, 2. Finite difference lattice for harmonisation of S along a section parallel to x-axi
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(803 5.k = [4(CD4, 5, 1 — (Ci 5oy 1o ~ (Ci, g, ke — (C, 5, %
— (Ci, 5 el /2. (28)

Thus the value of g¢ can be computed at all points along the section of
interest namely i =1 to n— 1. (Fig. 2). Hence equation (27) in finite
difference will be

[(R)ia,5, 1 — 2 (Ru)i, 4, & + (Rdins, 4, )2 = (i, 1, &
or the tecurrence relation for R, is

(RYs, 7, & = {{(RYi4, 5, & + (Riu, 4, &) — 2 (g, 4, k32 (29

Equation (29) can be used to calculate the values of R, at all points along
a section parallel to x-axis. Amn iteration procedure can be used for
determining R, values at all interior points, while the values of R; should
be known at i =0 and i =mn. Once Ry is calculated S can be determined

from
S5, 5, % = IR, 3, — (Ci, 3, &1/3 30)

In case the integration is done along sections parallel to y or z axis
the other relations similar to (27) can be used. These relations are

T R) =g, @an
32
372 (Rs) = g3 (32)
where
and ¢
R, — 35+ Cpy Rs=3S+ Ca (349

The values of C, and Cy can be computed from
Co=(Dz— D)1+
CGh= D Dy (AW ) [eh)]
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4. EXAMPLES

To illustrate the application of the method suggested here and to verify
the accuracy of the method, first 2 two-dimensional problem for which e
exact theoretical solution known is considered. A section parallel to Xaxis
(Fig. 3) is selected with in a semiinfinite plane subjected to a concentirateq
load. The section CD is divided into discrete points and the values of A
are caleulated at these points using equation (9). The values of D along

P
+
{347 —y
- DOL0Y
< A
3k ~——th=002
h1=h
o
ne
S
A : X
v —— THEORETICAL (91 -
- HARMONISATION TECHNIQUE
(.
N )
° o5 1.0
X
Frc. 3. Distribution of S; along CD obtained using the harmonisatic hnique asd

comparison with theoretical values.
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CD and the adjacent sections as well as that of P at the end points are
obtained from the Flamant’s solution [9]. Using the recurrence relation
given in equation (12) and an iteration procedure, the values of P are com-
puted at interior points. The S) values are then calculated using equation
(15). The variation of §; along section CD is shown in Fig. 3 in which
the exact theoretical variation is also shown for comparison.

A second example, that of a three-dimensional problem is considered
to illustrate the application cf the proposed method. For this a section
is taken parallel to x-axis within a semiinfinite elastic medium subjected to a
concentrated load (Fig. 4). The values of C; and g; are calculated for

P

<1,
A / F (0, 0400

8 r‘ /
z L= O-Oz:
7 b
6 v T i
\ E (1,04, 0.1}
51 v .
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a 4 \ X
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4

Fic. 4. Distdibution of § along EF obtained using the harmonisation technique and com=
parison with theoretical results,
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every point on the section EF as well as R, values at end points are deter.
mined using the Boussinesq solution [9]. Using recurrence relation givey
in equation (29) and an iteration procedure, the values of R, are determined
at all interior points. The S values are then computed using equation (30,
The variation of S along the section EF so obtained is shown in Fig. 4
which the theoretical variation is also shown for comparison.

To illustrate the use of the method as an auxiliary one for separation
of stresses in two-and-three dimensional photoleasticity the following twg
examples have been considered. .

() Finite strip subjected to partially distributed load.

A finite strip was cut from a sheet of birefrmgent material Araldite cast
using the following composition:

Araldite CY 230 .. 100 pbw
Hardener Hy 951 .. 10 pbw.
The material fringe value as well as the elastic constants at room tempe-

rature were determined using clabration specimens. The following values
were obtained for the material:

Modulus of Elasticity .. 21,000 kg/cm?
Poisson’s ratio .. 035
Material fringe value .. 12-45 kgfem/fringe.

The model was loaded at room temperature and the isoclinics and iso-
chromatic data were obtained at a nmumber of points along the central and
the two adjacent sections. . The procedure described in section 2 was used
to calculate the values of § along the central section. The individual values
of normal stresses are determined from:

o= (S + D)2 | )
oy = (S — D).

The values of oy and o are also computed using the shear difference
method. The values thus obtained are shown in Fig. 5 in which the theoretical
results of Iyengar [10] are also incorporated for comparison.

(ii) Finite prism subjected to partially distributed load.
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~— — — THEORETICAL [1i]
HARMONISATION TECHNIQUE
0o 0.0 SHEAR DIFFERENCE TECHNIQUE

ol

-]l
Fie. 5. Distribution of normal stresses alopg central section of a finite strip subjected fo
partially distributed Joad.

A finite prism was made using casting resin Araldite having the follow-
ing composition :

Araldite CY 230 .. »100 pbw

Pthalic Anhydride .. 30pbw.
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The casting was done at an elevated temperature (110°C) [11]. The
stresses were frozen in the prism at a temperature of 120°C. The proper-
ties of this material at the stress freezing temperature was determined using
calibration specimens. The properties of the material were as follows:

Modulus of Elasticity (120° C) .. 126 kgfem?®
Poisson’s ratio (120° C) .. 045
Material fringe value (120° C) .. 0-302 kg/em/fringe,

Slices were then cut from the stress frozen model and the isochromatic
and isoclinic data were obtained along the central axis and the four adjacent
sections. The procedure given under section 3 was used to compute values
of § along the central axis. From the values of S so determined and the
photoleastic data, the individual stresses are computed from:

ox =[S+ Dz — Dy)/3
oy = (ox — Dy). 37

The stresses thus obtained along the central axis are shown in Fig. 6
The stresses were also obtained using shear difference method for the same
problem along the central axis and these results are also shown in Fig. 6

4 N\ p AREA OF LOADING (47)

| (A'/A=0.25)
L o |
R ~— —~ THEORETICAL (¥=0.15) (i3]
L = HORMONISATION TECHNIOUE
vooo SHEAR DIFFERENCE

TECHNIQU:

o 1o

Fie. 6. Distribution of normal stressey along the central section of a finite prismt subjected
to partially distributed load,
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for comparison. Also some available theoretical results for the same
problem [12] is included for comparison.

5. DIscussION AND CONCLUSION

An examination of equations (12) and (29) show that the grid or lattice
spacing (& or /) present in these equations are virtual and will be eliminated
when finite difference form for f; or g, is substituted. However, if the
grid or lattice spacing is different in different directions, then a ratio of this
will occur in these equations. An error analyses indicates that the trum-
cation errors in omitting the higher order terms in the finite difference
expansion is less in the presemt method compared to the error involved in
step by step integration of the equilibrium equation in shear difference
method.

The first two examples show that the method suggested here can be
employed to compute the sum of normal stresses along straight sections
with reasonable accuracy for both two-and three-dimensional problems.
The examples of finite strip and prism illustrate the application of the method
for separation of stresses in two-and three-dimensional photoelasticity.
It is interesting to note from Figs. 5 and 6 that the present method eliminates
the cumilative error which is inherent in shear difference method. In
shear difference method the cumulative error increases with the number of
points taken for integration along a section where as in the harmonisation
technique such a procedure only needs more number of iterations for
convergence. It may be concluded that the method presented here can be
used as an alternative to shear differerice method for separation of stresses
in two-and three-dimensional photoelasticity.
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M.K.
LisT oF SYMBOLS

D = og—oy

F = Material fringe value

h = @Grid spacing in y direction

hy = Grid spacing in x direction

i,k = Integers denoting the position of a point

! = Lattice spacing

N = Isochromatic fringe order

n = Any integer number

S = dp+oy-+oz

Sy = op+oy

X, 0z = Cartesian coordinates

22 22
2 . 2

V; x2 By%

22 22 32
2 =3 —— —— —

v x? + ? + 22

v = Poisson’s ratio .

oz, 0y, 0z = Normal stress components

Ty = Cartesian shear stress

(Other symbols are defined in the text whereever they occur first).





