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In this paper an attempt is made to study the lateral earth pressures on retaining 
walls as affected by  anisotropy and non-homogeneity with respect to cohesion, of 
the backfill. Both the passive and active conditions are studied and the method of 
characteristics is used in the analysis. Numerical results show that, as the coefi- 
cient of anisotropy, k ,  defined as the ratio of vertical strength to horizontal strength, 
changes from 0-8 to 2, the pressure at the top of the wall decreases considerably. 
Also, as k changes fvom 0.8 to 2, the mod$ed passive and active earth pressure 
coeficients decrease when cohesion increases with depth and are unaffected by k 
when cohesion is constant with depth. On the other hand, when the rate of increase 
of cohesion with depth increares, the mod@ed earth pressure coefficients are found 
to increase considerably. 

Key words: Anisotropy, Earth Pressure, Homogeneity, Plastic Equilibrium, Retaining Walls, 
Soil Mechanics. 

The study of lateral earth pressures is important in the design of retain- 
ing walls and timbering of cuts, in the calculation of bearing capacity of 
foundations and of pressures in soils, and in several other problems. The 
use of the method of characteristics for solution of the problem has received 
much attention in recent years, principally due to the work of Sokolovsky 
[l] who presented a numerical integration procedure for the calculation 
of active and passive earth pressures on retaining walls due to soils having 
both cohesion and internal friction. Using Sokolovsky's approach, Wack 12) 
and Hajal [3] presented passive earth pressure coefficients for walls 
having horizontal and inclined back £ill surfaces, respectively. Natural - 
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soil deposits exhibit anisotropy and non-homogeneity in shear strengh 
to a certain degree. In this papex, the influence of anisotropy and non. 
homogeneity on the resultant pressure at the top of the wall as wellas on 
the earth pressure coefficients, is studied. 

At any point in the soil mass behind the retaining wall, the variation 
of cohesion with direction is expressed by the following equation [4] which 
was originally proposed by Casagrande and Carrillo [5]. 

in which, c = cohesion on planes corresponding to any value of $; 
$ = ei - 45" f $12; @i = inclination of a slip line of the ($ + p)-family 
to the x-axis (Fig. 1); 4 = angle of internal friction; EL = 45" - 412; 
and c,, c, = cohesion along planes corresponding to $ equal to OD and 
90°, respectively. 

Since $ is defined as above it has been shown by Shaklarsky and Livnch [6] 
that there are two conjutate failure planes at the point considered (Fig. 1). 

Fm. 1. Orientations of sI i  lines. 
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in which, 

cvs = the value of cv at the ground surface, 

a =rate of valiation of cv with depth, and 

z = depth below ground surface. 

The  ratio c,/c, at any point, is designated as the cocfficient of aniso- 
tropy, k, and this is assumed to be constant throughout the soil mas.  

In ordcr to express all quantities in tcrms of non-dimensional variables, 
the strcsses are divided by c,, which is a characteristic stress, and the . 
distances are divided by the characteristic length, I== cVsly, wherein y is 

. 

the unit weight of the soil 

Equation (1) is therefore written as 

Dividing equation (3) by cvs and with the notation that all quantities with 
primes are dimensionless quantities, 

Dividing equation (2) by c, and also introducing the dimensionless quan- 
tity z' gives 

in which PC = a[/c, = dimensionless parameter representing the increase 
of cohesion with depth. 

Analysis for Passive Earth Pressure 

The line OL (Fig. 2 a) represents the retaining wall having an angle 
of wall friction, 6, whose value ranges from 0 to 6. In order to determine 
hearth pressure acting along the wall, first the state of stress at  any point 
&.-2 



L 

( a )  
FIG. 2. Calculation of points along 

(b) 
the wall. 

in the soil mass which is  in plastic equilibrium, is considered and the follow- 
ing expressions are obtained for the normal stresses ox, uz and tangential 
stress (Shaklarsky and Livneh [6] and Siva Reddy and Srinivasan [71) 

and 

H =  ccotq4. 

The above equations which express the stresses a,, and T,, in terms 
of only two variables, a and +, are then substituted into the equilibrium 
equations 
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On manipulation of the resulting equations in the same way as done 
by ~ok~lovsky [I] and using the following dimensionless variables: 

cot 4 p =  7  loge^* + * (12) 

wherzin, a* = U/CVS, the following relationships are obtained along the 
two families of characteristics or slip lines : 

Along the ($ + &family : 

and along the (zJ - p)-family : 

- fdc Y' cos c+ + r )  
f cvs 

sin 4 cos ($ - p) 
+ 5Pctan(+-t") 



and 

Equations (14) through (17) may be used to determine x', z', f and 7 at the 
points of intersection of the characteristics as explained below (Sokolovsky 
[I]): 

Figure 3 shows a slip line of the ($ + p)-family passing through point 
B and a slip line of the (p - +)-family passing through point A. The two 
slip h e s  intersect at a point C at which x', z', f ,  9, o* and $ are to be deter- 
mined, the values at points A and B being known completely. 

(\Y+p) - SLIP L l N E  

( v-p ) ;SLIP LINE / 

Re. 3. Calculatim of a new point in the passive case. 

Using subscript A for the quantities at A and subscript B for the quanti- 
ties at B, equations (14) through (17) may be written in k i t e  diffaence 
form and solving these the following equations are obtained: 
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BY using the above equations, with A,, A,, A,, A, and # being those 
corresponding to the points A or B, a point C' (Fig. 3) is obtained. H ~ ~ -  
ever, the required point is C and in order to obtain this point more accu- 
rately, the calculations are repeated by treating the mid points D and E of 
the lines AC' and BC' as the known points and using the values of U* and 
,+$ at C' incalculating the coefficients A, to A, end using $ at C' in place of 
,+$A and #B in the above equations (Wack [23). Thus the point C" is obtained 
and this is assumed to represent the point C itself. 

Analysis when 4 = 0 

In this case, in place of u, the variable p is used wherein, 

The following expressions are obtained for the stresses ox, % and 
T,,, by following the same procedure as in case of soils with internal 
friction (Siva Reddy and Srinivasan [7]): 

From equations (27) through (29), us, uz and TXZ are substituted into 
equations (10) and (11). On manipulation of these equations in the same 
way as in the previous case and using the dimensionless variables: 



p' = pic,, the following relationships are obtained along the two 
families of slip lines : 

Along the ($ + p)-fa~nily : 

and along the ($ - p)-family : 

dz' 
= tan (# - :) 

4 4 
&, - EL = E3 (35) 

in which, 

and 

The following expressions are obtained by writing equations (32) 
through (35) in finite difference form: 

& tan (#A - 5) - $, - XL tan (& + 2) + t;, 
x' = (39) 

&.($A -;> - tan(& +3 
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4 = [ f a  + E d a  + ES (xr - xi) - 

-I- - 4 (x' - xi11 (41) 

E = & + El ($a - 4) + +Ez (x' - xi) (42) 

7 = 7.4 - El ($A - $1 .) f (x' - x;). (43) 

Expressions for the Stresses Along the Boundary of the Rankine Zone 

The following expression is obtained for a* along the line OB, the 
boundary of thc Rankine zone (Fig. 2 a) : 

in which, 

For g equal to zero, the expression 

P r = Y L . 7 +  1 
Cvs 

P + (1 f Bcz'). 

(45) 

for p' along the boundary OB is 

(46) 

Determination of Points Along OL 

The change of 7 at the point 0 along 0,0, (Fig. 2 b) is obtained from 
equation (17) as 

From equation (47) the change in 7 at 0 can be found by knowing II, 
at 0,. By transformation from x, z coordinates to n, t coordinates the 
following expressions are obtained for the stresses on and ~,t along OL: 

I ac 
u,, = u [l + sin $ cos 2 (Jr - O,)] - H - - --- cos 4 sin 2 ($ - 8,) 

2 a* 
(48) 

1 ac 
~ , t  = - u sin 4 sin 2 ($ - 8,) - - - cos 4 cos 2 (4 - 0,). (49) 2 a4 

The following relationship holds along the Line OL 

q,t = - ("n + H )  tan 6 (50) 



in the value that 6 can take is 4, corresponding to the mitical 
condition in this case. In retaining walls 6 is the angle of wall friction. 

Substituting for on and snt from equations (48) and (49) into equation 
(50) and simplifying yields the following relationship: 

sin 8 cot 4 ac 
sin (2$ - 28, - 8) = - - -- - cos (2# - 28, - 8). sm4 Za* a$ (51) 

The expression for u* to be substituted in equadon (51) is obtained 
follows : 

If T J ~  and refer to the point El on the characteristic OD (Fig. 2 a), 
then from equations (17) and (13) the following expression for u* is obtained: 

Using equation (16) 

- z,' - x,' tan (h - d 
- tan ($1 - P) (53) 

in which, m = slope of the line OL = - tan (90 - 8,). 

Substitution for u* from equation (52) into equation ( 5 1 )  leads to a 
transcendental equation in $ which may be solved by an iteration proce- 
dure to obtain #. Substitution of this $ back into equation (52) give a* 

and from these values, 5 and TJ may be found. 

Computation of Points Along OL in the Case 4 = 0 

In this case the condition to be satisfied along the line OL is 

7nt = - C. (54) 

The following are the expressions obtained for the stresses an and ~ , t  along 
OL : 
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substituting for 7,t in equation (54) and simplifying leads to the 
fO1lowing equation 

1 + (k - 1) sinz $I - (1 + q) sin 2 (# - 8 )  

From the above equation it is seen that is dependent on k and 8, 
only. Hence, for given k and 80, # is constant along OL. The calculation 
of a point along OL which is the intersection of a characteristic of the 
(4 p)-farnily with the non-characteristic OL, is done in the same mamef 
as m the previous case after knowing # from solution of equation (57). 
The equivalent normal pressure (on + H )  is determined from equation (48) 
for several points along the wall, OL. The resultant pressure at any point 
on OL is 

and the dimensionless resultant pressure, Pp' is given by 

The relationship between P,' and the distance L, along the wall is 
asymptotic to a straight line as L increases and does not deviate much from 
this straight line at smaller values of L. Hence the toal force acting on 
the wall can be calculated from the resultant pressure at  the top of the wall 
and the slope of the straight line asymptote. 

Analysis for Active Earth Pressure 

Figure 4 shows the zones of plastic failure behind a retaining wall in 
the active case for an isotropic and homogeneous backiill (Sokolovsky, [I]). 
In the case of the anisotropic and non-homogeneous medium considered 
herein, the state of stress at any point is given by equations (5) through (7). 
Heme, the relationships along the two families of slip lines are the same 
as in equations (14) through (17). However, the relative positions of the 
two families of slip lines are interchanged in *is case (Fig. 4) when com- 
pared to the passive case. Therefore, for calculation of points of inter- 
6 x 1  of the characte~istics, equations (22) through (26) are used. The 
points A and B are on the ($I - ,u) and ($ 4- P)-sfip lines respectively (Fig. 5). 
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( \ t c f ) l ) -  S L l P  L INE  

FIG. 4. Zone of plastic failure bchind a wall in the activ? case 

m, 5. a&ulation of a new point in the active q?, 
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The point 0 is a limiting slip line of the (4 + p)-family along which 
quation (15) holds. Writing this equation in ~ t e  difference form, gives 
be change in 5 along 010, as 

nt = - AA$ (59) 

in which, 

ac 1 a a c  . r l = 5 C 1 .  (,+ - -T) a*. 
%* cvs a* 2 3  $ (60) 

In order to find the quantities, o* and # at point 0, these are first deter- 
mined for the point 0, (Fig. 2 b) as explained below, by using equation 
(so). 
The expression for on in this case is same as that in the passive case, and 
~t is given by 

Substitution for an and rnt from equations (48) and (61) into equation 
(40) and simplification, yields the following condition along the wall: 

~ ~ ( ~ - 2 8 , + S ) = - S i " ~ - ~ ~ ~ ~ c o s ( 2 ~ - 2 ~ ,  sm4 %* cm +S). 

(62) 

The value of + along the wall is determined by solving equation (62). 
In the case of isotropic medium, ac/3$ in equation (62) is zero and # is 
obtained explicitly as - A 6 ~ = 2 + - i - i - e , - Z  

in which 

sin S A = sin-I . (W 

Equation (63) is same as that derived by Sokolovsky [I]. 

If & is the value of f at a point previous to the point O,, along 40, 
F1& 2 b) then equation (59) may be written as 

f - 4 +AaA$=O. (65) 
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Substitution for f from equation (12) and solving for a* gives the fouoW 
ing relationship : 

4 is determined from equations (62) and (66) by iteration. 

1f Dl is the last point on a ($ - &family slip line, before the point B, 
on the wall (Fig. 4) and the quantities at  point D, are denoted 2s :;, 
f ,  o,* and #,, then using equations (14) and (15); the equations alon(: D,B, 
are written as 

Z' - z,' = (x' - x13 tan + p) 

5 - tr, + A1 ($ - 2/13 = A, (x' - x,'). 

substituting for from equation (12) and solving for u* from the resulting 
expression, gives 

substitution for u* from equation (69) into equation (62) yields a trans- 
cendental equation in $ and by solving this equation using at, iteration 
technique, 4 is determined. x' and z' are determined a3 follows: 

Along the wall 

Z' = - x' tan (90 - 0,) (70) 

snd therefore from equations (67) and (70) 

From the values of a* and + determined for several points on the wall, 
a,, $. H may be found from equation (48). The following expression i 
obtained for u* along the boundary of the active Rankiie zone: 
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In order that zones I and 11 (Fig. 4) do not overlap, the limiting values 
of 4 in the passive and active cases are as follows: 

the passive case 

and in the active case 

When 6 is zero, 60 ,,,, is equaI to zero in both the cases and when 8 
is equal to +, 6, ccr ,  = ?r/4 + $12 in the passive case and is equal to 4 4  
-412 in the active case. 

&ULTS AND DISCUSSION 

Pmsive Earth Pressure 

Numerical results are obtained for 6 ranging from 0" to 40' and 6 = 0, 
412 and $. In all the cases the value of x, (Fig. 2 a) is assumed as 30 and 
is divided into 10 parts. Hence, the resultant pressure is determined at 
I1 points on the wall. The resultant pressure at  the topmost point is 
denoted as pi, and that at  the lowest point on the wall by pi,. From 
the results obtained it is observed that the resultant pressure distribution 
along the wall is fairly linear and tends to a straight line asymptote as L 
increases as shown in Figs. 6 and 7for the passive andactive conditions res- 
pectively. Hence, the total pressure on the wall can be calculated without 
serious error by using the values of p:, and the slope of the asymptote. 
The slope of the asymptote is practically same as the slope of the secant bet- 
ween the last two points of the pp' versus L curve. The modified coeffi- 
cient of passive earth pressure is therefore given by 

Km = PL - p;"-*h 
Ln - Ln-I (75) 

in which n stands for the total number of points on the wall. The total 
n~n~mensional passive pressure acting on the may then be calm- 
pted using the following equation: 

PP = PLCR + t &&a (76) 



L 
FIG. 6. Variation of resultant passive pressure dong the wall. 

Figures 8 a and 8 b are plotted for 4 = 0" and 40°, respectively, in 
order to show the influence of k on pi,, for vertical wall and a wall inclined 
at - 30" with the vertical. It is found that when k changes from 0.8 to 
2.0, p; decreases by about 50 per cent. 

In order to show the Uuence of k on the values of Km, Figs. 9 a amd 
9 b are plotted for 4 = 0' and W, respectively, and O,, = 0" and - 304 
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FIG. 7. Variation of resultant active pressure along the wall. 

It is observed from these figures that the values of Kpm are considerably 
influenced by k when ,Be = 0.4 and are practically independent of k when 

= 0. For ,Bc = 0.4, it is found that when k changes from 0.8 to 2.0, 
Kpm decreases by about 30 per cent for 4 = 0" and by about 20 per cent for 
b = 40". Incidentally, Figs. 9 a and 9 b also show the considerable influence 
of 8, on Kpm. 

The influence of Bc on Kpm is shown in Figs. 10 a and 10 b for 4 = 0' 
and 40" respectively, and for 8, = 0" and - 30". It is observed that the 
V&S of Kpm are considerably affected by b',. When changes from 0 
to 0.4, Kp, increases by about 130 per cent for 4 = 0" and k = 0.8, 
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LL - 0 

k 
(a1 

Flo. 8. Influence of k 
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"c Oc 
1.1 (bl 

FIG. 10. Influence of 8. on K*',,: (,a) 4 .= 0' !b) + = 40". 

whereas it increases by about 62 per cent for 4 = 0" and k = 2. In the 
case of 4 = 40", K,, increases by about 58 per cent for k = 0.8 and by 
about 20 per cent for k = 2. 

Active Ewth Pressure 

In this case numerical results are obtained for 9 ranging from 10" to 
40". The values of k and 6 are the same as those in the previous case, 
whereas 0, is varied between 0" and 6, ,,,,. The results are obtained for 
three values of 13,, viz., 0, 0.1 and 0.2. Values of ~c, (Fig. 4) are assumed 
as 6.0 and 4.2, respectively, for 4 = loo, and 40". The number of divi- 
sions into which xM is divided for each of the above .$ values is respectivdy, 
21 and .15. Thus the resultant pressure, p,' is obtained far several poiats 
dong the wall. The resultant non-dimensional pressure at the topmost 
point on the wall is denoted by pi, and that at the lowest point bn the 
wall by p,. The modified active earth pressure coefficient, K A ~ ,  is given 
by 
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in which = the resultant pressure at the point next to the lowest 
point on the wall. 

The total active earth pressure acting on the wall is then calculated 
using the cqm'ion 

In order to show the influence of k on pi,, values of pi, for the 
extreme values of 4 and for different values of O,, are plotted against k in 
Figs. 11 a and 11 b. It is observed that k has the maximum influence on 

k k 

l a  1 l b l  
Fro. 11. Influence of k on pi, : (a) 4 = 10" (b) $ = 40". 

p : ~  when 8, = O". Figures 12 a and 12 b show the influence of k on K A ~  
for extreme values of 9 and PC and 8, = 0" and - 20". It is observed from 
these m r e s  that there is practically no influence of k on KAm when PC = 0. 
When & = 0.2, it is observed that the influence of k is larger for 80 = 0 
ampared to that for 8, = - 20'. Figures 13 a and 13 b show the iduence 
of h On K~rn for the extreme values of 6 and k, and 8,  = 0" and - 20". 
It is observed from these figures that KAm varies almost linearly with I%, 
and it has a greater influence for k = 0.8 when compared to that for 
k = 2.0. 
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FIG. 12. Innuence of k on KAm: (a) + = l o o  (b) $ = -404 
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Fra. 13. Influence of 8, on K A ~ :  (a) ) - 10' (6) + = 40?. 
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T ~ C  influence of k as well as that of 8 on the (\L i- p)-slip lines is shown 
in Fig. 14 u for 4 = 10" and PC = 0. It is observed from this fipure that 
for the same depth of wall, the rupture surface for k = 2 is below that 
for = 1. Howevcr, the effect of k is small. When 6 changes from sC 
to ]on, it is observed that the rupture surfa,cc become? dceper and more 
curved. Fgs. 14 b shows thc influence of PC on the (4 +  slip hnes 
for 4 10" and k -- 1. It is observcd from this figure that for the same 
depth of wall the rupture surface for 13, = 0.4 is shallower than that for 
PC = 0. 

T~ show the utility of the results presented and for comparison of the 
results with those of the conventional mrlhods, an example is worked out 
below. 

Example.-Find the resultant force on the retaining wall for the passive 
case for the following data. 

Height, H, of the retaining wall = 5 m, 

0, = 0, = 2.0g/cc, c, = 0.2 kg/cm2, PC = 0 

and 

Case 1 :  4 = 0, k = 2 

Case 2: 4 =0, k=- 1 

Case 3:  $=O, k=0 .8 .  

Am. : Case 1 : From Figs. 8 a and 9 a, for 
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hG.  14. Influence of: (4) k s (b) &, on the rupture surface in the active case, 



Case 2: From Figs. 8 a and 9 a for 4 = 0, 

f l , = 0 , 8 , = 0  and k = l .  d, ,=2.75 and Kprn=l .o  

Case 3: From Figs. 8 a and 9 a for this case 

pi, = 3.34 and Kp,=  1.0 

Using Rankine's approach 

It is seen from the example that the resultant force for the present example 
varies from 41.1 to 58.4 tonnes/m as k varies from 2 to 0.8 whereas 
Rankine's theory gives a valuc of 45 tonneslm. From the example it is 
apparent that the influence of anisotropy is considerable and it should 
not be neglected. 

The influence of k and on the resultant pressures, and p; and 
on the coefficients Kpm and Kam, are studied herein. The results show that 
as k changes from 0.8 to 2.0, pi, and piA decrease considerably for small 
inclimtions of the wall with the vertical. Further it is found, that Kpm as 
well as KAm are more influenced by k for higher values of 8, and are practi- 
cally unaffected by k when 8, = 0. The influence of PC on Kpm and KAm is 
greater than that of k and is higher for smaller values of k. The results 
have also shown clearly that the variation of the resultant pressure along 
the wall is almost linear for both the passive and active cases. Hence, the 
total earth pressure in either case can be determined with sufficient a a -  
racy by knowing the resultant pressure a t  the topmost point of the wall and 
the slope of the asymptote to the resultant pressure curve. 
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