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ABSTRACT

Effect of concentrated force or edge dislocation with Burger’s vector on a line
crack in dissimilar media has been studied in this paper. Crack surfaces may be
subjected to surface loads or opened by rigid inclusions. Complex variable methods
have been employed to study the distribution of stresses and displacements every-
where and in particular at the tips of the crack.
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INTRODUCTION

Crack problems have been solved mainly by employing either trans-
form techniques [1] or complex variable methods suggested by Muskhelish-
vili [2]. Tranform techniques cmployed by Spedden [3, 4, 5], Stallybrass
[6, 71, Shrivastava [8, 9] and others for cracks in elastic media assume the
additional knowledge of some of the stress and displacement components
on certain lines of symmetry, whereas, the complex variable techniques
adopted by Muskhelishvili [2], England [10, 11] and others [12] require
the knowledge of resultant vector and resultant moment of external forces
and stresses and rotation at infinity. In the analysis that follows it has
been shown that the two approaches can make difference in solutions.

A moderate bibliography of problems concerning cracks in dissimilar
media can be found in England’s paper {10, 11]. The present paper deals
with the study of first and second fundamental problems of two-dimensional
elasticity for a crack at the interface of two-bonded dissimilar half planes
in the presence of a concentrated force

1. Concentrated Force in Dissimilar Media

Consider two dissimilar elastic half planes bonded together along the
x-axis. The upper half plane is the region y > 0 and lower half plane y <0.
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The line joining these two regions will be denoted by L. TLet a concentrated
force X 4 iY act at some arbitrary point z =z, (z, = x, + iy,) of the
plane. Throughout the paper the clastic constants of the upper half plane
will be denoted by the subscript 1 and those of the lower half plane by the
subscript 2. The upper and lower haif planes will be denoted by S+ and
g~ respectively. We shalt follow the notations of Muskhelishvili [2] for
stresses, displacements and stress functions.

Stresses and displacements can be expressed in terms of complex poten-
tials @ (z) and ¥ (2) as follows

Xp+ Yy =2[P () + D (z))
Yy — Xz + 20Xy =2EF P @+ Y] (0
20 =k$@D—2P0@) — ¥ ()

where @ (z) = ¢’ (z) and ¥ (2) = ¢’ (2), p is the shear modulus of elasti-
cty and k=3 — 4o for plane strain and k = (3 — 0)/(1 4+ o) for gene-
ralized plane stress; o being Poisson’s ratio. By @ (z) and ¥ (z) we shall
always mean the stress functions in (1).

Introduce the function
LEO=0@+:20@+¥@ @
so that
Y()=00GE—D@E~—2z9(2) 3

where & (z) = @ (z) and similarly for other functions. For large |z,
D (2), ¥(2) and Q(2) have the following forms

X +iY E(X—i¥)1 1
D(z)= T I TR z+ 0(22) Y@= 27 (1 —i—zk)z-,_(J (2':"”)
and
X Y
Q(Z)_];a(r(l—’:l—lkg E +0(7~) @

where (X, Y) is the resultant vector of external forces.
Following conditions should be satisfied:
(la) Yyt —iXyt =Yy —iXy~ on L (e5))
ut vt = L i on L, (5i)
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+ and — supersctipts stand for stresses and displacements in the upper
and lower half planes, respectively. The condition (5 i) is equivalent to
the condition

¥, . 3 .

S}(u' + ) = o @ + i) s i)
provided the displacements are single valued. We shall use (5i#) in place
of (5 ii) to avoid logarithmic singularities.

(2 @) The functions @ (z) and ¥ (z) have required singularities which
arise duc to concentrated force at z,.

(3 ) For large |z|, @ (2), 2(z) and ¥ (2) are 0 (zY).
It may be noted that '
Yyt — Xyt =0V () + & (x) and ¥y — iXy = &-(x)
4+ 24 (x) on L ©)

where @ (x) and 2 (x); @ (x) and 2~ (x) are the values of D(z) and
Q(z) as y~»0-+ and y—»0— respectively.

From (57) and (6)
[6()— Q@ =[Px)— 2(x)] onL

and hence {@ (2) — 2 (2)} is holomorphic throughout the plane except
possibly at some finite number of points where it has poles. Noting the
singularities of @ (z) and Q(z), we find

0@—0@=—5 5 — G + s e ()
where

C= X+ V)2l + &) %)
From (5 iif) we get

s (e P () — 2 ()} =i {ky O () — O+ (%)} on L. €3]
Substituting the value of & (z) from (7) into (8), it can be seen that

B (x) — oD (x) = {(; — ) + padc)} g (x) on L, ®
where

@ == (up - kel (g + mofer).
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From (3), 9 (2) can be obtained as the sum of & Cauchy integral taken along
the line L and a function which accounts for the concentrated force at
2=z, Let @(2)= Py(z) and Q(z)= 2, (2) for zeS*, and & () =
&,(2) and Q2 (2) = 2, (2) for zeS—. If z, belongs to the interior of S$*, then

D, (2) = (Cloadl) { kiCy 2ipeCy } __ G , zeS*

Tkl 2= 2 (z— Zp)* 22
e _ e +k) C -
Gy (2) = v T s lezo , z&S (10)
_w( + k) kG 2ipeCy 1
Y@= TR e an

(ke — k) Cy kG _ _21'}’06'1 ZeS—
(no+ukd 2— 20 2—2, (z— 792 °°

2,2 =
where
Co=(X+iV)2=(1 + k).
F?(z) =%, (2) for zeS+ and ¥ (z) = ¥, (2) for zeS-, then
U@ =0,@ — 6@~ z%'()

_ (ke — mokey) él_ kG, 20,
(ps Fpaks) z—20)  z— 20 (z— zp)*

_ (=) E kG +2(1L1 — ) o (z +20) Gy S+
(o k) G —20° T G Fuak) G = 2T S
(12

and
¥y (@) = 0, @) — P2 (2) - 28, (2)

— it WGy Gl _m(El)aG o
By peky (2 — 2o (z— zo)* (o + paks) (z — 202 :

For an edge dislocation with Burger’s vector the analysis remains the
same except some changes in the constants occurring in various functions,

It can be verified that normal and shearing stresses and displacements
are continuous across L and are given by the following expressions

Yyt — Xyt =Yy — Xy on L

_ m(+tk) G ikl kG 2iyCy
T T gk, X— 2o + 11+ peky {x-—'io (x'—fo)g} » (13)
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ut+ivt=u-+iv on L

e S (LK) ) Atk
2 (!1'2 + I-‘lkz) G log (x Z 2 (.“'1 -+ uaky)

x {kaCylog (v — 2) + 22} 4

When py = s and ky = ko, @ (2) and ¥P(z) are reduced to well known results
for a concentrated force in an infinite medium [2]. Similar analysis holds
good even if there are more thanone concentrated forces in the medium,

If z, belongs to the interior of S~ then @ (z) and ¥ (z) cannot be
deiived from (10) and (12) but can be obtained similarly.

When z, tends to a point on L from the interior of S¥, say z, =5, 4
real, then @ (2), and R (z) cannct be deduced as particular cases of functions
in (10) and (11) as the Cauchy integrals in this case will have singularities
on the line of integration. They are given as follows

no=BEANE ) G
_ (a—pd (0 + )y C - -a
2@ =~ ~ e :5 e
a0=2% -l s w
(+kc c (=)L E)C
Q@) =%~ az-ib)+2(y2-£il«1kz)(z—b)’zes

¥ (z) can be easily calculated from (15), (16) and (3). Across L, stresses
and displacements are given by

om0 tk) | (—dy) C
Sty T ey e L an

e . (o —p) 1+ k(0 +2k)
+ o= = {— AN T M T Ay LT 2L
W= e {5 4 (o, + 113 %) Zug

mtuk w4+ k) G 18
G ) T Aty Top on L 09




Effect of Force in Dissimilar Media 375

2 Concentrated Force in Dissimilar Media Containing Crack

Although the following analysis can be adapted for dissimilar media
containing more than one crack, we shall give results for a concentrated
force in dissimilar media containing only one crack.

Consider two dissimilar elastic half planes bonded together along
the x-axis except over the iegion — a<{x<a where there is a line cracks
Lo a concentrated force X - iY act at a point z = z, (2, = x, 4 iy,) in
the interior of S*.

We shall follow the notations of section 1. Following conditions
should be satisfied

(b)) Y, —iXyt =Yy — iy ony=0, |{x|>a

2bh) ut+iv=u 4 v ony=0, [x|>a

(38) Yy — iXyt= Yy —iXy =0 ony=0, |x|<a

(4b5) @D (z) and ¥ (z) have required singularities which arise due to
concentrated force at z.

(5b) For large [z], D@ (z) and ¥ (2) are 0 (z7Y).
We construct each of the functions @ (z} and ¥ (z) as the sum of two func-
tions

D(z) = D*(z) + Py (2) and ¥ (z) = ¥*(2) + ¥, (2)- a9

@* (2) and ¥* (z) are such that all the conditions from (1 5) to (5 ) except
(3 b) are satisfied; @, (z) and ¥, (z) are obiained in such a way that the
conditions (1 b), (2 b) and (5 b) are satisfied and the normal and shearing
stresces calculated from them -om y =0, {x-| <« are equal and opposite
to those given by @*(z) and ¥*(2) on y =0, [x]|<a

We take @* (z) and ¥* (z) as the functions @ (z) and ¥ (2) given in
(10) and (12). On the crack surfaces, they give normal and shearing
stresses given in (13).

To find @, (z) and ¥, (z) we proceed as follows: Let Dy (2) = Pyy(2)
and ¥, (2) = W (2) for zeST and @ (2) = Doy (z) and ¥y (2) = ¥oq (2)
for zeS—. @, (z) and ¥, (2) are assumed to be holomorphic in the regions
y>0and y < 0and for large |z | they have the forms given in (4). We
denote Lim @, (z) = @y, (x) and Lixon @, (2) = Dy~ (X) and similarly for

prosl

v20+
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W, (z). Since displacements and stresses calculated from @, (z) and Yo
are to be continuous across y =0, | x| > a, following conditions shoyy
be satisfied

Bk $ait () + pr X Bost (%) + g o™ (%)
= pirk bog™ (%) + b X Doy~ (0 + o tbor™ (1),
ony=0 |[x|>a (20)
and
Byt (1) + Do (%) + x Boy’™ () + Foy™ (x)
= By (x) + Pog™ (%) + x D™ (%) + P (),
ony=0, lx|>a @n

where  @g, (2) = $or' (2) and ¥y (2) = 0,/ (2) and similarly for other
functions.

Continuity of the derivatives of the displacements across L would require
the following condition to be satisfied

tuokey Pog™ () + 1y x Doyt (x) + My, 502+ x) +m ¢02+ (x)

= ey By (%) + iy x & () + 1z By () -+ 12 Pos ().

We define functions 6 (2) and  (2) as follows @
0 @) = pokrbon (@) + 1y 7 Boa (2) + iy Fipg (2), z € S*
= ks boz (2) + 03z Pox () + aPor (2), 26— @)
and
@ (2) = gy (2) — 2 Dg (2) — 3 (2), zeS*
= $93(2) — 2 By (2) — Fi01 (2), 25— (29

It can be easily seen that
(s + 15k don (2) = 0 (2) + 8 (2), zeS*
(12 + 11k G0z (2) = pow (2) + 0(2), zeS— 29
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on the crack surfaces, following conditions should hold

o R R e at

+ o W = @ @6)
ﬁ?fﬁkl @'t () + J”L e O]

F e @ R W=/ @n

where

w4k G __p,z(l'-l-kl)
S &)= (ez k) X — 20 py + pgky

ki Cy . 2ipCy
x {x —zy (x—2Z)* @)

Subtracting (27) from (28) and using (1 b) we find '+ (x) — o’ ~“(x)=0
on L and so @’ (z) is holomorphic in the entire plane. For large |z } s
w'(z)=0(1/z%) and therefore w’(z) =0. Substituting w’(z)=0 in
(26), we get

O () + aol () = (. + k) f (x); y=0, [x|<a 29)
where

ag = (1 + na ) | (e + 4 ko).
The solution of the Hilbert problem (29) can be written as

vo=tedh@ [T L rere @

where
Xo (@) = @z + " (z — 4, 2y =log|a,|,

P(2) is an arbitrary polynomial in z. The function X, (z) refers to that
bianch which is holomorphic in the whole plane cut along (— @, @) and
which is such that zX, (z) — 1 as |z |—> co. Since 8’ (z) = 0 (1/2?) for large
[z], P(z) =0. The line integral in (30) can be evaluated with the help
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of contour integrals the details of which will be given for a more gener:
case when we deal with the problem of crack opened by a pomt force ¢
the otigin. Evaluating integral, we get

’ __( + 2k) l"‘ﬂ(l_,‘k)cl‘ e e 1
v o =% o L e

I S 1} (1 + k) kG
(z — z0) X, (z0) (1 F ueley)

1 1
Nemnne - ene U

2iyoCatts (1 4 ky) { 1
(w1 + poky) (z—2)* X, (2)
1. 1 .
P S A RN P AT Gl

Indefinits integration of 6’ (z) will involve integrals like f %’—(Z)*jz which
— 40

can be evaluated numerically only and hence 0 (z) cannot be obtained
explicitly from 6’ (z). @, (z) and ¥, (z) can be calculated from (25) and
(24) and @ (2) and ¥ (2) from (19).

It is of interest to know normal and shearing stresses and displace-
ments across the line L.

Yyt — Xyt = Yy — iXy~ = Ot () + Oz ()

_mltk) G 4 e (1 + kq) { XA _ 2nG }
(e +usky) X — 20 Quy + pofey) (X — 2, (5 — &)

=0ony=0, |x|<a

—{_ml+tk)C ! (1 + k) kG,
{ 2”‘2+u1k2)] (1 + (x—'zo) Xo (Zo)) + Mz(!lq +l:2k1; '

. 1 2iyoCoita (1 + k)
x(1+ pomyr) + 2ol Lk

x(~ = P~ G T = zalxuz el
X (x? — o % {cos (y log %cri—go

y=20, {x|>a (32

+ isin(ylog]iia[)}
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It is clear from (32) that near the tips of the crack sign of stresses changes
infinitely often in addition to the singularity present there. When py =
and k; = ks, stresses have singularities at the tips of the crack but are not
of oscillatory nature. The oscillatory phenomenon is confined at the most
to a S-nzighbourhood of tip of the crack where §/a = 2-52 x 104

Calculation of displacements across L requires the knowledge of 8 (2).
Sincc 6 (z) cannot be obtained explicitly from 6 (z), behaviour of dis-
placcments on the crack surfaces cannot be discussed analytically.

It can be easily seen that the conditions (1 5) to (5 b) are satisfied for
this solution.

We shall consider now the problem of concentrated force acting at
the origin on upper surface of the crack. Formulation of this problem is

the same as desciibed above except the change in the function f(x) given
in (28). We calcnlate € (z) from (30) where now f(x) has the value

{(m p) A k) (g — ) (1 + K

Fx)=

2 (“1 + Iszl) 2 (,U'z -+ piks)
(1 — agk)) G
v Ostllo @

It may be noted that f (x) has singularity at x = 0. The integral

S G)dx
., (x — 2)X," (x)

can be evaluated as follows:
Let 4 be the contour in Fig. 1. If z lies outside the contour then

f@(z— X, @~ [zxn @~ 1]

Also
f S| S j’ L S
A= XD /11+A2+--A6Z(Z—Z)X°(Z)
When 4 is shrunk to the arc yp =0, | x| <a, contour integrals over 44
and 4¢ tend to zero,
f (xydx
Te=3nm~ fx(x—z) X5 ()

A1+ As+4s
TLSc.—4
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A,
/\1>»ﬁ Az

o‘

A"" A + A2+A3+ A4+ A5+ As

Fe. 1

and

f o dt . 5. _m
S LG ARD T Ve 59
Bounded convergence theorem [13] has been used to obtain (34). Finally
s @ = ey k) G X, (z) {(”'1 = po) (1 4 &)

I+ ag 2 (uy + okcn)
__(.“ — i) (1+k1)J_(I_aok1)}
2 (p2 + o ko) ay
el o

Normal and shearing stresses on p = 0, | x | > a are given by
Yyt — iXyr = ¥y~ — iy~
— {(}"l — (1 + k) S —p) (1 k)
2w F k) 2 (g F mky)
1 —
+ (o) o,

o1l o ) ¢ b
(viog[EE2)}. ()

The conclusions drawn from (32) hold good for (36) also.
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3, Crack in Dissimilar Media Opened by Rigid Inclusion

Consider two dissimilar elastic half planes bonded together along the
x axis except over the region — a < x <{ @ where there is a line crack. The
crack is opened by a 1igid inclusion whose profile gives 1ise to the following
displacements of the crack surfaces

. 2
(10)u++iv+=ei(1—;—c-2) o
y=0, [x|<a

Wiy = — ez‘(l _x

' - az)
Following boundary conditions are to be satisfied along with (1 ¢)
2¢) ut+ vt =y 4 i ony=0, |[x|>a
(Be) Yyt —ikyt =Yy —iXy~ ony=0, |x|>a
(4 ¢) Stresses vanish at infinity.

We shall follow the notations and definitions of various functions
given in sections 1 and 2. The condition (1 ¢) is equivalent to the follow-
ing conditions on the crack surfces, ie, on y =0, |x]|<a

% ot (1) + o +"fj = (é) + fkw"* )
Ei()glkz ~ e 1-5). @7
P RO Ry e
+ :if‘(i) _— Z;Agel(l - —) - 38

Dividing (37) by g, and (38) by . and subtracting, we get,

z ,
B () — 0 (%) = dquapigei (1~§—2) s y=0 x| <a (39

From (2¢) & (x)=6-(x) on y=0, |x|>aand hence 0 (z) is holo-
morphic in the entire plane cut along (~ a, a) The solution of the Hilbert

problcm (39) can be written as

e(z)__Mze{zaz+(a2—zﬂ)logz+“} )|
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The following equation for w,(z) can be easily obtained provided the deri
vatives of displacements are comsidered in (1 ¢)

. ., 4 (uy — ik, k;
W () e~ (9 = 2l (et B

Using (3 ¢) we observe that o’ (z) is holomorphic in the entire plane cut along
(— a, @) and hence the solution of Hilbert problem (41) can be written as

@' (2) = 28,z — 28, {z* — 2iyya — (& + 2:2) 2%} X, (2)

+ 28,{ 22+ zlog ;_i__—g} , @)
where
5. = 26l (uy 4 Fapta) (ko (Raps — p) + Ky (09 — #lkz)}
e kPt (U + ) (pe + paks)
ay = ky (g + ko)l by (g + ks, 2my; = log | og I
8 = — Quigpin (akey — 1) €
2w (14 ay) by (e + 1ok
and

%@ =@+ otz — o)Wt

The function X, (z) refers to that branch which is holomorphic in the whole
plane crt along (— g, a) and which is such that zX, (z) >1 as [z ] »oo.
Integrating o’ (z), we get,

w (2) = 8;2% — 8, (2% — a%) (z — 2y,0) X, (2)

s

— 2¢i {kz (k1l"2 1‘1) -+ kl (g — wrko)} (43

B (T F 0 (Bs + puakn) Gt ok

The constant of integration in (43) has been chosen in such a way that the
condition (1 ¢) is satisfied.
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For y=0, |x|<a
Yyt — Xyt = {2035 (1 — kakes) 81/(uy + poky) (y + ugkn)) x
e {281M1 (1 k) (e trak)} {x2 — 2y ax — (3+2y,2) o X (x}

_ Aupae |x—a
T ma® (i «f—uakl){za +x log Ix -+ ‘} :

Hgfly (1 —k k")z 1
{(km + aky)fks + A 1-|- alj@:tlf; k) 0

4/1,“261){ . 4‘(/&1?—/1_)_(14-&/6)
— e S ey (e — ke = G G T §
=p+B+B8+h (say)

ok (- ky)
i AL
_Apmupeix () up Uy - o) (ks — 1)
T a k> (#1 + /'szl) { a]‘kl + (l -+ al) (Hn + 11ks) } (45}
Y7 — Xyt and Yy~ — iXy~ for y =0, | x|> aare given by the sum of
first three terms in (44) and the sum of first three terms in (45), respec-
tively.

Yy — iXy = f —

1t may be noted that the stresses at the tips of the crack have singu-
larities of the type (x* — a®)~* but it is not possible analytically to say
whether the stresses are oscillatory near the tips or nof.

For y=0, |x]>a
wh A vt = iy = b(}/fl’ g :k(ﬁ) [ — (x* — @)t (x — 2ina).
2
al
X {cos (yl Iog T ) — isin (71 log ’) 1
ka1 4 a) 16
PR 2N ] (46)

As

- 2ei {ky (heypg — 1) + by (89 — ”‘lk2)}
Oy e e 2 Lrs
2] oo, % 4 07— (1 + kypta) (i - p1aks)

€i {key Gy, — 140 + Ky (g — ko)) .
WG Tag by ' =D

L18¢c.~5
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Formy=u,=p and =k =k

+ . X —al
vy - oyt = = 2000 o xlog S0

2uel (k x
+ ey s

y=0,lx|<a {47)
X e — (LR x —al
Xy~ = nazk {2a+:\10g —&-a;){
__‘_pez(k—-])r
a*k ?
y=0 Ixi<a (48)
co _ o 25(1*,7()
— Xyt = Yy - Xy = =
, N ‘ x—an - A~ 4
xizaxxlegx+a\i;, y=0,|{x|>a (49)
Ut T == =0, y=20, {x|>a (50)

The problem of line crack is an clastic medinm (u; = u, and ky = k)
with displacements prascribed on the crack surfaces as inm (1 ¢) is reported
in [1]where it has been solved by using transform technique. The results
given in (47)-(30) of this paper do not agree with the results given in f1}-
The disagreement in results is due lo the fact that in [1] it has ‘been assumed
that shearing stress is zero on L which amounts to saying that the crack is
opened by o particular type of loading. Complex veriable technique does
not need this assumption for the sclution of the problem. However, if onz
makes the assumption that sheering stress is zero on L then from (21) and
(23) it can be seen that o' (z)==0. By taking o’'(z) =0, we get th:
solution in [1].

4. lastly, we discuss the problem of a line crack in dissimilar media
opened by a rigid inclusion as in Section 3; with a concentrated force X + 1Y
acting at = == =y in the Interior of §+. The solution can be obtained by the
superposition of iwo displacement systems. The first system of displace-
ments is given by (14). The second system of displacements is obtained by
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considering 2 rigid inclusion in 2 line crack in dissimiler media whosz profile
gives rise to the following displacements of the crack surfaces

(Id) u -+ ivr = ei(l - gé) + G (x)

ony=0, |xj<a
w4 v = — ei(l — ::) + G{x)
where
_ h(+k) (L+ k)
G (x) 2 (o + ks Cy log (x — zy) + by _‘_';2121“)
— Fg) ~2_”0C
{le1 log (x — Z,) = ‘;)}

The solution of the crack problem with the displacements of the crack
surfaces presciibed by (I @) can be found out using the theory developed
in section 3. Using the notations of section 3 it can be scen that the furc-
tions 8 (z) and o’ (z) are given as follows

8(z) = — 2_5:;:35 {ZGZ -+ (a® — 2% 1°gz * ZS’ G

(1 + k3) (g J‘,l\[“")) X (=)

@ (@)= H (&) + 0 S T ay

{ ks (1 k) C, {(_’, Lo ] S— }

2 ™ +;17k‘2) — ) Xy () z — zg) Xy (zy)

G+kybsCg 1 1
+2(N1 + wzky) {(Z—fo) X (@) =2 XLGEY 1}

2(1—/\1)1)0C1{ﬁ 1 N I
{3y + fafn) (= — 50)2 Xy (2) (z— Zo)* X (2y)

! t
R — . 52
T2 X12(Zo))] (52}
Where K (z) is given by the rlghth?nd side of (42). ay =k, (u, + wky)f

k(o + pykes), 2y =log|a, | end X, (2)=(+ ) t-E (2 gy Bricd
Other quantities of interest can be calculated with the help of (51) and (52}
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