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ABSTRACT

In this paper, the renewal theorem of Feller is extended to the cuse of «
system of renewal equations. Also a refinement of the renewal theorem is given
and several open problems are listed.

Key words: Renewal theory; Perron—Frobenius root, Lattice distributions.

1. INTRODUCTION

In this paper we study the asymptotic behaviour (as ¢ — oo) of solu-
tions M () = (M, (), ..., Mp (¢))" of a system of renmewal equations of

the type
Mi(t)=Zi(t) + & | My (¢ — u) Fix (du)

k=1 |o,1¢]
i= 1,2, ....,0,(t>0) (1.1)

where Z, (1) =(Z(t), ..., Zp (t))’ is a vector of Borel-measurable func-
tions bounded on compact sets and for each (i, j), Fi; (.) 1s 2 non-decreasing
bounded right-continuous on [0 oo) into itself.

The functions M; (¢) arise in a natural way in many applications and
especially in Branching processes [9]. Their behaviour as 7— oo is of
great interest.

The case p=1 and F,; (o0) =1 is, of course, the standard renewal
equation and one has Feller’s renewal thcoirm available for any directly
Riemenn integrable Z, (.} ([5] pp. 346-353). The object of this paper is
0 prove an extension of Feller’s result to the present context.

In fact such a result is already available in the literature. K. S. Cn}mp [3]
lollowing Feller’s methods [5] extended Feller’s theorem to obtain our
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theorcm 2.2 below. However, Crump’s proof as it is given in [3], though
correct, does not give all the details and these, as we discovered, turned out
to be non trivial. Besides streamlining and completing Crump’s proof
we also give a refinement of the renewal theorem (our theorem (2.4) ) under
second moment hypothesis. This latter result is new. From the point
of view of applications the result most useful 1s in theoem 2.3 (Sec (1] and

D)

The system (1.1) has also been studied by Chistyakov and Sevastyanov
[2). Their methods are Fourter analytic and involve Tauberian argu-
ments. These, in turn, involve certain moment conditions which are much
stronger than ours. Mode [9] too studied (1.1) and proved the result
of theorem 2.1 below under moment conditions, absolute continuity of
F;;’s with their densities in some Lp, etc. Crump’s arguments, on the
other hand, are direct extensions of Feller’s ideas which exploit the weak
compactness of bounded measures on compact sets on thc line. Our
proof of theorem 2.1 i1s almost the same as Crump’s with more details
and is somewhat streamlined. Our proof of the refinement, viz., theorem
2.4 is also based on an extension of Feller's ideas ([5] p. 357).

In section 2 we set up the basic machinery and state our results. The
proofs are given in § 3. Some directions of future research are indicated
in §4.

§ 2. PRELIMINARIES AND STATEMENT OF RESULTS

Let F()={F;(.): 1<i<p, 1<j<p} be a matrix of bounded
non-decreasing right-continuous nonnegative functions on [0 oo). For any
p X r matrix H(.) of Borel measurable real valued functions Hj; (.)
on [0 o) that are bounded on compact intervals, we define

(FeH)s ()= Z | Hii(t = u) Fi () 2.1

for t> 0.

If.we make the convention that F and H are extended to the whole
line by being madc to vanish on (— oo 0), we may writc the integral on the
right side of (2.1) as over the whole real line. This convention shall stand
wherever the domain of integration is not explicitly indicated.

We may now write (1.1) as
M(.)=Z()+ (F+ M)(.) (2.2)
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Now set
Fo (1) = (6 (1))
with

. b if i=j and >0
%ij (1) = 0 otherwisc, (2.3)

FM@)=F«F™)(D)(n=1,2...)
U@ty = 3 Fm().

n=go

We shall refer to F™) as the n-fold convolution of F and U (.) as the
renewal function associated with F.

For any matrix 4 with nonnegative entries, let p (4) be its perron-
Frobenius root. (see [8] for a definition).

Lemma 2.1
(@) U(t) < oo for each t> 0if and only if p (F(0))< 1.

(b) Let p(F(0)) < 1. Then M(.)=((U*Z) (.) is a solution of (1.1).
It is also the unique solution in the class of Borel measurable functions
bounded on compact sets.

Proof
(a) Let
Fij(a) = [ exp (— au) Fyj (du) for a = 0.

[n o0]

Since Fjj (a) { Fj; (0) as a 4 oo, there must exist an a> 0 such that
p(F(a)) < 1, where

F (e) = ((Fij ()
Thus,

; {(F (a))™} i, s < oo for cach { and J.

But

=

{(F@)*h,j= [ e Fi (du)

0

T e-ott Fi® (du)

0

> cxp (— at) FP (1)

W
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Thus ¥ F (1) = U;sj(t) < oo for all i, jand t> 0. Conversely suppose

=0

Ao =p(F(0)) = 1. There exists an cigen vector &€= (&, ..., &) of F(0)
corresponding to the eigen-value A, such that & > 0 for some i.

Since

5 X {F Q)5 & = Z & = oo,

n=Q i=1 =R
it follows that E {(F(0)™}, j = oo for some j if i is such that &> 0.
ne=Q

Thus Uj; (1) = oo for some i and j and for all 1> 0.

(b) That M = U+ Z satisties (1.1) 1s straight forward. The unique-
ness part follows as in the case p = 1, by using the fact that FO) (1) - 0
as n-> oo for each t (sec [3]).

We shall make the following hypothesis about F(¢) in thc remainder
of this paper:

W) p(FO) <l
(1) 0 < lim Fij (t) = Fjj (00) < oo for 2ll 7 and . (2.4)

(ii1) there exist i and j such that Fjj (0) < Fij (o0)

We know from Perron-Frobenius theory that if p (F (o0)) is the Perron-
Frobenius eigen value of F (o0), then the corresponding right and left eigen
spaces are one-dimensional and that vectors m and w with strictly positive
entries can be chosen so that

F(oo)m = p (F(o0)) m _ |
u' F(00) = p (F (o)) & ' (2.5)

P
2 uimy =1
i=1

P
2 m; = 1.
=1

As in the case p = 1, there is a dichotomy in thc bchaviour of M (f) between
a lattice and non-lattice F. We make the following

Definition (2.1). F(.) is lattice if

(1) Fi; (.) is lattice with span A;; for any i in the scnse that Fij ()
is concentrated on a set of the form {b;5, bij + A, bjj + 2A, ...} and Ay
is the largest number A with this property.
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F;; (.) is arithmetic with span A for each i, in the sense that it is con-
centrated on a sct of the form {0, 4 A, 4 24, ...} and A; is the laigest num-
ber with this property.

(i) each A;; i1s an integial multiple of some number. (We take A to
be the largest such number).

(iii) asj, ajk, aix are points of increase of Fyj, Fj and Fix respectively
implies that a;j + ajk — aik 1s an integral multiple of A

We now introduce two moment matrices:

B = ((bij)), C = ((ci)
0 < bij =[ | uF;j (du) (2.6)

0 oo}
= T (Fij (o) = Fiy ) () < oo
O0<cj=1% ] uFij (du)

[o o)

= T {J (i (09) — Fij ) @) i < oo,
0
We are now ready to state our results.

Theorem 2.1

Assume that p(F()) =1 and let M (1)=(M() ... Mp (D))
be a vector or bounded continuous functions satisfying the system equations

Mi()= ¥ +T My (t — u) Fig (du) (1 < i < p). 2.7

k1 —00

Then,
(i} F(.) non-lattice implies that A () i1s a constant vector

(1) F(.) lattice implies that each M; () is periodic with period A (sce
definition 2.1 for the meaning of A). Further, for cach i/ and j and for
any point a;; of increase of Fjj (), the vector (M, (t — a;), ..., Mp (1 — aip)
s an eigen vector of F (oo0) corresponding to the eigen value 1.

Theorem 2.2

Suppose p (F (o)) = 1.
(i) If F£(.) is non-lattice, then for each i j and /4> 0,

Ui (1) — Uy (¢ — h)—> emy uj I (2.8)
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as t— oo where

¢C == o :
2 X mpoup bir

k=1 r=}
(If by = oo for some k and r then ¢ will be interpreted as zero).

(i) If F(.) is lattice, then (2.8) holds whenever A is a positive multi-
ple of A

(iii) Let Z()=(Z,(t) ... Zp(r)) be a column vector of directly
Riemann integrable functions on [0 co). (see Feller [5] for definition)

We set Z;(t1)=0 for 1t < 0. Let M(t) = (U*Z)(t) be the solution
of (2.1) unique in the sense of Lemma (2.1). If F(.) 1s non-lattice, then,
for each i,

Mi(t)> em; & ui | Z; () du, (2.9)

=1

as 71— oo,

If F(.) i1s lattice, then for each i,

M;(t + nX)—> cmy E,‘ AUj Eﬂ Z;i(t + IA) (2.10)

i=1 Jom e 20

as n— 0O,

Theorem 2.3

Let p(F(o0))# 1. Assume that there exists a real a such thatp(G (a))
= ], where

Gij (a) = [ &% Fyj (du)

If est Z;(?) is directly Riemann integrable for each i, then
M; (1) eat — ,’g(aﬁ) [ e* Z; (u) du 2.11)

as t— oo (for each i) where

and



Feller's Renewal Theorem 443

are positive right and left eigen vectors of G (a) corresponding to the eigen
value one with the normalizations

p o~ ~
> my u;i =1
(=1

P =~

2mi=1,

i=1

» 1
»  * S . - o
k=1 r=1

Ekf = [ ue*™ Fy; (du) .

(0 co)
If 51-3- = oo for some (7, j) then ¢ would be interpreted as zerc.

Theorem 2.4
.Assume that F (.) is non-lattice and p (¥ (o0)) = 1. Assume also that

Cij = a}ftﬂ Fi; (dt) < o0 for each (i, j).
Then
U@it)— tA
- (I — AB + ACA) H (t > o) (2.12)
where
H = (I — F(c0) + BA). (2.13)
§ 3. Proofs
We begin with the following lemmata:
Lemma 3.1.

Let 35 be the set of all points of increasc of Fi; (L), FP (.), ..., ie.,
Yii={a: for some n> 1, F% (@ + ¢) — F@ (a — ¢) > 0 for each «> 0}

Then
Zik + Zk; € Xij for all 4, J, k.
Lemma 3.2

() If F(.) is non-lattice, then jj is asymptotice_llly dense at oo for
fach (i, ) in the sense that for every e> 0 there exists A.> O such that
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x> A implies (x, x + €) N 2y # ¢ (i) If F(.) is lattice than Z2'i; contains
on'y points of the form aj; +»n A 2nd Z2j; contains such points whenever 7 js
sufficiently large.

Lemma 3.3

Let K (1) = (K (?), ..., Kp (¢)) be a vector of uniformly continuous bounded
functions such that

Kr (1 — u) Fir (du) (3.1

o

4

Ki(t)= X

r=1

(1<i<p). Assume that F(.) is non-lattice. Suppose that a; = sup K; (1)
teER

is strictly positive for some i,. Then there exists 6;, > 0 such that for

any h> 0, there exists an interval (¢, 7 + /) of length 4 in which K; (x)

> di..

Proof of lemma 3.1

Let xe Xix and ye Ykj. Then x is a point of increase of Fip (.) and
y is a point of increase of F;}? for some n and m. Thus x + y is a point of
increase of (F’ * F{™)(.) and hence it is also a point of increase of

F:;l-!-m} ()

Proof of lemma 3.2

From lemma 3.1, 1t is clear that either each X;; is asymptotically dense
at oo or none of them is. Assumc that none of the X'i;’s is asymptotically
dense at oo, Since Jji 1s a subset of [0 oo) closed under addition, J;
{0} and X';; is not asymptotically dense at oo, it follows that

;i contains only multiples of some positive number 8;; and it contains
n &; for all large n.
If ceXij, deXji and nis so large that n8;; and (n + 1) 8;;¢3; then néi; +
¢ + deX'j5 and
(n+1)6; + ¢+ dez,‘jj
Thus &3 = 8. By symmetry, &; = 8;; for all / and ;. Let

§ =08, =8 =... =8

By a similar argument we see that for isj, Xy contains only points
of the form b;; 4 nd and i; contains such points for all large n. By
lemma 3.1, we obtain,

bij +.bjk = by + né,
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Thus F (.) is lattice and A (see dcfinition 2.1) is a multiple of §.

Thus, F (.) is non lattice implies that each J;; is asymptotically dense
at oo,

If F(.) is lattice, then, by induction on n, we see that points of increase
of cach F{j (1) arc contained in {bij, by £ A, byj & 2),.. .} Q.E.D.

Proof of lemma 3.3

Let K (r) be a solution of (2.14) which is bounded and uniformly conti-
nuous and let aj, >0 where o; = sup K;(1)(1< i < p). Fix j, such

that

nij, 1=<j<gp Mj

Note that for any integer n > 1,
P
2 Fy (o) mj = my (1<i<p).

Here and in the rest of this paper £}, (c0) denotes the (i, j) element of
(F (co))". We now have

P
‘"': F;of (00) ﬂ.j

j=1

#1 n ﬂ.j
— 2’ P;nl ( OQ) mj oL
i1 mj

é F, (o0) aj < aj,. (3.3)

j~=1
We divide the rest of the proof into two cases:
Case (i). There exists t,eR such that Kj (7)) = aj. In this case,
we have

aj, = Kj, (1) = 5 [ Ke(to— ) F oo (du)

r=: 9
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(by iteration of equation (3.1)).
Thus,

p oo

aj, = X J Ky (tg — u) Fy) (du)

r=1 o

Ry m I F (du) |

f-l

— Z ar F[;ﬂ (OO)

re]

P

< 2 ar Fj, (o)

r=1

Qaj., by (3'3)
Jt follows that

z I tar — Kr (19 — u)} Fj} (du) = 0O

re=]

for each n and thc integral being non-negative and continuous,
Ky (29 — u) = o, whenever u« is 2 point of increase of F/™ for some n_

(Note that if K, (1, — u) # or for some u then o, — K7 (¢, — u) is bounded
below by some & > 0 in scme neighbourhood of #). By lemma 3.2, it
follows that 2j,r i1s asymptotically dense at oo for each r. The uniform
continuity of the functions K, (.) now imply that

lim K;(t) = Kj(— o0) =ar (1 <r <)p). (3.4)

t =00

Now, letting 7> — oo and using bounded convergence in

Ki()= X IK (r— W) F» (du) (1 <i<p)

r~1

we obtain
aj = 5 apF (o). (3.5)

ram ]

Now, fix 7 and re{l, 2, ..., p}. We have
IK'r (t)"‘arl

<

!It‘ﬂﬁ

Tle (t—u)— apm | F® (du) (by 3.1 and 3.5)

T i
J | Km (t — u) — am | FL3) (du)

1 0

e

+ 2 JKm (= ) = am | Fi2 (du).- (3.6)
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ObSBI‘Vf: that F{{j" (DO) -...g F."; (00) a.nd (F (go))ﬂ i ((miuj)) by Perron-
Frobenius theory (see Karlin [8]). Hence
a = sup F{ (c0) < oo,

'l fl-"

Thus, given € > 0 there exists 7 such that

Oy

P
¥ 11: | Ky (t — ) — o | F (du) < € for each n.

re

i

Also, since Ky (.) is bounded for each r and F® (7)— 0 as n— oo for
each r, it follows that the first term on the right side of (3.6) approaches

zero as n— oo, Thus, (3.6) implies that K, (t) = a, for each ¢ and r.
The lemma is obvious from this.

Case (ii). Kj,(t)#aj, for each 7. In this case, there is a sequence
tn—+ £+ o such that Kj (t3)— «j,. The function I, ;(.) defined by
bn,i () =Ki{tp + x)(1 <i<p,n=1) for a uniformly bounded equi-
continuous family of functions and hence there is a subsequence {tﬂ} of
{t;} such that Cﬂ ,i (.) converges uniformly to a continuous bounded f unc-
tion 9;(.) as _]—3- oo for each i. Since

Cuj,i(x) = K (r'ﬂj + x)

P o0

2 | K, (fnj“l“’f“}’)F:r(d“)

r=1 0

= e

= El | nsr (x — ») Fir (dy)

0

we have, by bounded convergence theorem,

n@= 2 T 1 (¢ — ¥) Fir () (3.7)

(I <i<p, xeR).
Now, case (i) applies to the functions 74 (x) since

m() <a (1 <i<p, xeR)
and
75, (0) = lim Cn s, do ©0)
j = o0
= lim Kj, (¢ n; )
i =p oo
= aj,
50 that

75, (0) = sup i, (1) = aj,.
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Thus, each 7; (.) 1s a constant ¢i. Note that ¢j, = aj,. Now, (3.7) implies

P

¢i= X crFir (00) I<ig)p)

a1

By Perron-Frobenius theory (8] it follows that (¢y, ..., cp) =c(m,, ..., )
for some c.

Since
- -
"_' = max
"nj, 1<5<p M

it follows that

a4 a;
ade ook N AR
mj, ~ mj,
Thus -
¢j, = a5, > 0
and hence
Cq
o=-2 % 0,
m.?u

We now observe that

K;, (r1rt + x)— c¢;, uniformly on [0, #] for any fixed #> 0. Hence
K; (x) > c,,/2 for xe [t.n o In; + h] whenever j is sufficiently large.

This completes the proof of lemma 3.3.

Proof of Theorem 2.1

Let p(F(c0)) =1 and M () be a bounded continuous solution of
(2.7). We shall prove the theorem only for the non lattice case. The
lattice case is proved in a similar way by replacing derivatives by differences.

Set

¢ (1) = v‘lz;e =P {‘"’ :‘zt;} (FeR),
and
fe,i (1) = (¢« M;) (1)
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i.€.
o0

I, #11) =_£ﬂ<;5¢ (t—y)yM;i(y)dy

oo

=_.L56£ (.V) M; (t — y) dy

Then it is casily seen that for each ¢> 0, £, ;(.), 1 <i<p satisfy

Je, i (1) = Z" Tﬂ,r(f‘_y}Fir(dy) (1 <i<p)

re] =0CO

Further, the functions f, ; (.) are infinitcly diffcrentiable and their deri-
vatives f'.,i (.) satisfy the equations

fleil®)= é j: fe,r (t — p) Fir (dy) (1<igp)

Since fe; (.) is bounded and uniformly continuous, we may apply
lemma 3.3 to these. Let a;j =sup fe, (). Suppose a; > 0 for some i.

By lemma 3.3, there exists 8; > 0 such that for any /> 0 there are
intervals (¢, f + #) of length 2 in which f¢, (x) > §;.

Thus
fe,i ¢+ h) —fe,i (1) > i h.

But the functions f; ; (#) are uniformly boundcd and hence there exists
a constant M such that & h < M for all /> 0. This is impossible and

hence
a;i <0 for each i. Therefore

fei ()0 for all ¢, i, e
Replacing M; (.) by the solution (— M, (.),..., — Mp (.) of the system
(2.7), we see that fe. (1) =0 for all i, 7 and e. Thus f,,; i1s a constant for
cach i: €. i.e., |

Fod (8 = 1o, 10} for all ¢, € and i
Letting e— 0, we obtain ,

M;i(t) = M; (0)  for each / and 1.
This completes the proof of theorem 2.1.

| Proof of Theorem 2.2
We break up the proof into four steps. The first step establishes the
Weak compactness of the translated measures Up (1) = Ui (¢t + b) — Uy
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(t + a) where 7= (a, b]. The second step identifies any weak limit to be
a multiple of Lebesgue measure. The third step shows that the mutiply-
ing factor is of the form e¢mj;u; and the fourth one establishes the inde-
pendence of the constant ¢ on the particular subsequence {t,} of the ¢’s.

Step I. The solution M (¢) = (M, (t), ..., Mp (t)) of the system of
equations
M@)=2Z @)+ (F*M)(2) (t>0)
is given by

_m if 1 >0
M(")—{o if 1 <0

where Z (1) is given by

_ [(F(e0) = F(t))m if >0
Z(‘_{ 0 ' if ¢t <O.

Hence, by lemma 2.1,

m=(U*Z)(t) for each t> 0

Therefore,
m; = [ z Zy (t — u) U (du)

t

- | 2? Zx (t — u) Uik (du)

t—h k=1

> 5 Zk (7)) (Ui (t) — Uk (t — h))

k=1

since Zx (.) is monotone for cach k.

It follows that for sufficiently small 4, Ujj; (f) — Uij (¢ — h) is bounded for
all i and j. Since any bounded interval can be divided into a finite number
of intervals of small length, it follows that the measures U (/) are weakly
compact.

There is, therfore, a sequence f, - oo such that U™ (/)— Vij (I)
for all i, j and for all intervals 7 = (a b] such that Vi; {a} = Vij {6} =0
(as n— oo) where Vij (.) 1s a positive measure on R for each i and j (see the
selection theorem, VIII. 6 in [5]).
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Step 1l. Now, fix kye{l, 2,..., p}. Let Zg, be a continuous function
with support in [0 @] for some a> 0. We set Zx (¢) = 0 for all ¢ and for

k # ko Now M (1) = (U*Z) (¢) is the solution of the system of cquations
Mi(t)=2Z;(1) +k=z,: | My (t — u) Fix (du) (1 < i< p) (3.8)

unique in the sense of lemma 2.1. By the weak convergence of U™ o
Vi; it follows that
Mi (ta + %) = | Zx, (tn + x — ) Uik, (du)
= [ Zk, (x — ) U'D (du)
—~ | Zk, (x — y) Vi, (du).

Let
L (x) = [ Zk, (x — p) Vik, (dy).
Clearly, ¢ is a bounded continuous function. Since M; (¢, + x)— Li(x)

and M; (.) satisfies the system of equations (3.8), it follows by bounded
convergence theorem that

L= 2 [ LeGr—p)Fie ) (1 <i<p)

k=1

Theorem 2.1 now implies that 3 (.) is a2 constant for each i Thus

| Zk, (x — ) Vik, (@)

is independent of x for every continuous function Zy, (f) with compact
support (vanishing for ¢ < 0) and hence the measure Vjg, is proportional
to Lebesgue measure for each i. Since k, is arbitrary it follows that each
Vi is proportional to Lebesgue measure, ie., there exist constants a;;
such that

Vii () = aijm (1) (3.9)
where m denotes Lebesgue measures.

Step 111
We again fix k,,

set Zy (1) = 0 for all ¢ if k# kq

and set
I if 0t |
Z, (1) = {0 otherwise.

The solution M; (¢) (1 < i < p) of the equations

Mi(t)=2; (1) + I 5 M (t — u) Fic (du) (3.10)

K=
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is now given by
Mi(t)= [ Zx, (t — u) Uik, (du)
= Uik, (t) — Uix, (t — 1)
and hence
M;(ty, — u) = Uy, (tn — 1) — Uik, (tn — u — 1) > ajk, for each u.
Applying bounded convergence theorem in (3.10) we obtain

ajko = b akk,Fik (00)

k=1

i.e., (ajk, - - -» @pk,) 1s a right eigen vector of F(oo) with eigen value one.
Hence, by Perron-Frobenius theory [8] there exists rg, such that

aik, = rei (1 < i < p).

If we replace ((Fij (.)) by ((Fj5:(.)), Ujj (.) becomes Uy (.) and
hence, there exists sp, with

ar = Sk Ui (1l <1< )p).

The above argumcent can be applied for each k,. Thus
aik, = Tk,/Ni = Silik,.

Thus

r Si

ke — 2L for each i

Uy, m;
and hence ri fux, = si/m; = ¢ for all i and k, with ¢ independent of both
i and k,. It now follows that aj; = rjm; = cmiuj. We have thus shown

that ((e3)) 1s multiple of ((m;u;).

Step IV

To evaluate ¢ we again consider the system

M;i () = Z; (1) + 2 f’m (t — u) Fig (du)

where

Zi() = I (Fik () — Fik (1)) mi

k=1
1.e.,

Z(@)=(2Z,(t), ... Zp (1))
= (F(o0) — F (1)) m, (1> 0).
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The solution M; (.) is given by M; (t) = my for all i and 7. Now, it is
easily secn (as in [5]) that

Mi(ta)—> X ag | Zi (u)du,

k=1 0

since Zi(.) is directly Riemann integrable for each 7 and Uiimn (I - ajj
m(I) for all i and j. Thus, |

mi = M (tn)

— )E‘ aji; J?aZj (1) du

f=1

P b -
2 aii 2 bjremy

=1 k=1
l.e.,
p 2
my =c¢ Y X mjuibjremy
k=) =1
ie.,
P 9
I =c¢ XY X ujmibk.
k=1 J=1
ie..
. I
c . gt :
> 2 bjxuimy
k=1 j=1

This completes Step V.

It now follows that thc ‘limit matrix * ((ajj)) is independent of the
sequence {f,}, since the argument above shows that every sequence {tn} > o0
has a subsequence {rnx} for which

Ubmd (1) = ajsm (I) (K— o0).
Thus U{ (.) converges weakly to agm (.) as - oo,

The proof of part (iii) of theorem 2.2 for the non-lattice case follows
exactly as in [5). The proof for the lattice case is similar and we omit the
same.

An alternate form of aij:

Theorem 2.2 gives ((ejj)) in terms of the eigen vectors m, u and the
mean matrix B. It is possible to specify aj; exclusively in terms of the co-
factors of / — F (o) and the matrix B.

. 1. Sc.—2
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In fact, we have the following
Proposition

Let gij be the cofactor of the (i, j)-*" element of (/ — F (o). Then

aij —_— e - gij ME R
‘Z’ gij, bij
v J

Proof—Multiplying both sides of (1.1) by e and integrating over
[0 o0), we get,

Mi (a) = Z; (a) + b M; (a) Fij (a) (a > 0) (3.11)

where, for any bounded function f,

fa)= [ ef(r)dr

0

(Here we assume that M; () (1 < i< p) is the solution corresponding to
continuous function Z; (.) with compact support so that the functions
Z;(.), M;(.) are bounded). Equation (3.11) yields

HE@= ) @58

where g;; (a) is the (i, j) cofactor of (I — F’r(a)) and A (a) 1s its determinant.

Note that the invertibility of (/ — F (o)) for «> 0 is an easy consc-
quence of the fact that p(F(a)) < 1. It is easy to show that if f is any
bounded function on [0 o) such that f(oc) = lim f(¢) exists, then

t P oo
Jmn. af (a) = f (o0).

Thus,
Im M; (¢)
t > 0O
= lim aM; (a)
ad o

Z (lim 2; (@) (lim & () lim (%)

Since Zj’s have compact support, lim Z;j (a) exists and equals | Zj (1) ar.
e o 0

This forces lim o/ A (2) to exist. We may now conclude that ((ai;)) is

adeo
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propottional to gi; (Where gij is the (i, j) cofactor of (/ — £(0)), i.e., of
(I — F (00)).

Thus

gij MU
P P = f§j. QED.
2 giibij 2 myu;bi;

ST B i, jm=1

Remark

The above proof shows, incidentally, that lim A (a)/a always exists
a0

P

and equals X gijbi;. An independent proof is also possible directly using

1, /™1

the defirition of A (a).

Proof of Theorem 2.3

This theorem follows easily from theorem 2.2, by writing (1.1) in
the form

= =)

(M; (1) e %) = (Zi (1) e?*) + f‘ [ Zk (t — uw)e® = Gy (du)

k=i

where

Gij (u) = j e=*¥ Fjj (dv)
and observing that

p ((Gij (o0))) = 1. | Q.E.D.
Remark

If p (F (00)) < 1 then a certainly cxists and is positive. If p (F(0)) <
I and e exists, then a is necessarily negative.

Proof of Theorem 2.4

If we set M()=U(@{)—1t4(@>0) and M — F*M = Z then we
see that each column MUY) of M satisfies

M () = Z9 (1) + (F*M ) (1)
and hence

Mm(.) - (U*Zm) (_)" |
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Thus
Uii(t) — aij 1

[3;‘-3-—([-— H)akj +E‘1r3 I(f_ “_7-’) Fir (dv)] Usiie

1 re1l

I‘v_]u

k

(i) (3.12)

¢
But since f (t — u) H(dw) = | H(u) du for any non-decreasing function
0 U

H on [0 o0) and since

akj = 2 Fir (00) ari for all £ and j,

r=§

we may rewrite (3.12) as

Uij (1) — ajj ¢

= Uy (1) — ;5' .f {Z arj f (Fier (00) — Ficr (¥) (dv))} Uik (du).
But U(@) =1+ (F*U)(¢) (t>0) where / is the p X p identity matrix.
Hence,
Uij (I) — aj; l

= 85+ }[ij (1 — u) — 3 arj I (Frer (00) — Fyr (v) dv]

k=1 0 r=1

Uik (du)

»
= 8ij + X Fij(oo) Uk (1)

k=1

+ 5 [ (Fij (t — u) — Fj (09)) Uige (dur)

k=1 0

P f [ i~u

— 2 JIZ arj .[ (Fir (00) — Fier (V) dv] Usk (du)

k-l Q r=1]

The last term on the right above may be rewritten as

z

k=1

(Z ar | (Fir (o9) = Fier (4)) d¥)) Ui (du)

= #

R

p ¢t p

— 3 12 arj [ Fir (00) — Fier (v) dv] Use (d)
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which is cqual to

} ] P
3 Ui (1) 2 Frr ar

A=1 r=1

p ot

= | [f‘ Ay F(Fk,. (o0) — Fiy (v)) dv] Ui (du).

k=10 rel {—u

If we sct

Zyr (1) = Fir (90) — Fier (£)
and

Zier (1) = Tzkr (v) dv,

we get

U() (I — F(c0) + BA) — tA = [ — U*Z + U* (ZA)

under the hypothesis of finiteness of second moments, both Z and Z are
matrices of directly Riemann integrable functions. By theorem 2.2, we
conclude that

U()H—tA—- I— AB+ ACA (3.13)

where

We now show that H is non-singular.

In fact, if H¢' = 0 for some non-zero row vector € = (&;,. .., &p) thens
multiplving on the lcft by v we obtain uH¢ = 0. But

uH = u — uF (c0) + uBA = uBA
s0 that UBA¢’ = 0.
Now

A = c((m; u;)) and hence

¢ (%' Z13), (§ u;biremy) =0

ie..

i'ujfj=0.

But this implies that B4¢’ =0 and hence
0= HE' = § — F(o0) ¢ + BAE = & — F(o0) §.
Perron-Frobenius theory now tells us that ¢’ is 2 multiple of m. But

»
Zuim; =1
j=1
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and

9
Jup & =0,
f=1q

This forces & to be the zero vector which 1s a contradiction.

Hence H 1is invertible.
We obtain, from (3.13),
U(t) — tAH*— (I — AB + ACA) H.

However, gg{) —> A and hence we must have AA1 = A.

This completes the proof of theorem 2.2.

Remark

3 For p =1, the function Z (.) is non-negative and hence we may con-
clude that U (1) — t A is non-negative and converges to a strictly positive
limit. No such conclusion is possible in the present context. The matrix
H-1! will have negative entiies as could the matrix (/ — AB 4 ACA).

§4. Some Open Problems

(a) Infinite mean case .—When p = 1, there is a body of results, due
to K. B. Erickson [4] and others, for the case of infinite mean, i.e.,

[ tdF (t) = o.

These describe the behaviour of U(f) in terms of the incomplete mean
:

m(t) = [ud F(u) when F has a regularly varying tail. They also study
o

U()— U@ —h), as t— oo as well as Z*U for directly Riemann inte
grable Z. The corresponding theory for p>2 is not available. The
tools employed for p =1 are Fourier analytic. Perhaps these could be
useful for p > 2 also.

(b) Proof of the basic lemma.—A key step in our proof of the renewal
theorem 1s the one asserting that if

¢ = F*¢ | ;

and ¢ i1s bounded, uniformly continuous, then ¢ i§ constant.” Our proof
here is a direct extension of Feller’s [5]. In the case p = 1 there are two
other proofs available. One uses martingable theory and the zero one
law [5]. The other is via distributions and Wicner’s Tauberian theory (see
[10] p. 218). It should be possible to push these proofs to the present context
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of p =2 2. Thists open. Notice that if for all i, ¢; is in the rapidly decaying
class, i.e., sup |[¢i(x)]ei" ¥l < oo for some r;>> 0 then the result is
immediate by taking Fourier transforms as these will be analytic and
vanish on a continuum.

(c) Degenerate case.—Even when p=1, if z is d.r.i. but +j"ﬂ.mZ (t)dt =0

then all that the renewal theorem says that (U*Z)(t)— 0 as t— oco. But,
the rate of convergence could be of interest. A partial result in this direc-
tion is available in Jagers [7] and Harris [6] (p. 162). The case p > 2 is
completely open.
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After this paper was accepted for publication, another paper with the
same purpose has appeared : T. A. RYAN, Jr.*A multi-dimensional renewal
theorem °, Annals of Probability, Vol. 4, No. 4, 656-661, 1976. The proof of the
renewal theorem is obtained in that paper by applying the one-dimensional
renewal theorem to a decomposition of the solution of the renewal equation.



