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ABSTRACT 

In this paper, the renewal theorem of Feller is extended to the ease of a 
system of renewal equations. Also a refinement of the renewal theorem is given 
and several open problems are listed. 
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1. INTRODUCTION 

In this paper we study the asymptotic behaviour (as t 	coo) of solu- 
tions M = (M1  (t), . . Mp  (t))' of a system of renewal equations of 
the type 

0) Zi 	k 1 Mk (t /4) Fik (du) 
ks 1 to, t] 

. . p,(t> 0) 	 (1.1) 

where Z1  (0 =-- 	(0, . . Zp WV is a vector of Borel-measurable func- 
tions bounded on compact sets and for each (i, j), Fij (.) is a non-decreasing 
bounded right-continuous on [0 oo) into itself. 

The functions Mi 0) arise in a natural way in many applications and 
especially in Branching processes [9]. 	Their behaviour as t 	co is of 
great interest. 

Thc case p = I and Fa  (co) = 1 is, of course, the standard renewal 
equation and one has Feller's renewal theotrm available for any directly 
lbemann integrable Z 1  0 ([5] pp. 346-353). The object of this paper is 
to prove an extension of Feller's result to the present context. 

	

In fact such a result is already available in the literature. 	K. S. Crump [3] 

following Feller's methods [5] 	extended 	Feller's 	theorem 	to 	obtain 	our 

437 



438 	 K. B. ATHREYA AND K. RAMA MURTH‘' 

theorem 2.2 below. 	However, Crump's proof as it is given in [3], though 
correct, does not give all the details and these, as we discovered, turned out 
to be non trivial. 	Besides streamlining and completing Crump's proof 
we also give a refinement of the renewal theorem (our theorem (2.4) ) under 
second moment hypothesis. 	This latter result is new. 	From the point 
of view of applications the result most useful is in theoem 2.3 (Sec [1] and 

[9]). 

The system (1. 1) has also been studied by Chistyakov and Sevastyanov 
[2]. Their methods are Fourier analytic and involve Tauberian argu- 
ments. These, in turn, involve certain moment conditions which are much 
stronger than ours. Mode [9] too studied (1.1) and proved the result 
of theorem 2.1 below under moment conditions, absolute continuity of 
F's with their densities in some Lp, etc. Crump's arguments, on the 
other hand, are direct extensions of Feller's ideas which exploit the weak 
compactness of bounded measures on compact sets on the line. Our 
proof of theorem 2.1 is almost the same as Crump's with more details 
and is somewhat streamlined. Our proof of the refinement, viz., theorem 
2.4 is also based on an extension of Feller's ideas ([51 p. 357). 

In section 2 we set up the basic machinery and state our results. The 
proofs are given in § 3. Some directions of future research are indicated 
in §4. 

§2. PRELIMINARIES AND STATEMENT OF RESULTS 

Let F(.)={Fij(.) : !Cie, I Cj<p} be a matrix of bounded 
non-decreasing right-continuous nonnegative functions on [0 co). For any 
p x r matrix H 0 of Borel measurable real valued functions Hij (.) 
on [0 00) that are bounded on compact intervals, we define 

(F • H)0(0= J Hki (t 	ti) Fik (dti) 
k=1 (0. *3 

(2.1) 

for t > 0. 

If.we make the convention that F and H are extended to the whole 
line by being made to vanish on (— co 0), we may write the integral on the 
right side of (2.1) as over the whole real line. This convention shall stand 
wherever the domain of integration is not explicitly indicated. 

We may now write (1.1) as 

MC)=Z( , ) -F(F.M)(•) 
	

(2.2) 



exp (— au) Fii (du) for a ) O. 

as a * 00 3 there must exist 

PO (a) 	I 
fo coi 

Since fro (a) le Fij (0) 
p (fr (a)) < I, where 

an a> 0 such that 

Now set 
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P (t) = ((So (t))) 

with 
if i = j and 
otherwise, 

> 0 
(2.3) 

n)(t) = (Fs Fm-")(t)(n = 1 P 	 , 2 ...) 
Co 

I/ 	= 	Fol) (t). 
"Co 

We shall refer to F(n) as the n-fold convolution of F and U (.) as the 
renewal function associated with F. 

For any matrix A with nonnegative entries, let p (A) be its perron- 
Frobenius root. (see [8] for a definition). 

Lemma 2.1 

(a) (t) < 00 for each t > 0 if and only if p (F (0))< 1. 

(b) Let p (F (0)) < I. Then M 0 7--- (U * Z) (.) is a solution of (1.1). 
It is also the unique solution in the class of Borel 	measurable 	functions 
bounded on compact sets. 

Proof 	 • 

(a) Let 

P (a) rr---  ((PO (aM• 

Thus, 

Rut 

co 	a, 

{(F (a))'1 ici,j) 
..0 

< 00 for each i and j. 

{01  (anli, 	
Co 

 o  e-aU no (du) 

raU Fit)  (du) 

exp (— at) F00  (t) 
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co 
Thus E Fit)  (t) 	C 00 for all i, j and t> 0. Conversely suppose 

n=0 
A0 = p (F(0)) e>. 1. There exists an eigen vector e = (c1 , 	ep) of F (0) 
corresponding to the eigen-value A o  such that ei  0 for some 1. 

Since 
00 	p 	 cc 

= An  = 
,0 its 	 „b0 

co 
it follows that E fiF(0)7'}1,i = 00 for some j if i is such that ei > 0. 

nee 

Thus Uo (t) = 00 for some i and j and for all 1 > 0. 

(b) That M=UsZ satisfies (1.1) is straight forward. The unique- 
ness part follows as in thr: case p 	1, by using the fact that r") (t) -* 
as n 	00 for each t (see [5]). 

We shall make the following hypothesis about F (t) in the remainder 
of this paper: 

(i) p (FO) < 1 

(ii) 0 < lim Fij (t) F (00) < 00 for all i and j. 	 (2.4) 
t co 

(iii) there exist i and j such that F15 (0) < Fo (00) 

We know from Perron-Frobenius theory that if p (F (co)) is the Perron- 
Frobienius eigen value of F (00), then the corresponding right and left eigen 
spaces are one-dimensional and that vectors m and u with strictly positive 
entries can be chosen so that 

F (00) m = p (F (00)) m 

1.1 F (co) = p (F (00)) 	 (2.5) 

uimi = 1 
4=1 

liii 1171 = 1. 
4=1 

As in the case p :....-- 1, there is a dichotomy in the behaviour of Al (0 between 
a lattice and non-lattice F. 	We make the following 

Definition (2.1). 	F(.) is 	lattice if 

(i) Fii 0 is lattice with span Ao for any i0j in the sense that Fo (. 
is concentrated on a set of the form {bo, bo ± A , bii ± 2A, 	and Ati 
is the largest number A with this property. 
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Fii 0 is arithmetic with span Aii for each 4 in the sense that it is con- 
centrated on a set of the form {0, ± A, ± 2A, ...} and A u  is the la! gest num- 
ber with this propeity. 

(ii) each Ai; is an integial multiple of some number. (We take A to 
be the largest such number). 

(iii) aii, ask, aik are points of increase of Fjj , P.* and Fik respectively 
implies that aii + ask — aik is an integral multiple of A. 

We now introduce two moment matrices: 

B = ((b0)), C = ((c0)) 

0 C. bis = f uFii (du) 
(Coo) (2.6) 

= (F0 (00) — F0 00) (du) < Co 
0 

O 	=+ 5 u2 	(du) 
Co 0o) 

= r 	(Fii  (00) 	(0) (du)} dt 	oo. 
0 	t 

We are now ready to state our results. 

Theorem 2.1 

Assume that p (F (00)) = 1 and let M (t) = (W) .. . Mp 
be a vector or bounded continuous functions satisfying the system equations 

p +00 
5 Mk 0 	Fik (du) (I 	i P)- 	 (2.7) 

k 1 -00 

Then, 

(i) F 0 non-lattice implies that M (0 is a constant vector 

(ii) F 0 lattice implies that each Mi (t) is pet iodic with period A (see 
definition 2.1 for the meaning of A). Further, for each i and j and for 

	

any point aij of increase of Fii (0, the vector (M1  0 — 	. . . , Mp 	aip) 
is an eigen vector of F (oo) corresponding to the eigen. value 1. 

Theorem 2.2 

Suppose p (F (00)) = 1. 

(i) If F 0 is non-lattice, then for each 1 , j and h> 0, 

Uis (t) 	1.10 (t 	em i us h 	 (2.8) 
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as t--). 00 where 

1  

C 
P 

Ei E mr  Ilk b kr 
k=2 rtl 

bkr = 00 for some k and r then c will be interpreted as zero). 

(E) If F (.) is lattice, then (2.8) holds whenever h is a positive multi- 
ple of A. 

(hi) Let Z (t) = (Z 1  (t) . . . Z p  (t)Y be a column vector of directly 
Riemann integrable functions on [0 cc). (see Feller [5] for definition) 

We set Zi (t) = 0 for t <0. Let M (t) = (U*Z)(t) be the solution 
of (2.1) unique in the sense of Lemma (2.1). if F(.) is non.-lattice, then, 
for each i, 

co 
M 	-4- 	k U3 f Z5 (u) du, 	 (2.9) 

Jet 	0 
as t -> 00. 

If F (.) is lattice, then for each i, 
+00 

Mi (t nA) 	crn 27 AUJE Z5 (t I  1A) 	 (2.10) 

	

1 =2 	Jia.mO 

as n-› co. 

Theorem 2.3 

Let p (F (co)) * I. Assume that there exists a real a such that p (G (0) 
= 1, where 

to 
Go (a) = f e-au 	(du) 

0 
If e-at Zat) is directly Riemann integrable for each i, then 

(t) rat 	tit (aii) esau zi  (u) du 	 (2.11) 
1=2 	0 

as t-± co (for each i) where 

aii = C 

and 
an. 	4,1 

= (UT • • s Ur) 
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are positive light and left eigen vectors of G (a) corresponding to the eigen 
value one with the normalizations 

1 
c 	 s 	 

Z mr uk bkr 
ks- r-i 

• 

ue-au Fij (du) . Lkr = f 
(0.)  

If 	= 00 for some (1,1) then ai would be interpreted as zero. 

Theorem 2.4 

Assume that F (.) is non-lattice and p (00) = I. Assume also that  

4h2 P 5  (di) < 03 	 for each (i,j). 
0 

Then 

U 	tA 
(I — AB ACA) Hs' (t co) 

	
(2.12) 

where 

=(J— F (00 ± BA). 	 (2.13) 

§ 3. Proofs 

We begin with the following lemmata: 

Lemma 3.1. 

Let ro be the set of all points of increase of Fij (.), F,(,2)  (.) • • •, ie ••7 
Eij = la: for some n >1 , F(4)  (a + E) Pi7)  (a — E) > 0 for each e > 

Then 

rkj C Zij for all I, j, k. 

Lemma 3.2 

(i) If F (.) is non-lattice, then fij is asymptotically dense at 00 for 

each (i,j) in the sense that for every €> 0 there exists A, > 0 such that 



444 	 K. B. ATHREYA AND K. RAMA MURTHY 

x > A, implies (x, x e)nifijOgii)IfFOis lattice than Eil contains 
on•/ points of the form a5 +n A 2nd Ej contains such points whenever ,, is 
sufficiently large. 

Lemma 3.3 

Let K (t) = (K 1  (t), . . . , K p  (t)) be a vector of uniformly continuous bounded 
functions such that 

p OD 

K = z S Kr (t - Fir  (du) 
r=1 0 

(3.1) 

(1 <I 0). Assume that F (3 is non-lattice. Suppose that ai. -= sup Kt, (0 
t EE  

is strictly positive for some i o. Then there exists 8i. > 0 such that for 
any h > 0, there exists an interval (t, t + 10 of length h in which Ki. 
> BIOS 

Proof of lemma 3.1 

Let xc Eik and ye 2-7,ki. Then x is a point of increase of FiV (•) and 
y is a point of increase of FIT)  for some n and m. Thus x y is a point of 
increase of (Fie *Er)) (.) and hence it is also a point of increase of 

ri7")  )- 
Proof of lemma 3.2 

From lemma 3.1, it is clear that either each Eiji is asymptotically dense 
at 00 or none of them is. Assume that none of the EQ's is asymptotically 
dense at co. Since n is a subset of [0 oo) closed under addition, Eiji 0 
{0} and Ej  is not asymptotically dense at oo, it follows that 

Eli contains only multiples of some positive number Sii and it contains 
n 8ii for all large n. 

If cEZii, dEEii and n is so large that n8ii and (n + 1) 8ficEii then Ai + 
C chrjj and 

(n + 1) 8ii c + c EMI 

Thus 811 8ii. By symmetry, S = 8 for all i and j. Let 

8  = 81.1. = 822 = • - = 8pp- 

By a similar argument we see that for i0 j, Eu contains only points 
of the form bii -1- n S and So contains such points for all large n. By 
lemma 3.1, we obtain, 

bij +flak = bik + n8, 
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Thus F 	is lattice and A (see definition 2.1) is a multiple of 8. 

Thus, F (3 is non lattice implies that each 20 is asymptotically dense 
at 00. 

If F(.) is lattice, then, by induction on II, we see that points of increase 
of each J9 )  (0 are contained in {bil, bo ± A, bo 	.} Q.E.D. 

Proof of lemma 3.3 

Let K (t) be a solution of (2.14) which is bounded and uniformly conti- 
nuous and let at, > 0 where ai = sup Ki (I) (1 Cl C p). Fix Jo such 

that 

aio = 
tni a  

Note that for 

max —

as 

. 
SACS, ini 

any integer n 	1, 

(3.2) 

E Fz (00) ini = 	(1i p) .  

is I 

Here and in the rest of this paper Fr, (Do) denotes the (i, j) element of 
(F(00)". We now have 

5 1  F" (oo) al 4-1 	soi 
L 

V 

Fino1 
Pat 

< E Fit 
1=1 

aj. 
de mi. 

=:-- aj.. 

Thus 

E Fzi  (00) aj < aie  

We divide the rest of the proof into two cases: 
Case (i). There exists t o  ER such that 4(t 0) = aje  

we have 
In this 

(3 . 3) 

case, 

P CO 

al. = K5 4  ('s) = E f Kr (to — 11) PhIr)  (thi) 
Q 
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(by iteration of equation (3.1)). 

Thus, 
co 

ai. = E f Kr  (' o  u) F (du) 
r=1 • 	 • 

E ar  f ft (du) 
ri, I 

rs 

= 	ar Pin! (°°) 
ft 1 

ar F, 0, ( Cc) 
r= 1 

ail., by (3.3) 

it follows that 

E 
 T 

far  — K(tr  — u)) Fig"; (du) = 0 
L 0 

for each n and the integral being nonenegative and continuous, 

Kr  (t o  u) = ar  whenever u is a point of increase of F14  on?)  for some n 

(Note that if Kr 	- 
below by some S> 
follows that Zia. is 
continuity of the fu 

lim 	(t) 
-) — cc 

— u)0 ar  for some u then at  — Kr  (to  — u) is bounded 
0 in scrne neighbourhood of u). By lemma 3.2, it 
asymptotically dense at co for each r. The uniform 
nctionts Kr  (.) now imply that 

re Ki (— co) =--- ar  (1 < r ( p). 	 (3.4) 

Now, letting t - 00 and using bounded convergence in 

Ki (t) = I°  (t u) fr (du) (l < < p) 
0 

we obtain 

ar Ft')  (o0) 
rm 

(3.5) 

Now, fix t and re {1, 2, ..., A. We have 

1 Kr 0) ar 

E 	I Km  (t — 	ani 	(du) 
m 	0 

= 
in=2 0 

I Kin  — u) am  I F,CV (du) 
p 

(by 3.1 and 3.5) 

I) 	co 
± 27 f 	(t — 	— am  I 	(du).• 	 (3.6) 

mr1 r 
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Observe 	that 	F11)  (co) < Fri (00) 	and 	(F (00))4  ((miui)) 	by 	Perron- 
Frobenius theory (see Karlin [8]). 	Hence 

a =:: sup Ft?) (00) < 00. 
4, I, et 

Thus, given E> 0 there exists T such that 

25 1  f K r (t—u)—a r JFj')(du)c € for each n. 
r=1 

Also, since K r  0 is bounded for each r and Ft')  (T)-4- 0 as ?I 00 fot 
each r, it follows that the first term on the right side of (3.6) approaches 
zero as n-• oo. Thus, (3.6) implies that Kr  (0 = a7  for each t and r. 
The lemma is obvious from this. 

Case (ii). 	K5 0 (03Lai e  for each t. 	In this case, there is a sequence 
tn  -* ± 00 	such 	that 	Kj. (tn) -->. air 	The function 	GI , i (.) defined 	by 
471, i (x) r--- Ki On + x) (1 < 1 < p, n ..>-1) for 	a 	uniformly bounded 	equi- 
continuous family of functions and hence there is a subsequence It izi) of 
{ti} such that tni ,i (.) converges uniformly to a continuous bounded func- 
tion 'n t) as j—> 00 for each i. Since 

(x) = Ki (tn .)  x) 
p 	00 

= E 1 Kr(tn i r=1 
x y) Fir  (du) 

P 	00  

= 	1 	
2 

Cni  r (x Y) Fir WY) 

	

r=1 	0 	- 

we have, by bounded convergence theorem, 

ni = 1' 7 lir(x — Y) Fir (dY) 
r=1 	0 

(1 	p, xeR). 

Now, case (i) applies to the functions ni (x) since 

(1 C iC p,  xeR) 

and 
nit, (0) = km In  ., j. (0) 

	

co 	3  
= lim K50  (tn5) 

••+00 

(3 . 7) 

= 
so that 

nj, (0) = sup 	(t) = aiv . 
tea 
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Thus, each ni (.) is a constant ci. 	Note that CI. --r--. ajo  . 	Now, (3.7) implies 

ci = 	crFiT ( 00) 	(1 	i p). 
r=1 

By Perron-Frobenius theory [8] it follows that (c 1, 	(bp) = c (m i, . 	nip) 
for some c. 

Since 

aj. 	 ai 
= max 

"lie 	44. 	p ini 

it follows that 

ajo 	at, 
> 

Mi. 	mi. 

Thus 

and hence 

Cap  c = > O. 
mio 

We now observe that 

14, (t ni 	uniformly on [0, hj for 
(x) > cf0/2 for xe [t nj , tnj 	It] whenever j 

This completes the proof of lemma 3.3. 

any fixed h> 0. Hence 
is sufficiently large. 

Proof of Theorem 2.1 

Let p (F (co)) = 1 and M (t) be a bounded continuous solution of 
(2.7). We shall prove the theorem only for the non lattice case. The 
lattice case is proved in a similar way by replacing derivatives by differences. 

Set 

1 	 I 2 
the  0) -  ex{— {— A (t E v E 	2 €2  

and 
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i.e., 

ft, di = 7 Ste — Mi (Y) dY -00 
	 4 

=sr ot (y) mi o — dY. 

Then it is easily seen that for each e> 0,fi(.), 1 	p satisfy 
00 

le, (t) = 	 r (1  Y) Fir (dy) r=1 -co 

Further, the functions 1., (,) are infinitely differentiable and their deri- 
vatives f i 0 satisfy the equations 

p +cc 
f', 1 (t) 	E S f e, r(t — Y) Fir (dY) 	(1 C. i p) 

rd 1 • 00 

Since j;,, (.) is bounded and uniformly continuous, we may apply 
lemma 3.3 to these. Let ai =--- sup j;,, (t). Suppose ai > 0 for some i. 

By lemma 3.3, there exists Si > 0 such that for any h> 0 there are 
intervals (t, t h) of length h in which f;1  (4 > Si. 

Thus 

fe,i (t 	h) — 	(t) > Si h. 

But the functions ki  (0 are uniformly bounded and hence there exists 
a constant M such that Si h <M for all h > 0. This is impossible and 
hence 

0 for each i. 	Therefore 

f;.4 (t)C0 	for all 	4 i, E. 

Replacing Mi (.) by the solution (— M (.),..., 	Mp (.) of the system 
(2.7), we see that f;., 0) = 0 for all 1, t and e. Thus .4, i is a constant for 
each i, c; i.e., 

	

.1.11 i (0) 	for all t, E and 1. 

Letting Ea,- 0, we obtain , 

	

Mi (1) =-- Mi (0) 
	

for each i and t. 

This completes the proof of theorem 2.1. 

Proof of Theorem 2 . 2 

We break up the proof into four steps. 	The first step establishes the 

Weak compactness of the translated measures 01 )  (I) = Uji (t ± b) — 1 I ii 
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(t -I- a) where I — (a, b]. 	The second step identifies any weak limit to be 
2 Milltble of Lebesaue measure. 	The third step shows that the milt;n11,_ 

in.g factor is of the form aniuj and the fourth one establishes the inde- 
pendence of the constant c on the particular subsequence (t it} of the es. 

Step L The solution M = (M 1  (t), . . Mp (t)) of the system of 
equations 

M (t) = Z (t) (F*M) 

is given by 

	

im if t 	0 
M = 0 if 1 < 0 

where Z 	is given by 

r (00) F m 
Z = 0 

if t 	0 
if 1<0. 

Hence, by lemma 2.1, 

in = (CI*Z)(1) for each 1 > 0 

Therefore, 

m1 =J E Zk — thk (du) 
o k=1 

?; 1 ist  Zk — tfik (du) 
t—h k=1 

Zk (1) (Uvc — 	hD 
k=1 

since Zk (.) is monotone for each k. 

It follows that for sufficiently small h, Uij (t) — Uji 	h) is bounded for 
all i and j. Since any bounded interval can be divided into a finite number 
of intervals of small length, it follows that the measures UP )  (I) are weakly 
compact. 

There is, therfore, a sequence t ft 	00 such that tgla (/) –> Vij (I) 
for all 1, j and for all intervals I = (a bi such that Vii {a} = Vij {b} = 
(as n 00) where Vij 0 is a positive measure on R for each i and j (see the 
selection theorem, VIII. 6 in [5]). 



Peller's Renewal theorem 	 451 
Step II. Now, fix IQ € {I, 2,..., 	Let Zk o  be a continuous function 

with support in [0 a] for some a> 0. We set Zk (t) = 0 for all t and for 
k:ft ko. Now M(t)= (U*Z)(t) is the solution of the system of equations 

M 	= Z1 Q) +2 J Mk (t U) Fik (du) (1 C, i p) 	(3.8) k= I 

unique in the sense of lemma 2.1. By the weak convergence of 04;s )  to 
Vij it follows that 

M 1  (t + x) f Zk c, On x y) Uik. (du) 

=--- 1 Zk o  (X 	A U (:;:o)  (du) 

--* f Zk. (X — y) viko  (du). 

Let 
(x) = I Zk o  (dt y) Vik o (dY). 

	

Clearly, j is a bounded continuous function. Since Mi 	± 	4i(x) 
and Mi 0 satisfies the system of equations (3.8), it follows by bounded 
convergence theorem that 

fl (x)= E f Ck — Fik (dY) 	( 1  ( 1  P)- 
k = 2 

Theorem 2.1 now implies that Ci (.) Is a constant for each i. Thus 

Zk o 	y) Vik o  (the) 

is independent of x for every continuous function Zk o  (t) with compact 
support (vanishing for t < 0) and hence the measure ilk°  is proportional 
to Lebesgue measure for each i. Since /c o  is arbitrary it follows that each 
Vii is proportional to Lebesgue measure, i.e., there exist constants at 
such that 

Vij (I) = awn (1) 	 (3.9) 

where m denotes Lebesgue measures. 

Step III 

We again fix k o, 

set Zk 	= 0 for ali t if 	lc ()  

and set 
I if 0 	t 	1 

Zk. (t) = 1 0 otherwise. 

The solution Mi (t) (1 C i C p) of the equations 

Aft = Zi 	 Alk — Fik (dU) 	 (3 . 10) 
0 	km 
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is now given by 

M 	f Zk. (1 - u) Ujk o  (du) 

Uiko  (i) — Uiko (t —  1) 

and hence 

Ali On — = Utk o  On — 14) Uiko  On u— 1) –›- aik o  for each u. 

Applying bounded convergence theorem in (3.10) we obtain 

aiko = E akkoFik (°°) 
k=1. 

i.e. )  (aik., • . • , apko) is a right eigen vector of 17  (co) with eigen value one. 
Hence, by Perron-Frobenius theory [8] there exists rk„ such that 

aik. 	rk omi (1 C  i p). 

If we replace ((Fo (.))) by ((Fiji (.))), Uo (.) becomes U ji (.) and 
hence, there exists sk0  with 

ak  = skoui 

The above argument can be applied for each k o . Thus 

aik. = rk omi = s juk e  

Thus 

rk, 	si 
uk. mi 

for each i 

and hence rk„juk„ = silmi= c for all i and ko  with c independent of both 
i and k o . It now follows that aii = rimi = cmjui. We have thus shown 
that ((NO) is multiple of ((niui). 

Step IV 

To evaluate c we again consider the system 
00 
I Mk — 14) Fik (du) 

k=i 

where 

Zi (t ) = E (Ft* (00) - Fik 	mk 
k=1 

Z (t) = (Z 1  (t), . . . Z v  

= (00) — F m, > 0). 
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The solution AC) is given by Mi (t)= 1711 for all i and 1. Now, it is 
easily seen (as in [5]) that 

since 
in (I) 

Mi (in) 
k= I 

Zi ( • ) is directly 
for all i and j. 

171i = M (tn) 

co 
afk f Z k (.1) du, 

Riemann integrable 
Thus, 

for each i and UV Me). ao 

C =_-- 	 

L' 	bjkirimk 
ka, 1=1 

This completes Step IV. 

It now follows that the 'limit matrix' ((NO) is independent of the 
sequence ft n). since the argument above shows that every sequence (tn} 	°° 
has a subsequence {t nk} for which 

Ulink )  (I) -3- awn (I) (K 	00). 

Thus tiljo 0 converges weakly to awn (.) as t > 00. 

The proof of part (iii) of theorem 2.2 for the non-lattice case follows 
exactly as in [5]. The proof for the lattice case is similar and we omit the 
same. 

An alternate form of ajj: 

Theorem 2.2 gives ((a0)) in terms of the eigen vectors tn,u and the 

mean matrix B. It is possible to specify ao exclusively in terms of the co- 
factors of I — F (00) and the matrix B. 

1 - 1 - Sc.-2 
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In fact, we have the following 

Proposition 

Let gii be the cofactor of the (i, _path element of (I - F (00)). Then 

ajj 
= 	b-  • E 

Proof.- Multiplying both sides of (1.1) by e-a t  and integrating over 
[0 00), we get, 

A af (a) = 	(a) 4- 2: ki (a) tii  (a) (a > 	 (3.11) 

where, for any bounded function f, 

0 	. 
I 	

0

•  
(a) = e-at f (t) dt. 

0 

(Here we assume that Mi 0 (I C  I  C  p) is the solution corresponding to 
continuous function Zi 0 with compact support so that the functions 

Mi (.) are bounded). Equation (3.11) yields 

/*I (a) = 	25  (co tija) 
1=1 	(a) 

where Lyn  (a) is the (1, j) cofactor of (I - P (a)) and A (a) is its determinant. 

Note that the invertibility of (I P (a)) for a > 0 is an easy conse- 
quence of the fact that p (P (a)) < 1. It is easy to show that if f is any 
bounded function on [0 00) such that f (00) = lim 0) exists, then 

t 00 
iim af (a) = f (00). 
a4.0 

Thus, 

lim Mi (t) 
t.-> CO 

Jim 	(a) 

= 	
(

liM 2j (a)) ( urn hi  (a)) lirn a 	) • 
a4.0 	 a 0 	 a 4. I Ma) 

Since 2i's have compact support, lim 2,1  (a) exists and equals f Zi (t) cit.
a 4. 

This forces Jim a/A (a) to exist. We may no* conclude that ((aii)) is 
a 46 
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propoi tiona 1 to go (where gij is the (1,1) cofactor of (I— P (0)), he., of 
(j— F(00)). 

Thus 

gii 	 ?jig 
au. 

E bo E miujbo 
1,1-1 

Q.E.D. 

Remark 

The above proof shows, incidentally, that lira A (01 a always exists 
c40 

and equals E giibii. An independent proof is also possible directly using 

the defirition. of A (a). 

Proof of Theorem 2.3 

This theorem follows easily from theorem 2.2, by writing (1.1) in 
the form 

(Ali c at) = (Z1 Q) rat) ± 
00 

E f Zk (t - u) e-a ("I) Gik (du) 
k 	o 

where 
	 • 

Go (u) =--- 	e-ftv  F0 (dv) 

and observing that 

P ((Gii ( 00))) = 1. 
	 Q.E.D. 

Remark 

If p 	(co)) < I then a certainly exists and is positive. If p (F (oo)) < 

I and a exists, then a is necessarily negative. 

Proof of Theorem 2.4 

If we set M =a: U — t A (t > 0) and M — PcM Z then we 

see that each column." M (j )  of M satisfies 

Afd)(t) == Z(j) a) ± (F*Mi))(t) U 

and hence 

md )0 =  (wcz(J))(0' 
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Thus 

II 0(0 — afj t 

	

p 	t 	 V 	t-p 

=E 5[8k5 — (t — u) akj ± E a ri f (t — u — v) Fkr (dV)] (ilk 
k=20 	 rd 1 	0 

	

(du) 
	

(3.12) 

S 
But since if 

0 

H on [0 00) 

(t — u) H (du) = 

and since 

ft lf(u) du for any non-decreasing function 

P 

akj = 2 Fkr (°°) ati 
r=1 

for all k and j, 

we may rewrite (3.12) as 

Uij (0 — aij t 
sp 	t 	ti 	t-ii 

= U ij (0 — E i {E an  5 (Fkr (00) — Fkr 09 (di)* Uik (du). 

	

tel 0 rel 	0 

But U (t) = I ± (F* U) (t) (t > 0) where I is the p x p identity matrix. 
Hence, 

iiii (z) — au t 

	

p 	s-p 
-= So ± ± tif (Fki (t — u) — E ad 1 (Fkr (°°) — Flo. (v) dv] 

k10 	 r=1 	0 

Uik (du) 
V 

= Sii ± 22 Fki( C°) U ik (t) 
k=1 

p : 
± E I (Fki (: — ii) — Fki (°°)) (ilk  (du) 

kal 0 

V 	g 	IP 	S-IP 

—2 SW an 5 (F kr (00) — Fkr (v)) du] U a (du) 
k- 1 0 r= 1 	0 

The last term on the right above may be rewritten as 

p t p 	00 
E 5 a an  I (Fkr ( 00) — Fkr (I')) dvD I I ik (du) 

k=1 0 rI1 	6 

P * V 	co 

— Li I (E ari f (Fkr (00) — Fier (0) dvi U ik (du) 
ka 1 0 f =1 	t-11 
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(ilk 	Z 
'Cl 

Fkr ari 

P 	g 	p 

E [E an  f (Fkr (DO — Fkr (0) dv] Uik (du). 

	

0 rti 	I-N 

If we set 

2kr (t) =-• Fkr ( 00 Fkr (t) 

and 

Zkr (v) dv, 

we get 

U 	F(o0)+ B A) — t A = 1— (P2 ± U*(ZA) 

under the hypothesis of finiteness of second moments, both 2 and Z 
matrices of directly Riemann integrable functions. By theorem 2.2, 
conclude that 

ale 
WO 

U (1) H — t A —> I — AB ± ACA 	 (3.13) 

where 
H= 1— F(0o)+ BA. 

We now show that H is non-singular. 

In fact, if He' = 0 for some non-zero row vector e= (C1,..., C) then' 
multiplying on the left by u we obtain /the' := 0. 	But 

= u uF (00) ± uBA = uBA 

so that UBAe' = 0. 

Now 
A = c ((mi ui)) and hence 

c (2; lijei) (S uabikmk) = 0 
s it 

E ui  el  0. 

But this implies that BAr = 0 and hence 
F (00 e' + BAt = e' — F (00) et. 

Perron-Frobenius theory now tells us that 6' is a multiple of m. But 

£' UFn = 1 
fel 
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and 

2:  ej 	0. 
Mi 

This forces e' to be the zero vector wh ich is a contradiction. 

Hence H is invertible. 

We obtain, from (3.13), 

U (t) t AH -1  --> (I — AB ± ACA) Has'. 

U (t) 
However, - t - 	A and hence we must have AH-1  = A. 

This completes the proof of theorem 2.2. 

Remark 

*) 	For p = 1, the function Z 0 is non-negative and hence we may con- 
clude that U (t) 	t A is non-negative and converges to a strictly positive 
limit. No such conclusion is possible in the present context. The matrix 
Hal will have negative enti ies as could the matrix (I — AB ± ACA). 

§4. Some Open Problems 

(a) Infinite mean case .—When p = 1, there is a body of results, due 
to K. B. Erickson [k] and others, for the case of infinite mean, i.e., 

00 
f tdF (t) = 00. 
0 

These describe the behaviour of U (t) in terms of the incomplete mean 

m 	f ud F (u) when F has a regularly varying tail. They also study 
0 

U(t) — U(t — 10, as t--> 00 as well as Z*U for directly Riemann inte 
grable Z. The corresponding theory for p > 2 is not available. The 
tools employed for p =---- 1 are Fourier analytic. Perhaps these could be 
useful for p 2 also. 

(b) Proof of the basic lemma. —A key step in our proof of the renewal 
theorem is the one asserting that if 

= F* 
	

p. 

and q is bounded, uniformly continuous, then gt•i constant." Our proof 
here is a dh ect extension of Feller's [5]. In the case p 	1 there are two 
other proofs available. One uses martiligable theory and the zero one 
law [5]. The other is via distributions and Wiener's Tauberian theory (see 
[10} p. 218). It should be possible to push these proofs to the present context 
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of p>.- 2. This is open. Notice that if for all 1, Ot is in the rapidly decaying 
class, i.e., sup I c5i (41e( Ix! < co for some ri > 0 then the result is 
immediate by taking Fourier transforms as these will be analytic and 
vanish on a continuum. 

+co 
(c) Degenerate case. Even when p = 1, if z is d.r.i. but f Z Q)  di = 0 

0 

then all that the renewal theorem says that (trZ) (t) —> 0 as t > co. But, 
the rate of convergence could be of interest. A pattial result in this direc- 
tion is available in Jagers [7] and Harris [6] (p. 162). The case p 	2 is 
completely open. 
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