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ABSTRACT 

An analytical cum numerical procedure to conformally transform an arbitrary 
closed or open curve to a unit circle and vice versa is described in the present paper. 
The forward transformation to the near circle is obtained using the orthonormal 
polynomials defined over the near circle or the unit circle. The method can be used 
in studying the potential flow problems around two deimnsional bodies which one 
encounters in Aerodynamics of wings and bodies in subsonic flow. 
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I. INTRODUCTION 

The conformal transformation technique is a powerful tool for solving 
2-dimensional potential flow problems in aerodynamics. The extensive 
use of the technique has been made in the study of flow about 2-dimensional 
airfoils and the cross flow about bodies of revolution, wing body combi- 
nations and slender wings with leading edge separation. Usually the flow 
about the required geometric shape in the physical plane is transformed to 
that about a circular cylinder or any other convenient shape in a transformed 
plane through the use of one or more conformal transformations. Except 
in some special cases, (e.g., Joukowski airfoils, flow about slender bodies 
with elliptic cross vection, etc.) it is not always possible to get the required 
transformation functions analytically in closed form. Such situations 
arise, in practice, in the study of arbitrary airfoil shapes, wing body inter- 
ference problems with non-circular body and nonplanar wing shapes in 
the cross flow plane and also in the case of nonplanar delta wings with 
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leading edge separation. When the shape to be transformed is represented 
by an arbitrary open or closed curve, a numeiical conformal m apping  

procedure with a consistent accuracy has to be resorted to. In general 
we are in need of a mapping function which will map the region exterior 

to the curve C in Z-plane to the region exterior of a unit circle, while the 
point at infinity is to be mapped on to itself. The conformal mapping of 
arbitrary regions into circles has been the subject of extensive study b y  
Szego 	Burgman [2] and Nehari [3]. The required mapping is closely 
related to the set of complex orthonormal polynomials defined on the 
curve C to be transformed to the unit circle. In the following, we give a 
numerical analytical procedure to get such conformal mapping functions. 

2. CONFORMAL MAPPING THEORY 

The generalised conformal mapping function 11 (Z) which maps the 
region of the Z-plane exterior to the (open or closed) curve C into the 
region exterior to the unit circle in the H-plane, viz., H > 1, is constructed 
as follows. Let us consider the set of analytic functions of the complex 
variable Z, i.e., the set 

I, Z, 72, . . 	. . . . 

Using the functions from the above set, we construct a set of polynomials 
which are orthonormal in the sense of Szego inner product defined over the 
curve C. The Szego inner product of two analytic functions g (Z) and 
h (Z) over the curve C in Z-plane is defined by the line integral 

(g, h) = f g (Z) (Z) ds 	 (2) 

where h -(2) is the complex conjugate of h (Z) and eiv an element of the 
curve C. We use the well known Gram-Schmidt orthogonalis2.tion proce- 
dure to construct the set of complete orthonormal functions 

(Z), i = 1, 2, 3, .. . . 	 (3) 

We note that the functions in the set Bi (Z), which depend on 
the curve C over which the Szego inner product is defined, by 
of orthonormality, should satisfy the condition 

the type of 
definition 

(BiBi) f (Z) )11(2) ds = 0 	if i j 

(4) 



A kunierical Conformal gapping 	 497 

Using the orthonormal functions Bi (Z) the required mapping function is 
obtained as 

Bi4.1  (Z) H (Z) = Lt 
Bi (Z) (5) 

3. PROCEDURE TO OBTAIN B (Z) 

Let the open or the closed curve C in Z plane be defined by 

Im Z = z = z (y) 	 --- 1 < Re Z = y < 1 
	

(6) 

Let Ai (Z) be the ith orthogonal function (a polynomial in Z of degree 
— I) constructed from the set of analytic functions 

1, Z, Z2 , 	 Zn, 	 (7) 

so that 

S Ai (Z) Aj 	(z) ds 0 
	

if i 

if 1 =]. 	 (8) 

Let 

f 1 Ai (41 2  ail 	 (9) Lc 

be the norm of Ai(Z). Then the ith orthonormal function Bi (Z) is given by 

Ai (Z) Bi (Z) N (Ai) .  
(10) 

To get Bi (Z) we use the well known Gram-Schmidt or thogonalisation proce- 
dure. In the sequence eq. (7) we start with function 1 as the first ortho- 
gonal function so that 

1 _ 
= 1 ; 	N(1) 	dsr 

Lc 

The second orthogonal function A2 (Z) is expressed as a linear combination 
of Z and .81  (Z) and is given by 

A2 (Z) = Z j &B1 (Z) 	 (12) 

where A21 is obtained from the orthogonality condition as 

(13) 
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This process is continued further to generate the subsequent orthogonal 
functions by using the condition that the ith function Ai (Z) be orthogonal 

to all the (1— 1) functions A5 (Z), j = 1, 	i 	1. In general we 

express the orthogonal function Ai (Z) as 

Ai (Z)Z i-' + Ai 	+ . . . 

+ Aik Bk 	. • . + Ai B1 	 (14) 

with Aii 	I and Al  (Z) = 1. 

The corresponding orthonormal function Bi (Z) is given by 

131 (Z) = Bii Z" 	B11-1 Zi-2 	- • • -1-  Rix- 	 (15) 

From the orthogonality conditions, one can establish the following rela- 
tions between A0 and B0 (see Appendix). 

—2,3,4-    
= 	Li Bjk ilk 	for 

k=1 	 j= 1, 2, ..., (i — 1) 	(16) 

with 

Aii = 1, i = 1,  2,.. 

and 
1 	4-1 	 i = 2, 3, 4, ... 

Bij  = N (Af.) 	
Aik Bki 	for 

j— 2, 3,..., 	— 1) kti 

with 

= 11N (Ai), 	i = 1, 2, 3,... . 	 (17) 

The fik are the Szego inner products of the powers of Z and are given by 
= 	zic.1)  = z 2-.4) 2 (lc-n ds 	 (18) 

The orthonormalisation scheme given 
computation to get the constants Ado or 
dure would become unstable because of it 
errors associated with fixed word length 
also observe that due to recursive nature 
gates rapidly and the orthogonal function 
beyond a certain value of i. An iterative 
and Rabinowitz [4] has been incorporated 

above can be used for machine 
. But the numerical prows 

therent truncation and round off 
of the digital computers. We 
of the scheme the error propa- 
Ai (Z) becomes nonorthonormal 
correction scheme due to Davis 
to improve the orthogonality of 
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each function generated. According to the scheme, let us suppose a set of 

k functions All A2: • . 1 	 Ak are generated such that 

A5) = 0 
	

i jL j 

j, = 1, 2. 	(k 	1). 

= N(A) 2  

Also 

(Ak', 	= N (ACP 

but 

(Akt, A5)=-- ei 	for 
	

1, 2,..., (k 

where Ei is :mall. 

Ak 	Alic t  

Then the improved orthogonal function Ak is given by 

— E (Ak', A5) Al 	 (19) 1=1 

The above correction scheme is applied to each function Ai as it is generated 
until the convergence is obtained. 

Next, to get a workable form of the mapping function, we replace the 
lim i-± cc in eq. (5) by i-)-N where N is sufficiently large. The value 
of N is fixed such that for all values of i> N, the sequence B 
converges to an asymptotic value. The actual value of N for which the 
above sequence converges depends on the shape of the curve C. If C is 
very nearly circular, then even with N = 8 the sequence converges and we 
get a useful transformation function with finite number of terms. Fixing 
N sufficiently large, the transformation function can now be written as 

E 
H(Z)  	• 	 (20) 

E Bmi 

For the flow velocities to be unchanged both in magnitude and direction at 
large distances from the body we require 

(a) H oo 	as Z oo and 

(b) dHldZ 1 as Z 00. 	 (21) 
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From eq. (20) it is easily seen that (a) is satisfied automatically for all N, 
while (b) will be satisfied provided N is sufficiently large. Now writing 

only the coefficients of leading power of Z in dHldZ, we have 

{[ BAIN Z N-1  +0 (Z N-2)] [NBN+1 in-1 ZN-1  ± 0 (Z N--2)1 

dell __ — EBN-4-1 NA-1  Z N  ± 0 (Z N-1)1[ 1314N (N — 1) ZN-2  ± 0 (ZN-3)11  
dZ — 	 BA N  Z2N-2 ± 0 (Z2N-3) 	 . 

(22) 

Writing only the coefficients of the leading power of Z, i.e., Z 211-2, we have 

Wel BAH-1 N+1  BNN  .Z2M-2  ± 0 (Z 2N-3) 

dZ = 	BA N  ri-2  +0 (Z 2N-3) 

BNA-14  N1-1. BNN ± 0 (11Z) (23) 
rze- 	ki, ± 0 (11Z) 	' 

Hence 

di! -4, BN+1N+1  -4.1 as N ---> oo. 
--dz z --). 00 	BNN 

Hence the transformation, eq. (20), satisfies both the conditions (a) c.nd 
(b) at infinity, 

4. INVERSE TRANSFORMATION 

The inverse transformation Z = Z (H) is again obtained by a numerical 
procedure. The mapping function Z = Z (H) is expanded in terms of 
complete orthonormal function in the region 1 if 1 > 1 as 

1 M 
• 	Z (H) = evrir  t.7 i ck H (2-k) * (24) 

The complex constants Ck are given by the following integrals defined on 
the boundary of the unit circle Ifil =----.1 , viz., 

Ck = 1 -.cis.  i Z (10 ff ( 2-k ) ds  . 

fin c 1 

Separating real and imaginary parts of Ck, we get 
27r 

I [Ck :=1-- 
V
—ara f X coS (k — 2) 0 — 

277 
C 

Y sin (k — 2) 01 dO 

2r 
i 

E-1-- -=--- f 	0 ± Y cos (/‘ — 2) 91 dO 	(25) V27r 
li 
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with 
s = r0 , r 1, Z(0) = X(0) ± iY (0). 

The boundary values of Z = Z(0) are obtained from the forward trans- 
formation eq. (20). 

In machine computation the inversion formula eq. (24) leads to values 
of Z which are in error by upto 5*per cent in the modulus even for values 
of M = 12, and situation is not improved by increasing M even upto 20. 
Hence the approximate value of Z corresponding to a given H is calcu- 
lated with M -12 and it is improved upon by using complex Newton- 
Raphson technique using the relation 

if Viz) — H 
Zn+i= Zn 	H' (Zn) 

(26) 

iteratively until the sequence Zn  converges to Z within a preassigned tolerance. 
The initial approximation to Z0  is obtained from eq. (24). 

4.1. An Example Flat Airfoil to Circle 

To construct a mapping function H (Z) which maps the region exterior 
to the slit 

- 1 Re (Z) = y 1 ; 	Im (Z) = 0 	 (27) 

into the region exterior to unit circle I H (Z) I 1, we must obtain a set 
of analytic functions orthonormal in the Szego sense over the slit (eq. 27). 
It can be shown that the normalized Legendre polynomials of the first k ind 
and order n form the required set of orthonormal functions, since 

(Fib Pm) = F m (Z) P (Z) ds =0 n 

= 	n m. 	 (28) 

Further, the functions Pm  (Z) also obey the recurrence relation 

± Pn+1 (Z) — (2n 1) ZP7t, (Z) n 	(Z) = 0. 	(29) 

In the limit n co, we have 

(30) 1 = 0 (Z) — 2Z ± ilt2) 

where 

	

Lt 	p n+1  (Z) 	 (31) 

	

H (Z) = n as+ 	P;I(Z) 



502 	 FERNANDEZ JOE AND V. S. HOLLA 

Solving eq. (30) for H (Z) we have 

H (Z) = Z / Z 2  L: 	 (32) 
which is the well known inverse of the Joukowski transformation 

Z = (11 + eilf) 
which maps a unit circle in H-plane to a slit (--- 1, 1) in Z plane. 

4.2. Numerical Example —A Reflex Camber Shape to a Unit Circle 

Eventhough the transformation in eq. (20) is most general and can be 
used for mapping any curve to a unit circle, in practice the value of N 
will be very large if the curve is very much dissimilar to the unit circle as is 
in the case of arbitrary mean camber lines or thin wing sections. In such 
cases one can transform the open or closed contour in the physical Z plane 
to a near circle in an intermediate G plane using the transformation in 

TABLE I 

Camber distribution of reflex curvature profile 

0 0.024 

0.1 0.02465316 

0.2 0.02663658 

0.3 0.02991798 

0.4 0.03410647 

0.5 0.03811599 

0.6 0.040000 

0.7 0.03727182 

0.8 0.02800269 

0.9 0.01309692 

1.0 0 

Note.—Equation to the camber line 
z=z(y) 

- • 	,y and z are nondimensionalised with respect to serrti-chord. 
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eq. (32). The resulting near circle then can be transformed to a unit circle 
in the H plane using the transformation 

H (G) =-- 7,1  
I' Bj Gi-1  
4=1 

(33) 

which can be obtained as described earlier. The successive stages of trans- 
formation of a reflex mean camber shape (ordinates given in Table I) to a 
unit circle is shown in Fig. 2. The numerical values of the constants 

i and Bivi, are given in Table H for value of N -=-7 8 and 9, 19 and 20. 
Convergence of the sequence Min/B,24.1 72+1  is shown in Table HI. 

START 

I READ IN ORDINATE I 
Z•2(y)-Idy .6.1 	I 

I 	OPEN CAMBER CURVE 
INTO ARBITRARY CLOSE 

CURVE EON. ,2 

I SET* i • 0 I 
A1 • 1 	I 

Bi 	
Ai 	I 

N(Ai) 

Jr 141, OBTAIN A l  ORTHOGONAL 

TO ALL 	Aj , j • 1,2, 	(i-i) 

tqn 14) 

• 

IMPROVE ORTHOGONALITY OF A, 

eqrs 19 ) 

I 	 lei I 	I  CALCULATE RATIO ft, • 	- ' i- 
B, _ STOP 

Is 

I P i- 	I < 
PUNCH 

YES 	MAPPING CONSTS 

	6 	Bf_ i , s  AND 

Bi . 	5  

I. FIG. Flow chart to get mapping constants. 
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TABLE II 

Transformation constant B ri t 
BNi == (Real part) Imaginary part 

2.A N 8, =az i= 1 to 8 

888 - (0.393568, 
B87 = (O.415879 x 10-9; 
B86 -= ( -0.265081 x 10- ' : 
886  = (0.330779 x 10 -9 ; 
881 = ( -0.917124 x 10 2; 

0) 
0-14443) 

-0.173414 x 10-9): 
-0.437361 x 10-i): 
-0.19048 x 10-9): 

B83  = (0.268734 x 10-9 ; 0.189901 x 10-1); 

B82 = (0.335643 x 10-2 : -0.141788 x 10-9) ; 

881  tr (0.22669 x 10 -9 : 0.431727 x 10-2). 

2.B. N = 9, 	i= 1 to 9 
Bo = 	(0.39292; 0) 
B 98  = 	(0.46616 x 10-9 : -0.162075) 

0 . 335 1 1 	x 10-1 ; -0.21534 x 10-9) ; 

B98 = 	(0.366084 x 10-9 ; -0.489963 x 10- ) 
.865  = ( - 0.127626 x 10-1 ; -0.238803 x 10- ); 
883  = 	(0.3674461 x 10-3  ; 0.226618 x 10-1): 
893  = 	(0.453153x 10-2 ; -0.18646 x 10-9): 

(0.268063 x 10-9 ; 0.509114 x 10-2); 
Bia ----= 	(0.222081 x 10-2 ; -0.15634 x 10-9); 

2.C. N = 19. 	i= 1 to 9 
(0.386506; 0) 

B, 9, 18  = 	(0.970264 x 10-9 : -0.336514) 
Bo, 17  = (-0.146940; -0.900319 x 10- ) 
B19, 16  =-- 	(0.502919 x 10-9 ; -0.757683 x 10-1) 
B19, /5  =(-0.742102 x 10-1 ; -0.101665 x 10-2) 
Biso  14 = 	(0.283490 x 10-9 ; 0.782413 x 10-1)  

L3 = 	(0.309992 x 10-, ; -0.743438 x 10-9) 
B19, 12 =It 	(0.365740 x 10-9 ; 0.712649 x 10-2) 
B19, 11  = 	(0.198421 x 10-1 ; -0.688141 x 10- ) 
B30,10 = 	(0.395855 x 10-9 ; -0.117334 x 10-1) 
By 9, g = (-0 . 337596 x 10-2 ; -0.677176 x 10--9 ) 
Bit 8 = 	(0.357077 x 10-9 ; -0.818452 x 10- ) 
BL9, 7  =(-O.236386 x 10-2 : -0.625543 x 10- ) 
Bi 3, 

 
6 = 	(0.331963 x 10-9 ; 0.125763 x 10-2) 

B 19, 5 r- 	(0.442614 x 10-3 ; -0.569697 x 10-9) 
Bi 6 4 = 	(0.317904 x 10-9 ; 0.404055 x 10-3) B 19, 3 = 	(0.543735 x 10-3 ; -0.537616 x 10-9) 
131.0, 2= 	(0.279396 x 10-9 ; 0.136603 x 10-9 B19, 1 	=-- 	(0.263708 )( 10-3  ; -0.494671 x 10-5 
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2.D N 20, 	i = I to 20 

B20> 20= 	(0.38587; 

1320, 19 = 	(0.101968 x 10-8 ; 
B20,  )8 = (-0.162528; 
1120, i7 = 	(0.486661 x 10-8 ; 
B 20, 16  =(-0.823139 x 10-1 ; 

0) 
-(3.353637) 
-0.993019 x 10-9) 
-0.751129 x 10-1) 
-0.111181 x 10-8) 

/3201  i s  = (0.238183 x 10-9); 0.864025 x 10-4 ) 
B 20, ti  = (0.356364 x 10-1 ; -0.802611 x 10 -9) 
11 20, 13 r---  (0.342805 x 10 -9 ; 0.657772 x 10-1 

B401  12 r-- (0.224044 x 10-i; -0.748464 x 10-9) 
B20,ll = (0.385194 x 10-9 ; -0.138840 x 10-i ) 

8202  10 = (-0.422812 x 10-2 ; -43.744221 x 10-8) 
8201  6 = (0.346014 x 10-9 ; -0.860377 x 10-3) 
B207  8 =4-0.279066 x 10-2 ; -0.693609 x 10-9) 
820, 7 = (0.322675 x 10 -9 ; 0.159635 x 10-9 
B201  6 = (0.566518 	x 10-3 ; -0.638154 x 10-9) 
B20 2  5 = (0.314462 x 10-9 ; 0.445160 x 10-3) 
B20, 1  = (0.636249 x 10-3 ; -0.590516 x 10-9) 
8201  3 = (0.270043 X 10 -9) ; 0 . 9961 74 x 10-9 
B20,  2 = (0.29391 x 10-3 ; -0.548116 x 10-9) 
B20, 1  --= (0.235249 x 10-9 ; 0.547836 x 10-49 

TABLE III 

Convergence of BNNIBN-ii N+1 

BAIN 	BfiNIBN+1 111 1 

1 0.397532 0.999949 
2 0.397534 1.0017816 
3 0.396827 1.0016609 
4 0.396169 1.001732 
5 0.395485 1.0015777 
6 0.394861 1.0016564 
7 0.394208 1.0016261 
8 0.393568 1.0016491 
9 0.392920 1.0016468 
10 0.392274 1.0016469 
11 0.391629 1.0016471 
12 0.390985 1.0016472 
13 0.390342 1.0016474 
14 0.389700 1.0016474 
15 0.389059 1.0016477 
16 0.388419 1.0016478 
17 0.387780 1.0016478 
18 0.387142 1.0016455 
19 0.386506 1.0016482 
20 0.38587 
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A suitable numerical integration scheme is needed to evaluate the 
contour integrals in eqs. 9, 18, and 25. The trapezium rule has be en  
found to yield good results in the numerical evaluation of the contour inte- 
grals of analytic functions [5]. Hence there integrals are comp uted  
using trapezoidal formula taking 100 points on the appropriate contours, 
The flow chart for evaluating the constants Bo of the transformation lun c. 
lion is shown in Fig. 1. A computer programme in FORETRAN iv 
language has been written up, and the numerical results quoted were obtained 
using the IBM 360/44 computer at the Institute of Science. 

The procedure described above has been used by the authors in their 
study on nonplanar slender delta wings with leading edge separation [6]. 
Further, the method is being made use of in the study of two dimensional 
thick symmetric section to find the changes in pressure distribution due to 
changes in the contour shape and vice versa. The work in this connection 

Zeytiz 	z fly) 

0) PHYSICAL PLNE nReG 

/ 	i 	N 

MI6  
-I 

■ 

CURVE C 

G Z 12 2-1 

 

NEAR CIRCLE IN G PLANE 

P4 "4  1-4(G) 

Eqn. 33. 

UNIT CIRCLE IN H PLANE 

Fto. 2. Transformation of reflex camber to a unit circle. 
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is in progress. The method can be used in, the study of nonplanar slender 
wing body interference problems using slender body theory. 

APPENDIX 

The expressions for Ao and Bo in eqs. (16) and (17) can be derived as 
follows. 

As was mentioned in the text, the 
constructed as a linear combination of 
nomials Bi (Z)( j = 1 to i — 1) together 
that we have 

orthogonal polynomial Ai (Z) is 
all the (1 — 1) orthonormal . poly- 
with the leading term as Z 2-1, so 

(Z) =A1 Z" Aij. . B1-1 Ai 1-2 Bi-2 

Aij Bi ± • • - 	Bi 	 (A-1) 

with Au = 1. 

Now to find the coefficients Ao we make use of the orthogonality condi- 
tions. Multiplying by nj A (Z)/N (AO on both sides of (A-1) and 
integrating over the curve C we have (due to orthogonality) 

_ 
f 	(Z) -NA-)  (-(AZA ds = 0 = 	lij ds iAij J Bids 

(A-2) 

since all the other integrals are zero. So we have 

1-1 	Bjk 
s.-741 

ds 

 

r3jk Ij , k 	for 

 

= 2, 3, 4,.. . 

j = 1 to (i 1) 
	

(A-3) 
where 

k --= fZ 1  21c-i ds. 	 (A-4) 

Again to get Bo of Bi (Z) in terms of Ajk and Bjk of Ai (Z) and Bi (2) 
1, 2, .. i — 1) we proceed as follows. We have 

Bi (Z) = 	Zial -1- Bi 	'71-1.  . . 	Bo 

. . . 	 . 	

(A-5) 
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Now by definition, 

	

Bi (Z) 	NI(Ai) [ I . Z1-1 	Ai 	 . 

Aij Bj 	Ait  /31] 	 (A4) 

	

I 	r  N  -G40 1 z, 	-I- Ai 	Z1-2  + • • • + 

+ . • - + A (Brr Z r-1  ± Br rei Zr-2  I - • • ± Br ) 

4,2(B22Z ± B21) ± Ail B,1)1 	 ( A-7) 

Collecting the coefficients of Zi -1  in eq. (7), we have 

3-1 -= 2, 3, 4, . . 1 
Bii = 	 Aik Bkj 

j = 1 to i — 1 k = 

with 

1 
	 (A-8) 

Also writing Ai (Z) in powers of Z we have 

Ai (Z) = Aii 	4- Ai 	 .  

Aii 	 (A-9) 
where 

Aii = 1, i —1,2,3,...     and 
4.1 1  

Aii = E Au k Bkal 
kin; 2, 3, 4, ... 

j = 1 to (i — 1) 

Now all the Aij 0 0 0 in Ai (Z) can be written in terms of the coefficients Aik and Bk1 of the orthogonal polynomials of order upto (1 — 1), and since = I = A.ii we can fi ad N (A1) and hence Bij using eq. (A--8). These rela- 
tions can be used to compute the coefficient s of the orthonorm.a.I poly- 
nomials BN-1-1 (Z) and BR 	upto any required value of N, until a good convergence is obtained for the ratio Brill Aril/BNN. 
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NOMENCLATURE 

Ai (Z) 	: orthogonal polynomials in complex variable Z 

/40 	: complex constants in Ai (Z) 

Bi 	: orthonormal polynomials =-- Ai (Z)IN (Ai) 

130 	: complex constants in Bi (Z) 

Ck 
	: complex constants of inverse transformation function. See 

eq. (24) 

ds 	: incremental arcual length of any curve C 

(g, h) 	: f g (Z) h (Z) ds - the Szego inner product of complex analytic 

function g and h defined over the curve C. 

Ilk 	 : the inner product integrals defined in eq. (10) 

M, N 	: real constants 

Z = y+ iz : complex variable in the physical Z plane y and z are non- 

dimensional with respect to reference length 

G, H 	: complex variable in the near circle plane G and the unit circle 

plane H 

Re ), In ): real and imaginary part of the complex function 

: denotes conjugate of the complex function. 
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