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ABSTRACT

Large deflections of a uniformly louded civcular plate placed on elastic foundu-
tion and supported at several points along the boundary have been analysed follow-
ing Berger’s method. A particular case, where the number of supports is two, has
been wreated fully. Numerical results have been presenied in the form of graphs.
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INTRODUCTION

Small deflections of thin plates placed on elastic foundations have
been examined by S. Timoshenko and S. Woinowsky Krieger [1] and several
other authors on the assumption that strain due to stretching of the middle
surface of the plate is negligible. When the deflections are moderately large,
that is, on the order of thickness of the plate, then the forces in the middle
surface of the plate must be taken into account. In the case of such large
deflections of plates placed on elastic foundations. three differential equa
tions for displacement and deflection may be written. but it is usually difflcult
to obtain the solutions of these equations because of th2ir nonlinear

character.

On the other hand, various problems of large deflections of plates not
resting on elastic foundations have been examined by S. Way [2], S. Levy
[3] and many other authors. But the methods used by them involve and
require considerable computation. A simple and approximate, yet fairly
accurate, method of analysing large deflections of plates was suggested by
H. M. Berger [4]. The method uses the technique of meglecting the strain
energy due to the second strain invariant of the middle surface strains in
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analysing large deflection of plates having axisymmetric deformation
Berger’s method reduces computation and although no complete explana
tion of this method is offered in, the stresses and deflections obtained for
both rectangular and circular plates are in good agreement with 1those
found in practical analysis. Berger’s mcthod has been applied success:
fully by Nowinsk [5] to his platc problems and Math and Modeer [6
investigated the problems having no axial symmetry.

The technique of neglecting the sccond stramn invariant in the expres
sion corresponding to the total potential encrgy of the system has been suc
cessfully applied by Sinha [7] to determine large deflection of circular anc
rectangular plates placed on elastic foundations and under uniform fater:
loads.

In this paper large deflection of a circular plaie placed on elastic
foundation and supported at several points along the boundary has beer
solved. The load is assumed to be uniformly distributed and the foundatio
is of the Winkler type. A complete analysis of a particular case, where
the number of supports 18 two is given.

FORMULATION OF PROBLLM

For moderately large deflections, the sirain displacement relationship:
and the strain cnergy of the middle plane of the plate are

? I /w2
@ = A 'l-2<”1

x dIx W

W =00 2
no=5f et G20 v

in which e; and e, are the first and second middle surface strain invariants.

respectively.
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Nfﬁglecli.ng @y a'ud by adding the potential energy of the transverse load
and of the foundation reaction, K. the modified energy equation becomes

Vs j _j (2 uw)e L }7:e1~a 201 ~ v)

R G Hpe R e

Applying Euler’s variational method to eq. 5 the following differential
equations in polar co-ordinates are cbtained [7]

G w® gy !I§W = % 6)

where « is a consiant givcn by

at A% du + 2w 12w 1 fow
12 o ) + a5+ o G
e % 12 1 92
VE = e Ty r2 062" - . )
™

»

SOLUTION OF PROBLEM

Let the circular plate (Fig. 1) be of radius a, supported at several points
along the boundary and placed on the clastic foundation. Let the centre
of the plate be the origin and a diameter as the initjal line, § =0. The
general solution of eq. 6 is

W o= Wy - W (8)

in which w, is the large deflection of a plate placed on elastic foundation
and simply supported along the entire boundary and w, satisfies the equation

Thw, — a? V2w ~[» B w1 =0 9
EBg. (9) can be written in the form
(V2——P12)(\72——P22)W1=0 (10)

where
P24 P2 =a? an

K
papp =K. 12
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Considering the number of points of support is i, and denoting the con-
centrated reactions at these points N;, N, ... N; the expression for each
reaction N; is (1, P. 293)

N; = i
ot h + mél cos mé’,] (13)

where 8; = 6 — iy, ; is the angle defining the position of the support ;.

The intensity of the reactive forces at any point of the boundary is
then given by the expression.

i%[%—# ;Jo cOSmGi] (13a)

m=
i=1

in which the summation 1s extended over all the concentrated reactions.
Assuming that the plate is solid and considering that deflections and moments

2
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T, 1. Crreular plate on foundation.
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at the centre must be finite, the appropriate solution of eq. 9 can be taken
in the form

wy == Aodo (Prr) + Boly (Pyr) + X [Amim (Pr) + Bidm (Por)]
X cos mb -+ 5 [A'mIn (Pir) + B plym (Pyr)]sin mo (14)
in which /4 is the modified Bessel function of the first kind and zero order,

and fm is of the first kind and mith order. For determining the constants
we have Lhe following conditions at the boundary:

Wé == )
r=a (15)
16 =0, =
2wy zrhw g _
[ ar Ty +, P2 \92 :L.ﬁa 0 (16)
L S y NiTy . ® .
[or L&, }M ~— 2 M s+ F cosme; an
d==l,
where
d e
Qr = DUV —aDw] (17 a)
2% wy [ ow, .

Consider a particular case when the plate 18 supported at two points which
are the two end points of the diameter taken as the initial line from which
# is measured. Then

oy =0, iy =,

Considering the above boundary conditions one gets after solving for the
constants

Ay n‘;m B (@) (18)

By, = #Dﬂ 13‘150(0) a9
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Ay = P pm (@)

T wDa B (a) pan (@) — A (@) 9ap (@) (20)

I . Am @
Bm = Da (B (@) m (@) — A (@) 1m ()] @h
Ay = 0= B'p (22)

where P = wu® g = total load on the plate

[Am (@) Im (Pot) — pran (@) I (Prar)]

A T B (@) pm ) A () pnad] [ A Po@) o @)~ o (Py &) sy (a

@
dio (@) = Py I," (Pyar) -+ a-’ipgll (Pz) (2
bola) = P L) (Pa) + P 5L (Pyr) (2
om (@) = Py? I'm (Poa) + /Py I'm (Pua) — "% Lo (Pyc) e

Bm (a) = P,? Pil'm (P1(/) —(l — ») { 7 Im (Pia) — l;-? m(Pﬂ/)} (2:

vn l

Am (@) == P\® [" (Pia) + ;1: Py l'm (Pra) — 5 L (Pyat) (2t

N (@) = P2 Py Iy (Pac) — (1 — u){ ™ o (Poct) — —;}’f "m (Poa)} (25

Thus the complete solution of eq. 6 is obtained in the following form

w = Wy + Aolo (Pr) + Boly (Por)

+ 2 [AmIm (Py) + Bmlm (Per)] cos mb (30)
where
Wo = A L (P o+ By Ly (Par) 3D

q[szlo"(Pga)+ng[1(P2a)
Y S R ¥ Gl
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K SRy T (31 b}
A Puy = (Pa) Pyt 1" (Pad) ~ 1, (Pg&) P2 1" (Pa)
L
T APL (P} 1y (Poay — P (Pray 1y (P 31 ¢

Substitution of the values of the constants 4, B,", A,. By Am and B, into
cq. 30 vields "

W <f/!11 [ EI . JVPIEIr,” (Pa)y -+ P le (Plg)] Fo (Pyr)
A Dh) LKz 1 $(Pd)

[Pty (Pay 4 B, (D)1, Pl
¢ (Pa)

- g A B (@) Ty (Pur) — By () 1y (Par)

N 3 Tten (&) Ly (Pr) — A (@) T (Por) ) )
2| B (@) pom (@) = A (@) 71 (@) Jeosme} .

m=2sdy 0,0

(32)

As P,—0 and P,-->0, eq. 32 reduces to

(rlay® 7 /r\™ N
T mim -+ 1), (a) cos mG} G33)

as obtained by Timoshenko [1]in the corresponding small deflection problem
for a plate supported at two points on the boundary.

The normalised constant o can be determined from Egs. 7 and 30.
Since we are interested only in the lateral displacement w, the radial and
cross-radial displacements # and v have been eliminated by choosing suitable
,cxprcssions for u and v, compatible with their boundary conditions and
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witegrating over lhe whole area of the plate. The radial and cross-radial
displacements have been assumed in the forms

u = X U cos ml (34)
- X V() sin ol (35)

subject to the boundary conditions U (a)= F{a) == 0. Multiplying both
sides of the equation 7 by rdrdd and ntegrating between the limits QO to «
and O to 2w, one gels

f f U’ (r) cos m0 drdd -+ J f U (r) cos m0 drdd

Q ) i)
f f' mV () cos ml drdo - l f (Y dras
. -
- “ j’ Dlt (lr(l0 - f f a® h® r drd0.

After evaluating the integrals the following equatlon leading to « is obtained.
a? h? a? 1 upo.oil o
ST = A PR U (Pa) + (P
S R ]1‘-*(Pn)' S REY P
! Praz]h 1w et 2= a

< A3 e (Pa) + L (P} — [1 + P;;a!az] ne (P

-+ 244" By P1P3P E] ;:_"‘—u [~ % Py (Poa) {1y (Pr)

+ Loy (Pyal} & Poly (Pya) {14 (Poa) + I (Poc)})

T .
+ Z LAsz]— }l* g ¢ [%{Im—z(P:ﬂ) gy (Pya)}?

m=z2,4 0

1
1 (m ‘“al)‘} I (PL“)]

{
1
1 2
~ 54 (U i) + I (Pray® — {1 + LERY
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where =
azm-pzn-(-zt—r-z
$ = O T L5+ fTn+mTim+1+2)
P
O Eam {n T m +n o DY
N+ o2t
R a .
T Q@m A 2220 f TmFn A+ DI (m A 1)
Thus the deflection, w is completely determined. The expressions for the
bending and twisting moment can now be determined.

My =D [PJZ(A" + A Iy (Pr) + P2 (By' - By) 1," (Po)

s
+ Z (P2 Al m (P + P2 Byd"m (Por) cos mé

M=, 4 6y .

Py , 2 (g ,
+ o S W+ A1 )+ BB 4+ B 1 (P

+ 1, Z [PyAmI m (Pir) = PoBnl'm (Por)] cos mé
m=g, &, 4, .

1 v .
~% Z 12 (Al (Pyr) & By (Pyr)] cos mﬁ)”

(37
My =—0|Puy + 4y @y + P2y ’

I r(“+ o &y (Pyr) 4 r(Bo + Bg) I (Pyr)

1¥ )

T 7 Z {PyAmlm’ (Pur) + PoBily (Pyr)} cos mb

m=3, 4, G, ..
1 o9
— 2 Z m® { Al (P1r) + Bmlm (Pyr)} cos mb

o {Plz (Ao” + A 1" (Prr) + Py? (By' + By) I (Pyr)
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O
-+ Z [£1% Apd " (Pyi) + Py Bplp” (Py1)] cos mﬁ}:l
ne=2, 4,06, ..
(38)
V ! . .

Mrg= (1 = D[~ D i {Pidnd (i) - PoBly’ (P}

m=2, 4,06, ..

4 1Y
X sin mé -~ 2 Z m {Am L (Pyr) + Bl (Por))

ez, 1, 05, ..

X sin mH] . (39)
The stresses can be calculated from the expressions

oM 6M 0

oy ][;f Doy = /120 STy = %Tﬁ (40)

NOUMERICAL CALCULATION

To obtain deflection for a given value of plate radi's ‘¢’ and foun-
dation modulus * Kp " one has to start from the equation (36) with an assumed
value ol “ o " in order to oblain the corresponding value of the load function
ga®/Dh.  Once this relationship is obtained the corresponding deflection
w/h can be caleulated by eq. 32, For a == 50 mm, 7 == 0°75 mm, v == (-3
and KAy == 80 deflections have been presented in Fig 2.

CONCLUDING REMARKS

An examination of the eq. 32 will reveal that the deflection (w/4) depends
on Kz, the plate radius ‘a” and on the value of the angle, 6. For a given
value of the load function eq. 32 can be written as

1, k() (), = (5 )

§-0 =gk

where K; and K, are two numerical constants, K, being greater than K.
Because of the reactive forces at the two points of support, deflections on
the diameter at 8 == 0 will be less than those on the diameter at 8 = /2,
Maximum deflection will occur at the boundary at & = + =/2. Deflections
according to the linear theory have also been plotted in Fig. 2 and it is
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Fic. 2. Load deflection curve.

clear that the errors of the linear theory increases as the load increases.
In order to study the variation of moments, €gs. 37, 38 and 39 are plotted
in Fig. 3 for various values of (/) and for the angles at which they become
maximum. It is observed that the maximum bending moments, their
magnitudes being unequal, are developed at r = 3af4, 6 = 4 /2 and the
twisting moment is maximum at r = a, § = & #/4, 4 3x/4.

As the plate must be in equilibrium on the supports, the foregoing
analysis for two simple supports represents the worst condition when the
deflections and stresses are maximum for a given load function. With
the increase in the number of supports, w; in eq. 8 decreases. For an
infinitely large number of supports, w in eq. 8 will approach to w, in the limit
and the point of maximum bending moments will shift to the centre of the
plate. (M), being equal to (M )usx in that case,
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02
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FiG, 3. Moment corve,

The present study can be extended to any number of supports, provided
the supports are so chosen as not to disturb the equilibrium of the plate.
For example, if three equidistant supports are chosen, ¢y = 0, ¥, = 24/3,
iy = 4nf3, the differential equations together with the boundary condition
remaining unchanged. If the plate is clamped on the supports, the boundary
conditions and the concentrated reactions at the supports will change
totally demanding a separale investigation.
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NOTATION

The following symbols have been used in this paper:

o

= plate radius

Ay, Ay, By, By, Am, Bm = Constlants

D

E

€

€

Lo, Im,

= flexural rigidity of the plate ==

Eh?
12(1 — »%

= Young’s modulus

= first invariant of middle surface strains

= €y -+ ¢y in rectangular co-ordinates
= & -+ ¢ in cylindrical co-ordinates

= second invariant of middle surface strains

ex€y — 4ye in rectangular co-ordinates

erey in cylindrical co-ordinates in case o circular symmetry

plate thickness

Modified Bessel’s function of the first kind and of the zero
order and mth order respectively. ‘

= foundation reaction per unit area per unit deflecuon
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; : . K
= dimensionless foundation modulus = B at.

== moment

= uniform lateral load
- polar co-ordinates

= radial and crossradial displacements
—: strain energy

== deflection in z-direction
== directl stress

= shear stress

== direct strain

== ghear strain

== Poisson’s ratio

-5 Gamma function.
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