LARGE DEFLECTION OF A CIRCULAR PLATE ON ELASTIC FOUNDATION AND SUPPORTED AT SEVERAL POINTS

S. Datra
(Head, Mechanical Engineerng Department, Jalpagurt Govt Engueernh College, Jalpaiguri, West Bengal, Indta)

Received on May 5, 1975 and in sevised form on July 19, 1975

Abstract

Large deflections of a uniformly loaded circular plate plated on elastic foundathon and supported at several points along the houndary have been analysed following Berger's method. A particular case, where the number of supports is two, has been treated fully. Numerical results have been presented in the form of graphs.

Key words - Large deflections, elastic foundation

Introduction

Small deflections of thin plates placed on elastic foundations have been examined by S. Timoshenko and S. Woinowsky Kreger [I] and several other authors on the assumption that strain due to stretching of the middle surface of the plate is negligible. When the deflections are moderately large, that is, on the order of thickness of the plate, then the forces in the middle surface of the plate must be taken into account. In the case of such large deflections of plates placed on elastic foumdations, three differential equa tions for displacement and deflection may be written, but it is usually difflcult to obtain the solutions of these equations because of their nonlinear character.

On the other hand, various problems of large deflections of plates not resting on elastic foundations have been examined by S. Way [2], S. Levy [3] and many other authors. But the methods used by them involve and require considerable computation. A simple and approximate, yet fairly accurate, method of analysing large deflections of plates was suggested by H. M. Berger [4]. The method uses the technique of neglecting the strain energy due to the second strain invariant of the middle surface strains in
analysing large deflection of plates having axisymmetric deformation Berger's method reduces computation and although no complete explana tion of this method is offered in, the stresses and deflections obtained for both rectangular and circular plates are in good agreement with those found in practical analysis. Berger's method has been applied success. fully by Nownsk [5] to his plate problems and Nash and Modeer [6 investigated the problems having no axial symmetry.

The technque of neglecting the second stran invariant in the expres ston corresponding to the total potential encrgy of the system has been suc cessfully appled by Sinha [7] to determine large deflection of circular anc rectangular plates placed on elastic foundations and under unform latera loads.

In this paper large deflection of a circular plate placed on elastic foundation and supported at several points along the boundary has beer solved. The load is assumed to be uniformly distributed and the foundation is of the Winkler type. A complete analysis of a particular case, whert the number of supports is two is given.

Formulation of Problem

For moderately large deflections, the strain displacement relationship: and the strain energy of the middle plane of the plate are

$$
\begin{align*}
\epsilon_{x}= & \frac{\partial u}{\partial x}+\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2} \tag{1}\\
\epsilon_{y}= & \frac{\partial v}{\partial y}+\frac{1}{2}\left(\frac{\partial w}{\partial y}\right)^{2} \tag{2}\\
\gamma_{x y}= & \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}+\frac{\partial w}{\partial x} \partial w \tag{3}\\
V_{1}= & \frac{D}{2} \iint\left[\left(\nabla^{2} w\right)^{2}+\frac{12}{h^{2}} e_{1}^{2}-2(1--v)\right. \\
& \left.\quad \times\left\{\frac{12}{h^{2}} e_{2}+\frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}}-\left(\frac{\partial^{2} w}{\partial x \partial y}\right)^{2}\right\}\right] d x d y \tag{4}
\end{align*}
$$

in which e_{ε} and e_{2} are the first and second middle surface strain invariants. respectively.

Neglecting e_{3} and by adding the potential energy of the transverse load and of the foundation reaction, K, the modified energy equation becomes

$$
\begin{align*}
& V=\frac{D}{2} \int_{0}^{a}\left(v^{2} n\right)^{2}+h^{2} c_{1}^{2}-2(1-v) \\
& \left.\times\left\{\begin{array}{l}
3^{2} w^{2} \partial^{2} \\
\partial x^{2} y^{2}
\end{array}-\left(\begin{array}{l}
\partial^{2} w \\
\partial x \partial y^{2}
\end{array}\right\}^{2}\right)+\begin{array}{c}
K \\
D
\end{array} w^{2}-\frac{2 q w}{D}\right] d x d y . \tag{5}
\end{align*}
$$

Applyng Euler's variational mothod to eq. 5 the following differential equations in polar co-ordinates are obtained [7]

$$
\begin{equation*}
\gamma^{2} w-u^{2} w+\frac{K}{D} w=\frac{q}{D} \tag{6}
\end{equation*}
$$

where a is a constant given by

$$
\begin{gather*}
a^{2} h^{2}=\frac{\partial u}{\partial r}+\frac{1}{2}\left(\frac{\partial w}{\partial r}\right)^{2}+\frac{u}{r}+\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{1}{2 r^{2}}\left(\frac{\partial u}{\partial \theta}\right)^{2} \\
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}+\frac{\partial}{r} \partial r+1 \partial^{2} \partial \theta^{2}} \tag{7}\\
\text { SOLUTION OF Problem }
\end{gather*}
$$

Let the circular plate (Fig. 1) be of radius a, supported at several points along the boundary and placed on the clastic foundation. Let the centre of the plate be the origin and a diameter as the initial line, $B=0$. The general solution of eq. 6 is

$$
\begin{equation*}
w=w_{0}+w_{1} \tag{8}
\end{equation*}
$$

in which w_{0} is the large deffection of a plate placed on elastic foundation and simply supported along the entire boundary and w_{1} satisfies the equation

$$
\begin{equation*}
\nabla^{4} w_{1}-\alpha^{2} \nabla^{2} w_{1}+\frac{K}{D} w_{1}=0 \tag{9}
\end{equation*}
$$

Eq. (9) can be written in the form

$$
\begin{equation*}
\left(\nabla^{2}-P_{1}^{2}\right)\left(\nabla^{2}-P_{2}^{2}\right) w_{1}=0 \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& P_{1}{ }^{2}+P_{a}{ }^{2}=a^{2} \tag{11}\\
& P_{I}{ }^{2} P_{2}{ }^{2}=\frac{K}{D} . \tag{12}
\end{align*}
$$

Considering the number of points of support is i, and denoting the concentrated reactions at these points $N_{1}, N_{2} \ldots N_{i}$, the expression for each reaction N_{i} is (1, P. 293)

$$
\begin{equation*}
\frac{N_{i}}{\pi a}\left[\frac{1}{2}+\sum_{i=1}^{\infty} \cos m \theta_{i}\right] \tag{13}
\end{equation*}
$$

where $\theta_{\mathbf{i}}=\theta-\psi_{i}, \psi_{i}$ is the angle defining the position of the support i.
The intensity of the reactive forces at any point of the boundary is then given by the expression.

$$
\begin{equation*}
\sum_{i=1}^{i} \frac{N_{i}}{\pi a}\left[\frac{1}{2}+\sum_{m=1}^{\infty} \cos m \theta_{i}\right] \tag{13a}
\end{equation*}
$$

in which the summation is extended over all the concentrated reactions. Assuming that the plate is solid and considering that deflections and moments

Fig. 1. Crretal plate on foundation.
at the centre must be finite, the appropriate solution of eq. 9 can be taken in the form

$$
\begin{gather*}
w_{1}=A_{1} I_{0}\left(P_{1} r\right)+B_{0} I_{0}\left(P_{2} r\right)+\sum_{m=2}^{\infty}\left[A_{m} I_{m}\left(P_{1} r\right)+B_{m} I_{m}\left(P_{2} r\right)\right] \\
\times \cos m \theta+\sum_{m=1}^{\infty}\left[A^{\prime}{ }_{m} I_{m}\left(P_{1} r\right)+B_{m}^{\prime} I_{m}\left(P_{9} r\right)\right] \sin m \theta \tag{14}
\end{gather*}
$$

in which I_{0} is the modified Bessel function of the first kind and zero order, and Λ_{32} is of the first kind and mh order. For determining the constants we have the following conditions at the boundary:

$$
\begin{align*}
& w=0 \\
& \therefore r=a \tag{15}\\
& \theta=0, \pi \\
& {\left[\begin{array}{c}
\partial^{2} w_{1} \\
\partial r^{2}+r \\
r \partial w_{1}
\end{array}+\frac{y}{r^{2}} \frac{\partial^{2} w_{1}}{\partial A^{2}}\right]_{r=a}=0} \tag{16}\\
& {\left[Q_{r}-1 \frac{\partial}{r} \frac{\partial}{\partial \theta} M_{r \theta}\right]_{r=a}=-\sum_{i=1}^{i} \frac{N i}{\pi a}\left[\frac{1}{2}+\sum_{m=1}^{\infty} \cos m \theta_{i}\right]} \tag{17}
\end{align*}
$$

where

$$
\begin{align*}
& Q_{r}=D \frac{\partial}{\partial r}\left[\left(\nabla^{2}-a^{2}\right) w_{1}\right] \tag{17a}\\
& M r_{\theta}=(1-v) D\left[\frac{1}{r} \frac{\partial^{2} w_{1}}{\partial r \partial}-\frac{1}{r^{2}}-\frac{\partial w_{1}}{\partial \theta}\right] . \tag{17b}
\end{align*}
$$

Consider a particular case when the plate is supported at two points which are the two end points of the diameter taken as the initial line from which θ is measured. Then

$$
\psi_{1}=0, \quad \psi_{2}=\pi
$$

Considering the above boundary conditions one gets after solving for the constants

$$
\begin{align*}
A_{0} & =\frac{P}{\pi D a} \beta \psi_{0}(a) \tag{18}\\
B_{0} & =-\frac{P}{\pi D a} \beta \phi_{0}(a) \tag{19}
\end{align*}
$$

$$
\begin{align*}
& A_{m}=-\frac{P}{\bar{\pi} \overline{D a}\left\{\beta_{n n}(a) \mu_{m}(a)-\lambda_{m}(a) \eta_{m}(a)\right)} \stackrel{\mu_{m}(a)}{\lambda_{m}(a)} \tag{20}\\
& B_{m}=\stackrel{\rho}{\pi \bar{D} a\left[\overline{\beta_{m}}(a) \mu_{m}(a)-\lambda_{m}(a)\right.} \stackrel{\left.\lambda_{m}(\bar{a}) \dot{\eta_{m}}(a)\right]}{ } \tag{21}\\
& A^{\prime}{ }_{n}=0=B^{\prime}{ }_{m} \tag{22}
\end{align*}
$$

where $P=\pi u^{2} q=$ total load on the plate

$$
\begin{align*}
& \text { (2. } \\
& \psi_{\mathrm{G}}(a)=P_{2}{ }^{2} I_{\mathrm{a}}{ }^{\prime \prime}\left(P_{z^{a}}\right)+\frac{\nu}{a} P_{2} I_{1}\left(P_{3} a\right) \\
& \phi_{0}(a)=P_{1}{ }^{2} I_{0}{ }^{\prime \prime}\left(P_{1} a\right)+{ }_{a}^{v} P_{1} I_{1}\left(P_{1}(a)\right. \\
& \mu_{m}(a)=P_{9}^{2} I_{m}^{\prime \prime}\left(P_{2} a\right)+{ }_{a}^{y} P_{2} r_{m}^{\prime}\left(P_{2} a\right)-\frac{\nu m^{2}}{a^{2}} I_{m}\left(P_{9} a\right) \\
& \beta_{m}(a)=P_{2}^{2} P_{1} I_{m}^{\prime}\left(P_{1} a\right)-(1-p)\left\{\begin{array}{l}
m^{2} \\
\left.a^{3} I_{m}\left(P_{1} a\right)-P_{1} m^{2} I^{2} I_{m}\left(P_{1} a\right)\right\} \\
a^{2}
\end{array}\right. \tag{2}\\
& \lambda_{m}(a)=P_{1}^{2} f_{m}^{\prime \prime}\left(P_{1} a\right)+\frac{v}{a} P_{1} I_{m}\left(P_{1} a\right)-\frac{\nu m I^{2}}{a^{2}} I_{m}\left(P_{1} a\right) \\
& \eta_{m}(a)=P_{1}^{2} P_{2} I_{m}^{\prime}\left(P_{2} a\right)-(1-\nu)\left\{\begin{array}{l}
m^{2} \\
a^{3} \\
a_{m}
\end{array}\left(P_{2} a\right)-\frac{P_{2} m^{2}}{a^{2}} I_{m}^{\prime}\left(P_{2} a\right)\right\}
\end{align*}
$$

Thus the complete solution of eq. 6 is obtained in the following form

$$
\begin{align*}
w= & w_{0}+A_{0} I_{0}\left(P_{1} r\right)+B_{0} I_{0}\left(P_{2} r\right) \\
& +\sum_{m=2,1, \ldots, r}^{\infty}\left[A_{m} I_{m}\left(P_{1} r\right)+B_{m} I_{m}\left(P_{2} r\right)\right] \cos m \theta \tag{30}
\end{align*}
$$

where

$$
\begin{align*}
& w_{0}=\frac{q}{K}+A_{0}{ }^{\prime} I_{4}\left(P_{1} r\right)+B_{0}{ }^{\prime} I_{0}\left(P_{2} r^{\prime}\right) \tag{31}\\
& \boldsymbol{a}_{0}=-\frac{q}{K}\left[\begin{array}{c}
P_{2}{ }^{2} I_{0}^{\prime \prime}\left(P_{2} a\right)+P_{2} \frac{v}{x} I_{1}\left(P_{2} a\right) \\
\phi(P a)
\end{array}\right] \tag{31a}
\end{align*}
$$

$$
\begin{align*}
& B_{0}{ }^{\prime} \quad={ }_{K}^{q}\left[\begin{array}{c}
P_{1}{ }^{2} I_{0}{ }^{\prime \prime}\left(P_{1} a\right)+P_{1} \frac{v}{a} I_{1}\left(P_{a} a\right) \\
\phi(P a)
\end{array}\right] \tag{31~b}\\
& h^{\prime}\left(P_{(\prime)}=I_{0}\left(P_{1} a\right) P_{2}{ }^{2} I_{0}{ }^{\prime \prime}\left(P_{2} a\right)-I_{0}\left(P_{9}^{\prime} a\right) P_{1}{ }^{2} I_{0}{ }^{\prime \prime}\left(P_{1} a\right)\right\} \\
& +{ }_{a}^{v}\left\{P_{3} I_{1}\left(P_{2} a\right) I_{11}\left(P_{1} a\right)-P_{1} I_{1}\left(P_{1} a\right) I_{11}\left(P_{3}(a)\right.\right. \tag{31c}
\end{align*}
$$

Substitution of the values of the constants $A_{0}{ }^{\prime}, B_{01}{ }^{\prime}, A_{0}, B_{0,}, A_{m}$ and B_{m} into cq. 30 vields

$$
\begin{align*}
& \left.\begin{array}{c}
W_{h} \\
h
\end{array}\right)\binom{q t^{1}}{D h}\left[\begin{array} { c }
{ 1 } \\
{ K _ { E } }
\end{array} \left\{\begin{array}{c}
{\left[P_{1}^{2} I_{0}^{\prime \prime}\left(P_{1} a\right)+P_{1}{ }_{a}^{v} I_{\mathrm{I}}\left(P_{1} a\right)\right] Y_{0}\left(P_{2} r\right)} \\
\phi(P a)
\end{array}\right.\right. \\
& \left\{\begin{array}{c}
P_{4}{ }^{2} I_{13}^{\prime \prime}\left(P_{2}(f)+P_{2}{ }_{a}^{v} I_{1}\left(P_{2} a\right)\right. \\
\phi(P a)
\end{array}\right\} I_{1}\left(P_{1} r\right) \\
& { }_{-1}{ }_{a^{3}}^{1}\left\{\beta \psi_{0}(a) r_{0}\left(P_{1} r\right)-\beta \phi_{n}(a) I_{0}\left(P_{2} r\right)\right. \\
& \left.\sum_{m=2,+1, \ldots}^{\infty}\left[\begin{array}{c}
\mu_{m}(a) I_{m}\left(P_{1} \mu\right)-\lambda_{m}(a) I_{m}\left(P_{2} \mu\right) \\
\beta_{m}(a) \mu_{m}(a)-\lambda_{m}(a) \eta m(a)
\end{array}\right] \cos m \theta_{i}^{\}}\right] . \tag{32}
\end{align*}
$$

As $P_{i} \rightarrow 0$ and $P_{2} \rightarrow 0$, eq. 32 reduces to

$$
\begin{align*}
H^{+}= & w_{0}+\frac{P a^{2}}{2 \pi D(3+v)}\left\{2 \log 2-1+\frac{1+v}{1-v}\left(2 \log 2-\frac{\pi^{2}}{12}\right)\right. \\
& -\sum_{m=2,4, a, \ldots}^{\infty}\left[\frac{1}{m(m-1)}+\frac{2(1+v)}{m^{2}(m-1)(1-v)}\right. \\
& \left.\cdots \quad \begin{array}{l}
(r / a)^{2} \\
m(m+1)
\end{array}{ }^{i}\binom{r}{a}^{m} \cos m \theta\right\} \tag{33}
\end{align*}
$$

as obtained by Timoshenko [1] in the corresponding small deflection problem for a plate supported at two points on the boundary.

The normalised constant a can be determined from Eqs. 7 and 30 . Since we are interested only in the lateral displacement w, the radial and cross-radial displacements u and v have been eliminated by choosing suitable expressions for u and v, compatible with their boundary conditions and
mtegratiag over the whole area of the plate. The radial and cross-radial displacements have been assumed in the forms

$$
\begin{align*}
& u=\Sigma U(r) \cos m^{\theta} \tag{34}\\
& v=\Sigma V(r) \sin m \theta \tag{35}
\end{align*}
$$

subject to the boundary conditions $U(a)=Y(a)=0$. Multiplying both sides of the equation 7 by rdrd and integrating between the limits 0 to a and 0 to 2π, one gets

$$
\begin{aligned}
& \int_{0}^{a} \int_{0}^{\pi \pi} r U^{\prime}(r) \cos m \theta d r d \theta+\int_{0}^{a} \int_{0}^{a \pi} U(r) \cos m \theta d r d \theta \\
& +\int_{0}^{a} \int_{0}^{-1 \pi} m V(r) \cos m \theta d r d \theta+\frac{1}{2} \int_{0}^{a} \int_{i}^{2 \pi} r\binom{0 w}{a r}^{2} d r d \theta \\
& +\frac{1}{2} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{1}{r}\left(\frac{\partial w}{\partial \theta}\right)^{2} d r d \theta=\int_{0}^{a} \int_{0}^{\pi} a^{2} h^{2} r d r d \theta .
\end{aligned}
$$

After evaluating the integrals the following equation leading to a is oblained.

$$
\begin{aligned}
\frac{a^{2} h^{2} a^{2}}{12}= & -\frac{1}{2} A_{0}^{\prime 2} P_{1}^{2} a^{2}\left\{1_{4}\left[I_{0}\left(P_{1} a\right)+I_{2}\left(P_{1} a\right)\right]^{2}\right. \\
& \left.-\left[1+\frac{1}{P_{1}^{2} a^{2}}\right] I_{1}^{2}\left(P_{1} a\right)\right\}-{ }_{2} B_{0}^{\prime 2} P_{2}^{2} a^{2} \\
& \times\left\{\frac{1}{4}\left[I_{0}\left(P_{2} a\right)+I_{2}\left(P_{3} a\right)\right]^{2}-\left[1+\frac{1}{P_{2}} a^{2}\right] I_{1}^{2}\left(P_{2} a\right)\right\} \\
& +2 A_{0}^{\prime} B_{0}^{\prime} P_{1} P_{2} \frac{a}{P_{2}^{2} \cdots P_{1}^{2}}\left[-\frac{1}{2} P_{1} I_{1}\left(P_{2} a\right)\left\{I_{0}\left(P_{1} a\right)\right.\right. \\
& \left.\left.+I_{2}\left(P_{1} a\right)\right\}+\frac{1}{2} P_{2} I_{1}\left(P_{1} a\right)\left\{I_{0}\left(P_{2} a\right)+I_{2}\left(P_{2} a\right)\right\}\right] \\
& +\sum_{m=2}^{\infty}\left\{A _ { m } ^ { 2 } P _ { 1 } ^ { 2 } \left\{-1 a^{2}\left[\frac{1}{4}\left\{I_{m-2}\left(P_{1} a\right)+I_{m}\left(P_{1} a\right)\right\}^{2}\right.\right.\right. \\
& \left.\left\{1+\frac{(m-1)^{2}}{P_{1}^{2} a^{2}}\right\} I_{m}^{2}\left(P_{1} a\right)\right] \\
& -\frac{1}{8} a^{2}\left[\frac{1}{4}\left\{I_{m}\left(P_{1} a\right)+I_{m+2}\left(P_{1} a\right)\right\}^{2}-\left\{1+\frac{(m+1)^{2}}{P_{1}^{2} a^{2}}\right\}\right.
\end{aligned}
$$

$$
+\frac{\left(\frac{P_{1}}{2}\right)^{m+2 n+1}\left(\frac{P_{2}}{2}\right)^{m+2 t-1} a^{2 m+2 n+2 t+2}}{(2 m-2 n+2 t+2) \sqrt{n} \Gamma(m+t) \Gamma(m+n+2)}
$$

$$
\left.\left.\left.+\frac{\left(\frac{P_{1}}{2}\right)^{m+2 n+1}\left(\frac{P_{2}}{2}\right)^{m+2 t+1} a^{2 m+2 n+2 t+4}}{(2 m+2 n+2 t+4)}\right] \frac{1}{n} \Gamma(m+n+2) \Gamma(m+t+2)\right]\right\} \frac{1}{2}
$$

$$
+A_{m}^{2}\left\{\sum_{n=0}^{\infty}\left(\frac{P_{1}}{2}\right)^{2 m+4 n} \phi_{1}+\sum_{\substack{n=0 \\ n \neq t}}^{\infty} \sum_{\substack{\infty=0}}^{\infty}\left(\frac{P_{1}}{2}\right)^{2 m+2 n+2 t} \psi\right\} \frac{m^{2}}{2}
$$

$$
+B_{m} 2\left\{\sum_{n=0}^{\infty}\left(\frac{P_{2}}{2}\right)^{2 m+4 n} \phi_{1}+\sum_{n=0}^{\infty} \sum_{\substack{t=0 \\ n \neq t}}^{\infty}\left(\frac{P_{2}}{2}\right)^{2 m+2 n+2 t} \psi\right\} \cdot \frac{m^{2}}{2}
$$

$$
\begin{equation*}
\left.+2 A_{m} B_{m}\left\{\sum_{\substack{n=0 \\ n \neq t}}^{\infty} \sum_{\substack{t=0}}^{\infty}\left(\frac{P_{1}}{2}\right)^{m+2 n}\left(\frac{P_{2}}{2}\right)^{m+2 t} \psi\right\} \frac{m^{2}}{2}\right] \tag{36}
\end{equation*}
$$

$$
\begin{aligned}
& \left.\left.\times I_{m+1}^{2}\left(P_{1} a\right)\right]+\frac{1}{2} \sum_{\substack{n=0[\\
n=t}}^{\infty} \sum_{t=0}^{\infty}\left(\frac{P_{1}}{2}\right)^{2 m+2 n+2 t} \cdot \phi\right\} \cdot \frac{1}{2} \\
& +B_{m}{ }^{2} P_{2}^{2}\left\{-\frac{1}{8} a^{2}\left[\frac{1}{4}\left\{I_{m-2}\left(P_{2} a\right)+I_{m}\left(P_{2} a\right)\right\}^{2}\right.\right. \\
& \left.+\left\{1+\frac{(m-1)^{2}}{P_{2}{ }^{2} a^{2}}\right\} I_{m-1}^{2}\left(P_{2} a\right)\right]-\frac{1}{8} a^{2}\left[\frac { 1 } { 4 } \left\{I_{m}\left(P_{2} a\right)\right.\right. \\
& \left.\left.+I_{m+2}\left(P_{2} a\right)\right\}^{2}+\left\{1+\frac{(m+1)^{2}}{P_{2}^{2} a^{2}}\right\} I_{m+1}^{2}\left(P_{2} a\right)\right] \\
& \left.+\frac{1}{2} \sum_{\substack{n=0 \\
n \neq 1}}^{\infty} \sum_{t=0}^{\infty}\left(\frac{P_{2}}{2}\right)^{2 m+2 n+2 t} \cdot \phi\right\} \frac{1}{2}+\frac{1}{2} A_{m} B_{m} P_{1} P_{2} \\
& \times\left\{\sum _ { \substack { n = 0 \\
n \neq t } } ^ { \infty } \sum _ { \substack { \infty } } ^ { \infty } \left[\frac{\binom{P_{1}}{2}^{m+2 n-1}\left(\frac{P_{2}}{2}\right)^{m+2 t-1} a^{2 m+2 n+2 t}}{(2 m+2 n+2 t)\left[\frac{n}{t} \Gamma(m+n) \Gamma(m+t)\right.}\right.\right. \\
& +\binom{P_{2}}{2}^{m+2 n-1}\left(\frac{P_{2}}{2}\right)^{m+2 t+1} \phi
\end{aligned}
$$

where

$$
\begin{aligned}
& \phi=\frac{a^{2 m+2 n+2 t+2}}{(2 m+2 n+21+2)|n| I(m+n) \Gamma(m+t+2)} \\
& \phi_{1}=\frac{a^{2 m+4 n}}{(2 m+4 n)\{n \Gamma(m+n+1)\}^{2}} \\
& \psi=\frac{a^{2 m+2 n+2 t}}{(2 m+2 n+2 t)[n+\Gamma(m+n+1) \Gamma(m+t+1)} .
\end{aligned}
$$

Thus the deflection, w is completely determined. The expressions for the bending and twisting moment can now be determined.

$$
\begin{align*}
& M_{T}=-D\left[P_{1}{ }^{2}\left(A^{\prime}+A_{0}\right) I_{0}{ }^{\prime \prime}\left(P_{1} r\right)+P_{2}{ }^{2}\left(B_{0}{ }^{\prime}+B_{0}\right) X_{0}{ }^{n}\left(P_{2} r\right)\right. \\
& +\sum_{m=0,4,0,0}^{\infty}\left\{P_{1}^{2} A_{m} I^{\prime \prime}{ }_{m}\left(P_{1} r\right)+P_{y}{ }^{2} B_{m} I^{\prime \prime} m\left(P_{2} r\right)\right\} \cos m \theta \\
& +v\left\{\frac{P_{1}}{r}\left(A_{0}^{\prime}+A_{0}\right) I_{1}^{\prime}\left(P_{1} r\right)+{ }_{r}^{2}\left(B_{0}^{\prime}+B_{0}\right) I_{1}^{\prime}\left(P_{2^{\prime}}\right)\right. \\
& +\frac{1}{r} \sum_{m=2, i, i, l}^{\infty}\left[P_{1} A_{m} I_{m}^{\prime}\left(P_{1} r\right)+P_{2} B_{m} I_{m}^{\prime}\left(P_{2} r\right)\right] \cos m \theta \\
& \left.\left.\left.-\frac{1}{r^{2}} \sum_{m=2,4,4, \ldots}^{\infty} m^{2}\left[A_{m} I_{m}\left(P_{1} r\right)+B_{m} I_{m}\left(P_{2} r\right)\right] \cos m \theta\right)\right\}\right] \tag{37}\\
& M_{\theta}=-D\left[\frac{P_{1}}{r}\left(A_{0}^{\prime}+A_{0}\right) I_{1}{ }^{\prime}\left(P_{1} r\right)+\frac{P_{2}}{r}\left(B_{0}{ }^{\prime}+B_{0}\right) I_{1}^{\prime}\left(P_{2} r\right)\right. \\
& +\frac{1}{r} \sum_{m=2,4, \mathrm{G}, \ldots}^{\infty}\left\{P_{1} A_{m} I_{m}^{\prime}\left(P_{1} r\right)+P_{2} B_{m} I_{m}^{\prime}\left(P_{4} r\right)\right\} \cos m \theta \\
& -\frac{1}{r^{2}} \sum_{m=2,4, \mathrm{c}, \ldots}^{\infty} m m^{2}\left\{A_{m} I_{m}\left(P_{1} r^{r}\right)+B_{m} I_{m}\left(P_{9} r\right)\right\} \cos m \theta \\
& +\nu\left\{P_{1}{ }^{2}\left(A_{0}{ }^{\prime}+A_{0}\right) I_{0}{ }^{\prime \prime}\left(P_{1} r\right)+P_{2}{ }^{2}\left(B_{0}{ }^{\prime}+B_{0}\right) I_{0}{ }^{\prime \prime}\left(P_{2} r\right)\right.
\end{align*}
$$

$$
\begin{equation*}
\left.\left.+\sum_{m=2,4, t, \ldots}^{\infty}\left[P_{1}{ }^{2} A_{m} I_{m}^{\prime \prime}\left(P_{1} r\right)+P_{2}^{2} B_{m} I_{m} \prime \prime\left(P_{2} r\right)\right] \cos m \theta\right\}\right] \tag{38}
\end{equation*}
$$

$$
\begin{align*}
M_{r}= & (1-w) D\left[-\sum_{r=2, i, i,}^{1} \sum_{m}^{\infty} m\left\{P_{1} A_{m} I_{m}^{\prime}\left(P_{1} r\right)+P_{2} B_{m} I_{m}^{\prime}\left(P_{2} r\right)\right\}\right. \\
& \times \sin m \theta+\frac{1}{r^{2}} \sum_{m=2,1, \ldots}^{\infty} m\left[A_{m} I_{m}\left(P_{1} r\right)+B_{m} I_{m}\left(P_{2} r\right)\right\} \\
& \times \sin m \theta] . \tag{39}
\end{align*}
$$

The siresses can be calculated from the expressions

$$
\begin{equation*}
{ }_{r}{ }_{h^{2}}^{6 M_{r}} ; \quad \sigma_{\theta}=\frac{6 M_{\theta}}{h^{2}} ; \quad \tau_{r \theta}=\frac{6 M_{r \theta}}{h^{2}} \tag{40}
\end{equation*}
$$

Numerical Calculation

To obtain deflection for a given value of plate radi's ' a ' and foundation modulus " K_{F} ' one has to start from the equation (36) with an assumed value ot " a " in order to obtain the corresponding value of the load function $q d^{d} / D h$. Once this relationship is obtained the corresponding defiection w / h can be calculated by eq. 32. For $a \approx 50 \mathrm{~mm}, h=0.75 \mathrm{~mm}, v=0.3$ and ${K_{F}}_{F}=80$ deflections have been presented in Fig 2.

Concluding Remarks

An examination of the eq. 32 will reveal that the deffection (w / h) depends on K_{F}, the plate radius ' a ' and on the value of the angle, θ. For a given value of the load function eq. 32 can be written as

$$
\begin{equation*}
\binom{w}{h}_{\substack{r \rightarrow a \\ \theta \rightarrow 0}}=K_{1}\binom{q a^{4}}{D h} ;\binom{w}{h}_{\substack{r \rightarrow a \\ \theta \rightarrow \pi / 2}}=K_{2}\left(\frac{q d^{4}}{D h}\right) \tag{41}
\end{equation*}
$$

where K_{1} and K_{2} are two numerical constants, K_{2} being greater than K_{1}. Because of the reactive forces at the two points of support, deflections on the diameter at $\theta=0$ will be less than those on the diameter at $\theta=\pi / 2$. Maximum deflection will occur at the boundary at $\theta= \pm \pi / 2$. Deflections according to the linear theory have also been plotted in Fig. 2 and it is

Fig. 2. Load deflection curve.
clear that the errors of the linear theory increases as the load increases. In order to study the variation of moments, eqs. 37,38 and 39 are plotted in Fig. 3 for various values of (r / a) and for the angles at which they become maximum. It is observed that the maximum bending moments, their magnitudes being unequal, are developed at $r=3 a / 4, \theta= \pm \pi / 2$ and the twisting moment is maximum at $r=a, \theta= \pm \pi / 4, \pm 3 \pi / 4$.

As the plate must be in equilibrium on the supports, the foregoing analysis for two simple supports represents the worst condition when the deflections and stresses are maximum for a given load function. With the increase in the number of supports, w_{1} in eq. 8 decreases. For an infinitely large number of supports, w in eq. 8 will approach to w_{0} in the limit and the point of maximum bending moments will shift to the centre of the plate. $\left(M_{r}\right)_{\text {max }}$ being equal to ($\left.M_{\theta}\right)_{\text {max }}$ in that case,

Fio. 3. Moment curve.
The present study can be extended to any number of supports, provided the supports are so chosen as not to disturb the equilibrium of the plate. For example, if three equidistant supports are chosen, $\psi_{1}=0, \psi_{2}=2 \pi / 3$, $\psi_{3}=4 \pi / 3$, the differential equations together with the boundary condition remaining unchanged. If the plate is clamped on the supports, the boundary conditions and the concentrated reactions at the supports will change totally clemanding a separate investigation.

ACKNOWLEDGEMENT

The author wishes to thank Dr. B. Banerjee of Jalpaiguri, Govt. Engineering College, for his guidance in preparation of this paper.

The author also thanks Dr. M. C. Bhattacharya, ex-Principal of the College, for his valuable suggestions.

References

[1] Timoshenko, S and Wonnowski-Krieger, S. New York, N.Y., 2nd edition, 1959, pp. 259-278.
[2] Way
.. Bending of circular plates with large deflectinos, Transactions, ASME, 1934, 56, 627.
[3] Levy, S.
[4] Berger, H. M. . A new app oach to the amalysis o! large deflection of plates, Journal of Appled Mcchanics, ASME 1955, 22, 465-472
[5] Nownski, J. .. Some mixed boundaysvalue problems for plates wati large deflections, MRC Techincet Summatr: Report, No 42, Mathematics Rescurel Centre, U.S. Army, The Untversity of Wiscontasin, 1958, p. 17
[6] Nash, W. A. and
Modeer, J. R.
[7] Sinha, S. N .. Large deflections of plates an elastic foundations, Jominal o the Engineering Mech. Dwision, Proceadings of the ASCE, EM1, 1963, pp 1-24.

NOTATION

The following symbols have been used in this paper:
$a \quad=$ plate radius
$A_{0}{ }^{\prime}, A_{0}, B_{0}{ }^{\prime}, B_{0}, A m, B m=$ Constanks
$D \quad=$ flexural rigidity of the plate $=12\left(1-\nu^{2}\right)$
$E \quad=$ Young's modulus
$e_{\mathrm{I}} \quad=$ first invariant of middle surface strains $=\epsilon_{x}+\epsilon_{y}$ in rectangular co-ordinates
$=\epsilon_{\mu}+\epsilon_{\theta}$ in cylindrical co-ordinates
$e_{2} \quad=$ second invariant of middle surface strains $=\epsilon_{x} \epsilon_{y}-\frac{1}{4} \gamma_{x y}^{2}$ in rectangular co-ordinates
$=\epsilon_{r} \epsilon_{\theta}$ in cylindrical co-ordinates in case on circular symmetry
$h \quad=$ plate thickness
$I_{0}, I_{m}=$ Modified Bessel's function of the first kind and of the zero order and m th order respectively.
$K \quad=$ foundation reaction per unit area per unit deflection

	Large Deflection of a Circular Plate
$K_{\text {F }}$	$\cdots \text { dimensionless foundation modulus }=\frac{K}{D} a^{4} .$
M	$=-$ moment
4	- uniform lateral load
$r,{ }^{\prime}$	--- polar co-ordinates
$u,{ }^{\prime}$	$=$ radial and crossradjal displacements
V_{1}	-- strain energy
w	\therefore deflection in $=$-drection
0	$=$ direet stress
τ	$=$ =- shear stress
ε	$=$ direct strain
γ	$=-$ shear strain
ν	$=$ Poisson's ratio
${ }^{T}$	- Gamma function.

$K_{F} \quad-$ dimensionless foundation modulus $=\frac{K}{D} a^{4}$.
$r, \%$-- polar co-ordinates
$u, n=$ radial and crossradjal displacements
$V_{1} \quad--$ strain energy
$=$ direct stress

- shear stress
= direct strain
$=-$ shear strain
- Gamma function.

