A SPECTRAL THEOREM FOR A PAR OF SECOND ORDEF DIFFERENTIAL EQUATIONS

Basudeb Ray Paladia*
(Department of Pure Mathenanics, Gatatia Untiersitg)

Received on Aptil 10, 1975 and in revised form on Sune 3, 1975

Abstract

The present paper deals with the problem involving the nature of the spectrutr of a second order matrix differential equation with a proveribed set of boundarv conditions at an end point. The method used is Titchrnarsh's complex lariable methoc as intiated in his" Eigenfunction expansion associatest with the second order differential equations".

Key words: Spectrum, boundary-condition vector, Kronecker delta, L^{3}-solution, eigenvalue parancter, principle of reflection, citio functions.

1. Introduction

The object of the present paper is to study the nature of the spectrur associated with a second-order differential system

$$
\begin{equation*}
L U=\lambda U, \tag{1}
\end{equation*}
$$

where

$$
L=\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+p(x) & r(x) \\
r(x) & -\frac{d^{2}}{d x^{2}}+q(x)
\end{array}\right), U \therefore\{u, v\}=\binom{u}{v}
$$

and λ is the eigenvalue parameter; $p(x)$ and $q(x)$ are real valued functions each twice differentiable with respect to the variable $x ; r(x)$ is real valued and continuous in $0 \leqslant x<\infty ; p(x), q(x)$ and or $r(x)$ tend to infinity while $p^{\prime}(x), p^{\prime \prime}(x), q^{\prime}(x), q^{\prime \prime}(x)$ remain finite as x tends to infinity (the accent denotes differentiation with respect to x).

[^0]The boundary conditions considered are

$$
\begin{align*}
& {\left[U(x, \lambda), \phi_{l}\right](0) \equiv a_{j_{1}} u(0)+a_{j_{2}} u^{\prime}(0)+a_{j_{3}} v(0)+a_{j_{4}} v^{\prime}(0)} \\
& \quad=0(j=1,2) \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
\left[\phi_{x} \phi_{2}\right](0)=0, \tag{3}
\end{equation*}
$$

$U(x, \lambda)$ is a solution of (1.1) and $\phi_{l}=\phi_{l}(0 / x, \lambda)(l=1,2)$ are the ' boun-dary-condition vectors' at $x=0$ (See Chakrabary [2]).

Put

$$
\begin{align*}
& u_{j}(0 \mid 0, / \lambda)=a_{j_{2}}, \quad u_{j}^{\prime}(0 / 0, \lambda)=-a_{j_{1}} \\
& v_{j}(0 \mid 0, / \lambda)=u_{j_{1}}, \quad v_{j}^{\prime}(0 / 0, \lambda)=-a_{j_{3}} \tag{4}
\end{align*}
$$

where
(i) $a_{j k}(J=1,2 ; k=1,2,3,4)$ are real valued constants, independent of λ.
(ii) The set $\left\{a_{1 k}\right\}$ is linearly independent of the set $\left\{a_{2 k}\right\}$.

Let

$$
\theta_{k}(x, \lambda)=\left\{x_{k}(0 / x, \lambda), y_{k}(0 / x, \lambda)\right\} \quad(k=1,2)
$$

which take real values independent of λ at $x=0$ and satisfy (1) be determined by

$$
\begin{equation*}
\left[\theta_{1} \theta_{2}\right]=0, \quad\left[\phi_{j} \theta_{k}\right]=\delta_{j k}(j, k=1,2), \tag{5}
\end{equation*}
$$

$\delta_{j k}$ being the Kronecker delta.
Then θ_{k} are entire functions of λ and

$$
\begin{array}{ll}
x_{k}(0 / 0, \lambda)=(-1)^{k} a_{l 4}, & x_{k}^{\prime}(0 / 0, \lambda)=(-1)^{k-1} a_{l 3} \\
y_{k}(0 / 0, \lambda)=(-1)^{k} a_{l_{2}}, & y_{k}^{\prime}(0 / 0, \lambda)=(-1)^{k-1} a_{l_{1}}
\end{array}
$$

(when $k=1, \quad l=2$ and when $k=2, \quad l=1$).
As and when necessary we shall use the results of Chakrabarty [2-3], Bhagat [1].
2. Notations and Abibreviations

In what follows we write

$$
(Y, Z)=y_{1}(t) z_{1}(t)+y_{2}(t) z_{9}(t)
$$

for two vectors

$$
Y=\left\{y_{1}(t), \quad y_{2}(t)\right\}, \quad Z=\left\{\left(z_{1}(t), \quad z_{2}(t)\right\}\right.
$$

See Chakrabarty [2] and Naimark [5].
Further we represent the vector $\left\{\xi_{i j}, \eta_{i j}\right\}$ by $\left(\xi_{\eta}\right)_{i j}$.
We make use of the following abbreviations in the present paper.

$$
\begin{aligned}
& z(t)=\{\lambda-p(t)\}\{\lambda-q(t)\} \\
& M(t)=-(1 / 4) z(t)^{-1 / 4}\left[p^{\prime \prime}(\lambda-p)^{-1}+q^{\prime \prime}(\lambda-q)^{-1}+\right. \\
& \left.+(5 / 4) p^{2}(\lambda-p)^{-2}+(5 / 4) q^{\prime 2}(\lambda-q)^{2}+(1 / 2) p^{\prime} q^{\prime} z(t)^{-1}\right] \\
& \left.\xi_{1}(t)=\xi_{1}(p, q, t)=z(t)^{12}-M(t) z(t)^{1+2}+(\lambda-p) /(t)\right\}^{12 / 2} /\{\lambda-q(t)\}^{12 t} \\
& \eta_{1}(t)=-r(t) z(t)^{-1,2} \\
& \xi_{1}(t)=\xi_{1}(q, p, t) \\
& \xi_{11}(t)=\left|\xi_{1}(t) / z(t)\right| \\
& \xi_{12}(t)=\xi_{2}(p, q, t)=\left[|z(t)|^{1 / 2}+|M(t)| z(t)^{1 / 4} \mid\right. \\
& +|(\lambda-p(t) /\{\lambda-q(t)\} \mid 1 / 2] /|z(t)| \\
& \xi_{13}(t)=\left|r(t) / z(t)^{-312}\right| \\
& \eta_{\mathrm{L}}(t)=\left|\eta_{1}(t) / z(t)\right| \\
& \eta_{12}(t)=\xi_{13}(t) \\
& \eta_{13}(t)=\xi_{2}(q, p, t) \\
& N_{1}(t)=\left(\begin{array}{ll}
\xi_{1}(t) & \eta_{1}(t) \\
\eta_{1}(t) & \zeta_{1}(t)
\end{array}\right) \\
& N_{2}(t)=\left\{z(t)^{-1}, \quad z(t)^{-1}\right\} \\
& \zeta(x)=\binom{\cos \xi(x)}{\sin \xi(x)}
\end{aligned}
$$

We write $|A|$ to represent the matrix whose elements are the moduli of the elements of the corresponding matrix A.

3. A Basic Transformation

The system (1) is equivalent to the system

$$
\begin{align*}
& d^{2} u \\
& d x^{2} \tag{6}\\
& \frac{d^{2} v}{d x^{2}}+(\lambda-p(x)) u=r(x) v \\
&
\end{align*}
$$

By means of the transformation

$$
\begin{align*}
& \xi(x)=i \int_{0}^{1}(\lambda-p(t))^{1 / 2}(\lambda-q(f))^{12} d t \\
& \{\eta(x), \zeta(x)\}=i(\lambda-p(x))^{1 / 4}(\lambda-q(x))^{1 / 4}\{\mu(x), v(\lambda)\} \tag{7}
\end{align*}
$$

the system (6) is transformed to

$$
\begin{align*}
& \frac{d^{2} \eta}{d \xi^{2}}+\{K(x, \lambda)-1 /(\lambda-q(x))\} \eta=\mu_{1}(x) \zeta \tag{8}\\
& d^{2} \zeta+\{K(x, \lambda)-1 /(\lambda-p(x))\} \zeta=r_{1}(x) \eta \\
& d \xi^{2}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
\left(L_{1}-K(x, \lambda)\right) \Omega=0, \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& K(x, \lambda)=-\left[(1 / 4)\left\{p^{\prime \prime}(\lambda-p)^{-2}(\lambda-q)^{-1}+q^{\prime \prime}(\lambda-q)^{-2}(\lambda-p)^{-1}\right\}\right. \\
& \quad+(5 / 16)\left\{p^{\prime 2}(\lambda-p)^{-3}(\lambda-q)^{-1}+q^{\prime 2}(\lambda-q)^{-3}(\lambda-p)^{-1}\right\} \\
& \left.\quad+(1 / 8) p^{\prime} q^{\prime} z(x)^{-2}\right\} \\
& r_{1}(x)=-r(x) z(x)^{-1},
\end{aligned}
$$

and
L_{x} is the operator $\left(\begin{array}{cc}-\frac{d^{2}}{d \xi^{2}}+\frac{1}{\lambda-q(x)} & r_{1}(x) \\ n(x) & -d^{2} \\ d \xi^{3}+\lambda-\lambda^{2}(\lambda)\end{array}\right)$,
$\Omega=\Omega(x)=\binom{\eta(x)}{\zeta(x)}=\binom{\eta}{\zeta}=\{\eta, \zeta\}$.

The system (8) is of the same form as (6) where the co efficients of η and ζ tend to zero when x tends to inhmity. This happens for example, for a given finite λ when
(i) $r(x)$ is bounded and negative for all x bud $|p|,|q|$ tend to infinity as x tends to infinity.
(ii) $p(x), q(x)$ satisfy the conditions stated in (i) but

$$
r=O(p) \quad \text { or } \quad r=O(p)
$$

If however λ tends to infinity, we can take $r \ldots O(p q)$, where p, q satisfy the conditions stated in (i).

Let

$$
\begin{equation*}
P(x)=z(x)^{1 / 4} \Lambda(x) \tag{10}
\end{equation*}
$$

where

$$
H(x)=\left\{H_{1}(x), H_{2}(x)\right\}
$$

with

$$
\begin{aligned}
& H_{1}(x)=\frac{d}{d x}\left[z(x)^{-1 / 4} \frac{d \eta}{d x}\right]-i z(x)^{-1 / 4} \frac{d^{2} u}{d x^{2}} \\
& H_{2}(x)=\frac{d}{d x}\left[z(x)^{-1 / 2} \frac{d b}{d x}\right]-i z(x)^{1 / 4} d^{2} v \\
& d x^{-2}
\end{aligned}
$$

Then from (10) and (6)

$$
\begin{equation*}
P(x)=M(x) Q(x) \tag{11}
\end{equation*}
$$

Let $\quad X=\left\{I_{1}, I_{2}\right\}=\int_{0}^{\infty} z(t)^{-1 / 4} \sin (\xi(x)-\xi(t)) P(t) d t$
so that

$$
\begin{aligned}
I_{1}= & \int_{0}^{\int_{0}} \sin (\xi(x)-\xi(t))\left[\frac{d}{d t}\left\{z(t)^{-1 / 2} \frac{d \eta}{d t}\right\}+\right. \\
& \left.+\{i(\lambda-p(t)) u(t) \cdots \cdot r(t) v(t)\} z(t)^{-1 / 2}\right] d t \\
= & \int_{0}^{x} \sin (\xi(x)-\xi(t)) \frac{d}{d t}\left[z(t)^{-1 / 2} \frac{d \eta}{d t}\right] d t+
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\int_{0}^{\mathscr{b}} \sin (\xi(x)-\xi(t))\left[\begin{array}{l}
\lambda-p(t)\}^{1 / 2} \\
\left\{\lambda-\frac{q}{q}(t)^{1 / 2}\right. \\
i
\end{array}(t)\right. \\
& \left.\quad-r(t) \xi(t) z(t)^{-1 / 2}\right] d t \\
& =\gamma_{11}+I_{12}, \text { say. }
\end{aligned}
$$

On integration by parts and subsequent simplification, wo have

$$
\begin{aligned}
I_{11}= & -z(0)^{-1 / 2} \eta^{\prime}(0) \sin \xi(x)-i \eta(0) \cos \xi(x)+i \eta(x)+ \\
& +\int_{0}^{w} \sin (\xi(x)-\xi(t)) z(t)^{1 / 2} \eta(t) d t
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& I_{1}=-z(0)^{-1 / 2} \sin \xi(x) \eta^{\prime}(0)-i \cos \xi(x) \eta(0)+i \eta(x)+ \\
&+\int_{0}^{n} \sin (\xi(x)-\xi(t)) z(t)^{1 / 2} d t+ \\
&+\int_{0}^{0} \sin (\xi(x)-\xi(t))\left[\{\lambda-p(t)\}^{1 / 2}\right. \\
&\{\lambda-q(t)\}^{1 / 2} \eta(t) \\
&\left.-r(t) \zeta(t) z(t)^{-1 / 2}\right] d t
\end{aligned}
$$

with a similar result for I_{2}.
Hence if $l_{1}(t)=\left\{\xi_{1}(t), \quad \eta_{1}(t)\right\}$, it follows that

$$
\begin{align*}
\eta(x) & =\eta(0) \cos \xi(x)-i \eta^{\prime}(0) z(0)^{-1 / 2} \sin \xi(x)+ \\
& +i \int_{0}^{x} \sin (\xi(x)-\xi(t))\left(l_{x}(t), \Omega(t)\right) d t \tag{13}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\zeta(x) & =\zeta(0) \cos \xi(x)-i \zeta^{\prime}(0) z(0)^{-1 / 2} \sin \xi(x)+ \\
& +i \int_{0}^{m} \sin (\xi(x)-\xi(t))\left(I_{2}(t), \quad \Omega(t)\right) d t \tag{14}
\end{align*}
$$

where

$$
l_{2}(t) \equiv\left\{\eta_{1}(t), \quad \zeta_{1}(t)\right\} .
$$

Hence finally

$$
\Omega(x)=N(0) S(x)+i \int_{0}^{\pi} \sin (\xi(x)-\xi(t)) N_{1}(t) \Omega(t) d t
$$

where

$$
N(0)=\left(\begin{array}{lll}
\eta(0) & -i \eta^{\prime}(0) & z(0)^{-1 / 2} \\
\zeta(0) & -i \zeta^{\prime}(0) & z(0)^{-1 / 2}
\end{array}\right)
$$

4. Assoctated Lemmas

Lemma I

Let the coefficients $p(x), q(x), r(x)$ of (1) satisfy

$$
\text { (i) either } p(x), q(x)>Q(x), r(x)=0(1)
$$

or,

$$
p(x), q(x), r(x)=Q(x), r(x)=0(p(x) q(x))
$$

where

$$
\begin{aligned}
& Q(x) \geqslant \delta>0, x \geqslant 0 \\
& \text { (ii) } p^{\prime}(x), q^{\prime}(x) \geqslant 0 \\
& \text { (iii) } p^{\prime}(x)=0[p(x)]^{c}, \quad q^{\prime}(x)=0[q(x)]^{c}, \quad 0<c<5 / 2 \\
& \text { (iv) } p^{\prime \prime}(x) q^{\prime \prime}(x) \text { are ultimately of one sign } \\
& \text { (v) } 1 / Q(x) \epsilon L[0, \infty)
\end{aligned}
$$

Then

$$
\int_{0}^{\infty}\left|N_{1}(t)\right|\left|N_{2}(t)\right| d t \text { is uniformly }
$$

convergent with respect to λ in any region for which

$$
|\lambda-p(x)|,|\lambda-q(x)| \geqslant \delta_{1}>0 \quad \text { for } \quad 0 \leqslant x<\infty
$$

N_{1}, N_{2} being defined as before.
Proof.-We have

$$
\int_{e_{1}}^{z}\left[\left|\xi_{1}(t)\right|+\left|\eta_{1}(t)[1]\right| z(t) \mid d t\right.
$$

$$
\begin{align*}
& \quad \leqslant \int_{x_{1}}^{X}|z(t)|^{-1 / 2} d t+\int_{x_{0}}^{X}\left|(\lambda-p(t))^{-112}(\lambda-q(t))^{-3 \cdot 2}\right| d t \\
& \quad+\int_{X_{9}}^{X}\left|r(t) z(t)^{-3 / 2}\right| d t+\int_{X_{0}}^{X}\left|M(t) z(t)^{-0 / 4}\right| d t \tag{16}\\
& =J_{11}+J_{12}+J_{13}+J_{14}, \text { say }
\end{align*}
$$

Now,

$$
\begin{aligned}
& J_{\mathrm{J}_{1}}=0\left[\int_{X_{0}}^{x} 1 / Q(t) d t\right]=0(1), \text { uniformly in } \lambda \\
& J_{22}=0\left[\int_{X_{0}}^{x} 1 / Q^{2}(t) d t\right]=0(1), \text { uniformly in } \lambda
\end{aligned}
$$

By condition (i) of the lemma it follows that

$$
\begin{aligned}
J_{\mathrm{L} 3}= & O(1), \text { uniformly in } \lambda . \\
J_{14} & =0\left[\int_{X_{0}}^{x} p^{\prime \prime} p^{-5 / 2} q^{-3 / 3} d t\right]+0\left[\int_{X_{4}}^{x} q^{\prime \prime} p^{-3 / 2} q^{-5 / 2} d t\right]+ \\
& +0\left[\int_{X_{0}}^{x} p^{\prime} q^{\prime} p^{-5 \cdot 2} q^{-5 / 2} d t\right]+0\left[\int_{x_{0}}^{x} p^{\prime 2} p^{-7 / 2} q^{-3 / 2} d t\right]+ \\
& +0\left[\int_{X_{0}}^{X} q^{\prime 2} q^{-7 / 2} p^{-3 / 2} d t\right] . \\
= & I_{1}+J_{2}+J_{3}+J_{4}+J_{5}, \text { say }
\end{aligned}
$$

On integration by parts and using conditions (iii) of the problem, it follows that

$$
\begin{aligned}
J_{1}= & =0\left[\int_{x_{0}}^{x} p^{\prime \prime} p^{-5^{1 /} 9} d t\right] \\
& =0(1), \text { uniformly in } \lambda,
\end{aligned}
$$

where

$$
0<c<5 / 2 .
$$

Similarly,

$$
J_{2}=0(1), \text { uniformly in } \lambda, \text { where } 0<c<512
$$

By the Schwartz inequality,

$$
\begin{aligned}
y_{3}= & =0\left[\int_{X_{0}}^{x} p^{\prime 2} p^{-5} d t \int_{X_{0}}^{x} q^{\prime 2} q^{-5} d t\right]^{1 / 2} \\
& =0\left[\int_{X_{0}}^{x} p^{\prime} p^{c-5} d t \int_{X_{0}}^{x} q^{\prime} q^{c-5} d t\right]^{1 / 2} \\
& =0(1), \text { uniformly in } \lambda, \text { where } \quad 0<c<4
\end{aligned}
$$

Again,

$$
\begin{aligned}
J_{4} & =0\left[\int_{X_{0}}^{x} p^{\prime 2} p^{-7 / 2} d t\right. \\
& =0\left[\int_{X_{0}}^{X} p^{\prime} p^{c-7 / 2} d t\right] \\
& =0(1), \text { uniformly in } \lambda, \text { where } 0<c<5 / 2
\end{aligned}
$$

Similarly.

$$
J_{5}=0(1), \text { uniformily in } \lambda, \text { where } 0<c<5 / 2
$$

Therefore,

$$
\int_{x_{0}}^{x} M(t) z(t)^{-5 / 4} d t=0(1), \text { uniformly in } \lambda,
$$

where $0<c<5 / 2$.
It follows therefore from (16) that $\int_{0}^{\infty}\left[\left|\xi_{\mathbf{1}}\right|+\left|\eta_{\mathbf{L}}\right|\right] /|\varepsilon| d t$ converge uniformly with respect to λ (real or complex). Similar result holds for

$$
\int_{0}^{\infty}\left[\left|\eta_{1}\right|+\left|\zeta_{1}\right|\right] /|z| d t
$$

The lemma therefore follows.

Lemma II.

If $\operatorname{Im} \lambda>0,0<\arg \lambda<\pi$, then

$$
\exp [i \xi(x)] \rightarrow \infty \text { as } x \rightarrow \infty, \xi(x)
$$

being defined in (7).

Proof.-Since $p(t), q(t)>0$,
$(1 / 2) \arg \lambda \leqslant \arg \left[(\lambda-p(t))^{1 / 2}\right] \leqslant \pi / 2$
$(1 / 2) \arg \lambda \leqslant \arg \left[(\lambda-q(t))^{1 / 2}\right] \leqslant \pi / 2$
so that

$$
\arg \lambda \leqslant \arg \left[z(t)^{1,2}\right] \leqslant \pi
$$

Again,

$$
\pi / 2+\arg \lambda \leq \arg \left[\beta(t)^{1} 2\right]<3 \pi / 2 .
$$

It follows from the definition of $\xi(x)$ that

$$
\operatorname{Im} \xi(x)>0 .
$$

Also, if $|\lambda|$ is bounded as x tends to infinity, then

$$
\begin{aligned}
i \xi(x) & \sim i^{2} \int_{0}^{a} i(p(t))^{1 / 2} i(q(t))^{1 / 2} d t \\
& =\int_{0}^{0}(p q)^{1 / 2} d t .
\end{aligned}
$$

Hence the lemma follows.

5. Some Order Relations

We assume that all the conditions of the lemma 1 are satisfied.
Let

$$
\Omega_{2}(x)=\left\{\eta_{9}(x), \zeta_{2}(x)\right\}=z(x) \Omega(x) \exp [i \xi(x)] .
$$

Therefore from (15),

$$
\begin{aligned}
& \Omega_{2}(x)=\left(\frac{1}{2}\right) z(x)[1+\exp (-2 i \xi(x))] \Omega(0)- \\
& \quad-\left(\frac{1}{2}\right) z(x) z(0)^{-1 / 2}[1-\exp (-2 i \xi(x))] \Omega^{\prime}(0)+ \\
& \quad+\left(\frac{1}{2}\right) z(x) \int_{0}^{0}[1-\exp (2-i(\xi(x)-\xi(t)))] z(t)^{-1} \times \\
& \quad \times N_{1}(t) \Omega_{1}(t) d t .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left|\eta_{2}(x)\right| z(x)\left|\leqslant|\eta(0)|+\left|z(0)^{-1 / 2} \eta^{\prime}(0)\right|+\int_{9}^{x}\left[\xi_{11}(t)\left|\eta_{3}(t)\right|\right.\right. \\
& \left.\quad+\eta_{13}(t)\left|\zeta_{2}(t)\right|\right] d t
\end{aligned}
$$

for large x. Hence,

$$
\begin{align*}
& \left|\eta_{2}(x) / z(x)\right| \leqslant|\eta(0)|+\left|z(0)^{1 / 2}+\eta^{\prime}(0)\right|+\left\langle(\xi \eta)_{t 上}\right. \\
& \left.\quad(\eta \zeta)_{22}\right\rangle 0, x \tag{17}
\end{align*}
$$

where

$$
\langle Y, Z\rangle 0, x=\int_{0}^{\infty}(Y, Z) d t
$$

for two vectors

$$
Y=\left\{y_{1}, y_{2}\right\} \quad Z=\left\{z_{1}, z_{3}\right\}
$$

See Chakrabarty [3].
Similarly,

$$
\begin{align*}
& \left|\zeta_{2}(x) / z(x)\right| \leqslant|\zeta(0)|+\left|z(0)^{-1 / 2} \zeta^{\prime}(0)\right|+\left\langle(\xi \eta)_{1 \geqslant,}\right. \\
& \quad\left(\eta \zeta_{22}\right\rangle 0, x . \tag{18}
\end{align*}
$$

Since the same arguments hold if p, q be interchanged in the differential system (1), we can, without loss of generality, assume that $p(x)>q(x)$ in the discussion which follows.

Then

$$
\eta_{13}(t)<\xi_{12}(t)
$$

Therefore,

$$
\begin{aligned}
& \left|\eta_{2}(x) / z(x)\right| \leqslant|\eta(0)|+\left|z(0)^{-1 / 2} \eta^{\prime}(0)\right|+\left\langle(\xi \eta)_{12}(\eta \zeta)_{22}\right\rangle 0, x \\
& \left|\zeta_{2}(x)\right| z(x)\left|\leqslant|\zeta(0)|+\left|z(0)^{-1 / 2} \zeta^{\prime}(0)\right|+\left\langle(\eta \xi)_{12},(\eta \zeta)_{22}\right\rangle 0, x\right.
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left|\eta_{2}(x) / z(x)\right|,\left|\zeta_{2}(x) / z(x)\right| \leqslant K_{1}+\left\langle s_{1}, s_{2}\right\rangle 0, x \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{1}=\max \left[|\eta(0)|+\left|z(0)^{-1 / 2} \eta^{\prime}(0)\right|,|\zeta(0)|+\left|z(0)^{-1 / 2} \zeta^{\prime}(0)\right|\right] \\
& \left(s_{3}, s_{2}\right)=\max \left[\left((\xi \eta)_{12,},(\eta \zeta)_{22}\right),\left((\eta \xi)_{122}(\eta \zeta)_{22}\right)\right]
\end{aligned}
$$

with

$$
s_{1}=\left\{c_{1}, c_{3}\right\} \quad s_{2}=\left\{\left|\eta_{2}(t)\right|, \mid \zeta_{2}(t)[\},\right. \text { say }
$$

It follows that

$$
\begin{equation*}
c_{1}+c_{2}=\xi_{12}+\eta_{12} \tag{20}
\end{equation*}
$$

From (19),

$$
\begin{align*}
& \left|\eta_{2}(x) / z(x)\right|,\left|\zeta_{2}(x)\right| z(x) \mid \leqslant K_{1}+\int_{0}^{x}\left[c_{11}\left|\eta_{2}(t) / z(t)\right|\right. \\
& \left.\left.\quad+c_{21} \mid \zeta_{2}(t) / z(t)\right)\right] d t \tag{21}
\end{align*}
$$

where

$$
c_{11}=c_{1}|z(t)|, \quad c_{21}=c_{22}|z(t)|
$$

Making use of the following well known result, viz.,
" If $h_{1}, h_{2}, g_{1}, g_{2}$ be mon-negative functions of x over the interval $0 \leqslant x \leqslant X$ and if h_{1}, h_{2} be continuous and g_{1}, g_{2} be integrable over this interval then,

$$
h_{1}(x), h_{2}(x) \leqslant B \exp \left[\int_{0}^{w}\left\{g_{1}(s)+g_{2}(s)\right\} d s\right], 0 \leqslant x \leqslant X,
$$

where

$$
h_{1}(x), h_{2}(x) \leqslant B+\int_{0}^{\pi}\left[h_{1}(t) g_{1}(t)+h_{2}(t) g_{2}(t)\right] d t
$$

B constant" Conte and Sangren [4],
it follows from (21) that

$$
\begin{aligned}
& \left|\eta_{2}(x) / z(x)\right|,\left|\zeta_{2}(x) / z(x)\right| \leqslant K_{1} \exp \left[\int_{0}^{2}\left(c_{11}+c_{21}\right) d t\right] \\
& \quad=K_{1} \exp \left[\int_{0}^{x}\left(c_{1}+c_{2}\right)|z(t)| d t\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
& |\eta(x)|,|\zeta(x)| \leqslant K_{1} \exp \left[\int_{0}^{0}\left(c_{1}+c_{2}\right)|z(t)| d t\right]|\exp (i \xi(x))| \\
& =K_{1} \exp \left[|z(x)| \int_{0}^{n}\left(\xi_{12}+\eta_{12}\right)|z(t) / z(x)| d t\right]|\exp (i \xi(x))|
\end{aligned}
$$

so that

$$
\begin{align*}
& |\eta(x)|,|\zeta(x)| \leqslant K_{1} \exp \left[|z(x)| \int_{0}^{\infty}\left(\xi_{12}+\eta_{12}\right) d t\right] \\
& \quad|\exp (i \xi(x))| \tag{22}
\end{align*}
$$

Since

$$
\begin{aligned}
& \grave{\xi}_{12}+\eta_{12}=0(1 / Q(t)), \\
& \int_{b}^{\infty}\left(\xi_{12}(t)+\eta_{12}(t)\right) d t=0(1)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
|\eta(x)|,|\zeta(x)|=0\left[\left|\exp \left(K_{2} p(x) q(x)\right)\right|\{\exp (\xi \xi(x))]\right] . \tag{23}
\end{equation*}
$$

6. Asymptotic Relations

We have from (15).

$$
\begin{aligned}
\Omega(x)= & \left(\frac{1}{2}\right)[\exp (i \xi(x))+\exp (-i \xi(x))] \Omega(0)- \\
- & \left(\frac{1}{2}\right) z(0)^{-1 / 2}[\exp (i \xi(x))-\exp (-i \xi(x))] \Omega^{\prime}(0)+ \\
& +\left(\frac{1}{2}\right) \int_{0}^{x}[\exp (i(\xi(x)-\xi(t)) \\
- & \exp (-i(\xi(x)-\xi(t))] N_{1}(t) \Omega(t) d t \\
= & \left(\frac{1}{2}\right) \exp (i \xi(x))\left\{[1+\exp (-2 i \xi(x))] \Omega(0)-z(0)^{-1 / 2}\right. \\
& {[1-\exp (-2 i \xi(x))] \Omega^{\prime}(0)+z(x) \exp \left(K_{2}^{\prime} p(x) q(x)\right) } \\
& \int_{0}^{n} z(x)^{-1} \exp \left[-i \xi(t)+K_{2} p(x) q(x)\right] \\
\quad & \left.\times[1-\exp (-2 i(\xi(x)-\xi(t)))] N_{3}(t) d t\right\}
\end{aligned}
$$

where

$$
N_{3}(t)=\left\{\left(l_{1}, \Omega\right),\left(l_{2}, \Omega\right)\right\} .
$$

Now, by (23)

$$
\begin{aligned}
& \left|\exp (-i \xi(t))[1-\exp (-2 i(\xi(x)-\xi(t)))]\left(l_{1}, \Omega\right)\right\rangle \\
& \quad z(x) \exp \left(K_{2} p(x) q(x)\right) \mid
\end{aligned}
$$

$$
\begin{aligned}
& \text { A spectral theorem } \\
& \leqslant\left|\exp (-i \xi(t)) \|\left(l_{1}, \Omega\right)\right||z(t)|^{-1}\left|\exp \left(K_{2} p(t) q(t)\right)\right| \\
& \leqslant K_{3}\left(\left|\xi_{1}(t)\right|+\left|\eta_{1}(t)\right|\right) /|z(t)|
\end{aligned}
$$

where K_{3} is a constant.
Also, by (23)

$$
\begin{aligned}
& \left|\exp (-i \xi(t))[1-\exp (-2 i(\xi(x)-\xi(t)))]\left(l_{2}, \Omega\right)\right| \\
& \quad z(x) \exp \left(K_{2} p(x) q(x)\right)\left|\leqslant K_{4}\left(\left|\eta_{1}(t)\right|+\left|\xi_{1}(t)\right|\right)\right||z(t)|
\end{aligned}
$$

where K_{4} is a constant.
But

$$
\int_{6}^{\infty}\left|N_{1}(t)\right|\left|N_{2}(t)\right| \mathrm{dt} \text { is convergent (uniformly with respect to } \lambda \text {) }
$$ by lemma 1 .

Hence,

$$
\begin{equation*}
\Omega(x)-\left(\frac{1}{2}\right) z(x) \exp \left[i \xi(x)+K_{x} p(x) q(x)\right] R \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
R= & \left\{R_{1}, R_{2}\right\}=\lim _{x \rightarrow \infty} \int_{0}^{x} \exp (-i \xi(t))[1-2 i(\xi(x)-\xi(t))] z(x)^{-1} \\
& \times \exp \left(-K_{2} p(x) q(x)\right) N_{2}(t) d t \tag{25}
\end{align*}
$$

which is finite.
Let

$$
\begin{equation*}
\binom{X_{k}(x)=i z(x)^{14} Q_{k}(x, \lambda)}{Y_{k}(x)=i z(x)^{1 / 4} \phi_{k}(x, \lambda)}(k=1,2) \tag{26}
\end{equation*}
$$

where

$$
X_{k}=\left\{X_{k_{1}}, X_{k_{2}}\right\}, \quad Y_{k}=\left\{Y_{k_{1}}, Y_{k_{1}}\right\}, \text { say. }
$$

Then

$$
\begin{align*}
& X_{k}(0)=(-1)^{k} z(0)^{1^{1 / 4}\left\{a_{l_{4}}, a_{l_{2}}\right)} \\
& X_{k}^{\prime}(0)=(-1)^{k-1} z(0)^{1 / 4}\left\{a_{l_{3}}, a_{6}\right\}+(1 \mid 4)\left[p^{\prime}(0)\right. \\
& \quad(\lambda-p(0))^{-3 / 4}(\lambda-q(0))^{+1 / 4}+q^{\prime}(0)\left(a-q(0)^{-3 / 4}\right. \\
& \quad(\lambda-p(0))^{\mathrm{L} / 4}(-1)^{k}\left\{a_{l_{4}}, a_{l_{2}}\right) \tag{27}
\end{align*}
$$

(when $k=1, l=2$ and when $k=2, l=1$), with a smilar expressions for $Y_{k}(0), Y_{k}{ }^{\prime}(0) \quad(k=1,2)$.

It follows from (26), (27), (22)

$$
\begin{aligned}
& \left|x_{k}(x, \lambda)\right| \cdot\left|y_{k}(x, \lambda)\right|=0\left[\left|z(0)^{1 / 4}\right|\left|\exp \left(K_{2} p(x) q(x)\right)\right| \times\right. \\
& \left.\quad \times|\exp (i \xi(x))|\left|z(x)^{-14}\right|\right]
\end{aligned}
$$

for all x and Im $\lambda>0$.
There are similar expressions for $u_{k}(x, \lambda), v_{k}(x, \lambda)$. Thus we have for a fixed λ, as x tends to infinity,

$$
\begin{aligned}
& X_{k}(x) \sim\left(\frac{1}{2}\right) z(x) \exp \left[i \xi(x)+K_{2} p(x) q(x)\right] T_{k}(x) \\
& Y_{k}(x) \sim\left(\frac{1}{7}\right) z(x) \exp \left[i \xi(x)+K_{2} p(x) q(x)\right] S_{k}(x)
\end{aligned}(k \cdots 1,2) \quad(28)
$$

where

$$
T_{k}=\left\{R_{1 k}, R_{\mathbf{2 k}}\right), \quad S_{k}=\left\{S_{\mathrm{x} k}, S_{2 k}\right\}
$$

and $R_{i k}, S_{i k}(i, k=1,2)$ are independent of λ.

7. Basic Theorem

We now establish the following theorem.
Treorem. If all the conditions of the lemma I are satisfied then the spectrum of the system (1) with boundary conditions (2)-(3) at the end point $x=0$, is discrete over the whole range (\cdots, ∞, ∞) except possibly at the point at infinity.

Proof:-Let

$$
\begin{aligned}
& \psi_{1}=\theta_{1}(x, \lambda)+\sum_{r=1}^{2} m_{1 r}(\lambda) \phi_{r}(x, \lambda) \\
& =\binom{x_{1}+m_{11} u_{1}+m_{12} u_{2}}{y_{1}+m_{11} v_{1}+m_{12} v_{2}} \\
& =-i z(x)^{-1 / 4}\left(\begin{array}{l}
X_{11}+m_{11} Y_{11}+m_{12} Y_{21} \\
X_{12}+m_{12} \\
Y_{12}+m_{12} Y_{22}
\end{array}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\psi_{1} \sim\left(\frac{1}{2} i\right)\left\{\exp \left[\dot{i} \xi(x)+K_{2} p(x) q(x)\right] z(x)^{3 / 4}\right\} W(\lambda) \tag{29}
\end{equation*}
$$

where

$$
W(\lambda)=\left\{W_{1}(\pi), W_{2}(\lambda)\right\}
$$

with

$$
\begin{equation*}
W_{j}(\lambda)=R_{j 2}+m_{11} S_{j 1}+m_{12} S_{j 2}(\jmath=1,2) \tag{30}
\end{equation*}
$$

Now in the singular case $0 \leqslant x<\infty$, for values of λ other than real values, there exists at least two hinearly independent solutions of (1), say $\chi_{r}(x, \lambda)(r=: 1,2)$ such that

$$
\chi_{r}(x, \lambda) \in L^{2}[0, \infty)
$$

(compare Chakrabarty [3]).
In order that f_{1} may be an L^{2}-solution of (1) we must have

$$
W_{1}(\lambda)=0, \quad W_{2}(\lambda)=0
$$

since $(1 / 2 i) \exp \left[i \xi(x)+K_{2} p(x) q(x)\right] z(x)^{34}$ does not belong to $L^{2}[0, \infty)$.
Therefore,

$$
\begin{align*}
& m_{11} S_{11}+m_{12} S_{12}=-R_{11} \\
& m_{11} S_{21}+m_{12} S_{22}=-R_{21} \tag{31}
\end{align*}
$$

Similarly for the solution

$$
\psi_{2}=\theta_{2}(x, \lambda)+\sum_{r-1}^{z} m_{2 r}(\lambda) \phi_{r}(x, \lambda)
$$

it follows that

$$
\psi_{2} \sim(1 / 2 i) \exp \left[i \xi(x)+K_{2} p(x) q(x)\right] z(x)^{5} V(\lambda)
$$

where

$$
V(\lambda)=\left\{v_{1}(\lambda), v_{z}(\lambda)\right\}
$$

with

$$
V_{j}(\lambda)=R_{j 2}+m_{21} S_{j_{1}}+m_{22} S_{j 2} \quad(j=1,2)
$$

By arguments similar to those given as before we obtain

$$
\begin{align*}
& m_{21} S_{11}+m_{22} S_{12}=-R_{12} \\
& m_{21} S_{01}+m_{22} S_{22}=-R_{22} \tag{32}
\end{align*}
$$

Solving (31) for $m_{\perp 1}, m_{12}$ and (32) for m_{21}, m_{22} we have

$$
m_{r s}(\lambda)=N_{r s}(\lambda) / D(\lambda) \quad(r, s=12)
$$

where

$$
\begin{aligned}
N_{r s}(\lambda) & =R_{2 r} S_{13}-R_{1 r} S_{22} \text { if } s=1, r=1,2 \\
& =R_{\mathbf{1} r} S_{2 \mathrm{I}}-R_{2 r} S_{\mathbf{1}} \text { if } s=1, r=12
\end{aligned}
$$

and

$$
D(\lambda)=S_{1 \pi} S_{22}-S_{12} S_{2 x}
$$

From (23) we have

$$
\eta(x), \zeta(x)=0\left[|\exp (i \xi(x))|\left|\exp \left(K_{2} p(x) q(x)\right)\right|\right]
$$

uniformly with respect to λ as λ approaches any point in the interval of the negative real axis. Then $\xi_{1}, \eta_{1}, \zeta_{1}, R_{i k}, S_{i k}$ are all real there, $\xi(f)$ being purely imaginary. Finally, $N_{T s}(\lambda), D(\lambda)$ are real and continuous. Therefore it follows that the numerator and denominator of each element of the matrix ($m_{i j}$) are real and continuous up to any point on the negative real axis. Similar arguments hold if λ approaches any point in an interval of the positive real axis. For, let β be the right hand end point of the interval under consideration and let λ tend to β. Then the cases $p(x), q(x)<\beta$ or $>\beta$ lead to the same behaviour of the elements of ($m_{i j}$).

Since the numerator and the denominator of each element of the matrix ($m_{i j}$) are regular in the upper-half plane, it follows from the principle of reflection that $N_{r s}(\lambda), D(\lambda)$ are entire functions of λ so that each element of $\left(m_{i}\right)$ is a meromorphic function of λ.

Therefore, the spectrum of the system (1), (2)-(3) is discrete over the whole range $(-\infty, \infty)$ if $p(x), q(x)<\beta$ or $>\beta$.

If λ tends to a and $q(\alpha)<\beta<p(\alpha)$, a being a fixed real number, then the whole argument can be repeated by changing the interval $[0, \infty)$ by $[X, \infty)$ (so that $p(X), q(X)>\beta$) and the limits $0, x$ in the expressions $R_{i k}, S_{i k}(i, k=1,2)$ by X, x.

The spectrum is then discrete over the whole range $(-\infty, \infty)$.
To examine the point at infinity on the real λ-axis we note that

$$
R_{i k}=\lim _{t \rightarrow \infty} \int_{0}^{\pi} 0\left[\left(\xi_{1}(t)+\eta_{I}(t)\right) / z(t)\right] d t
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \int_{0}^{x} 0\left[z(t)^{-1 / 2}\right] d t \\
& =0\left[\lim _{\infty \rightarrow \infty} \int_{0}^{x}(p q)^{-1 / 2} d t\right] \\
& =0(1) .
\end{aligned}
$$

Similarly,

$$
S_{i k}=0(1)
$$

Again,

$$
\xi_{\mathrm{I}}(t)+\eta_{1}(t) \geqslant z(t)^{1 / 2}(\lambda \text { large but fixed })
$$

:o that

$$
\left(\xi_{1}(t)+\eta_{1}(t)\right) / z(t) \geqslant z(t)^{-1 / 2}
$$

Therefore,

$$
\int_{0}^{\infty}\left(\xi_{1}(t)+\eta_{1}(t)\right) / z(t) d t \geqslant \int_{0}^{\infty}(p q)^{-1 / 2} d t=\text { a constant }
$$

independent of λ. It follows that

$$
R_{1 k} \geqslant g_{1 k}, S_{1 k} \geqslant h_{1 k}
$$

$g_{1 k}$ and $h_{1 k}$ being positive constants.
Also,

$$
\eta_{1}(t)+\zeta_{1}(t) \geqslant z(t)^{1 / 2} \quad(\lambda \text { large but fixed })
$$

It follow: similarly that

$$
R_{2 k} \geqslant G_{2 k}, S_{2 k} \geqslant H_{2 k}
$$

$G_{2 k}, H_{2 k}$ being positive constants.
Therefore,

$$
1 / D(\lambda)=0(1)
$$

I.f. Sc,-3

Hence,

$$
\begin{aligned}
\lim _{\lambda \rightarrow \infty} m_{r s}(\lambda) & =\lim _{\lambda \rightarrow \infty} N_{r s}(\lambda) / D(\lambda) \\
& =0(1)
\end{aligned}
$$

Therefore the point at infinity is a regular point.
Thus the theorem is proved.

8. Acknowledgemlent

The paper is writen under the supervision of Dr. N. K. Chakrabarty, Principal, Hooghly Mohsin College, West Bengal, to whom the author acknowledges his grateful thanks. The author is also grateful to the referee for his valuable comments and suggestions which went a long way toxards the improvement of the paper.

References

[1] Bhagat. B. .. A spectral theorern for a pair of second order singular differential equations, Qurort. J. of Moth. (Oxford) (2) $1970,21,487-495$.
[2] Chakrabarty, N.K. .. Some problems in eigenfunction expansions (1), Quart. J. of Math. (Oxford) (2), 1965, 16, 135-150.
[31 Chakrabarthy, N. K. . Sonc pronlems in eigenfunction cxpansions (ILI), Quart. J. of Math. (Oxford) (2) 1968, 397-415.
[4] Conte, S. D. and Sangren.
An asynmptotic solution for a pair of fist order equations, W. C. Proc. Amer. Maht. Soc., 1953, 4, 696-702.
[S] Naimark, M. A. I. Linear Differential Operators, Parts I ard II, Gcorge Q., Harrap and Company, Ltd. 1968.
[6] Titchmarsh, E.C. .. Eigenfitnefion Expansions Associated with Second Order Differentia! Equations, Part I, Ch. V, 1946, pp. 97-117, Oxford.

[^0]: *Present address: Department of Mathematics, J.C.C. College, 30, Prince Anwar Shah Road, Calcutta-33.

