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ABSTRACT

The present paper deals with the problem involving the nuature of the spectrun
of a second order matrix differential equation with « prescribed sct of boundary con-
ditions at an end point. The method used is Titchmarsh's complex rvariable methoc
as initiated in his < Eigenfunction expansion associated with the second order diffe-
rential equations ™.

Key words: Spsctrum, boundary-condition vector. Kronecker delta, L%solution, eigen-
vafue pararceter, principle of veflection, crtite functions.

1. INTRODUCTION

The object of the present paper is (o study the nature of the spectrum
associated with a second-order differential system

LU = U, . m

where

d2
A S

et (8)

and Ais the eigenvalue parameter; p(x) and g (x) are real valued functions
each twice differentiable with respect to the variable x: r(x) is real valued
and continnous in 0<< x< oo0; p(x), ¢(x) and or r(x) tend to infinity
while p” (x), P’ (x), ¢’ (x), ¢" (x) remain finite as x tends to infinity (the
accent denotes differentiation with respect to x).
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A spectral theorem 443
The boundary conditions considered are
[UGx, D, $1](0) = ajy 4 (0) + aj5 4’ (0) + ajy v () + 45,0 ()
=0(j=1,2) )
where
[¢2¢](0) =0, 3

U(x, A) is a solution of (1.1) and ¢; = ¢; (0/x, X) (/= 1, 2) are the ¢ boun-
dary-condition vectors’ at x = 0 (See Chakrabary [2]).

Put
uj (0[0./2) = ajy, 15 (0/0, }) = — dyy
(Jj=1L2 C)]
25 (010/2) = ajpy 0’5 (0/0, ) = — gy
where

) e (J=1,2; k=1, 2,3, 4) are real valued constants, independent
of A

(ii) The set {ay} is linearly independent of the set {a.}.

Let
O (x, ) = {xx O/, X, s O/x, 1)} (k=1,2)

which take real values independent of A at x =0 and satisfy (1) be deter~
mined by

[6,6,] = O, [$i6k] = 8 (/, k=1, 2), ©)
8ji being the Kronecker delia.
Then 0 are entire functions of A and
26 (0/0, X) = (— V¥ e X/ (0/0, ) = (— DFay
Yie (0/0, N) = (— Deas,  ¥&’ (0/0, M) = (— D¥Tay
(when k=1, /=2 and when k=2, [I=1).

As and when necessary we shall use the results of Chakrabarty [2-3],
Bhagat [1].
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444 BAsuDIB RAY PALADHI
2. NOTATIONS AND ABBREVIATIONS
in what follows we wrile
(Y, Z) =y, (2. () + p2 (N 25 ®
for wwo vectors
Y= {p (), ¥} Z =z 1), £ ()
See Chakrabarty [2] and Naimark [5].
Further we represent the vector {&. mi} by (&n)i-
We make use of the following abbreviations in the present paper.
2@ ={A—p O}t — g @)
M (5= — (A 2 ()44 [p" (A — py + " (A — @) +

+ G5 pE A=py= 4 (5/4) ¢ (A — gy * + (U2 p'g 2 ()]

&0 = & (4, =2 (D= M (1) 2 (£) V54 (Am YD 2 A—g (P

() = —r @z ) "*

L = &g r.7)

@)= [ & @)=z () ]

S =6, q ) =12 V2 4+ | M (Hj= ()" |
+ = p (A~ g @ PRV () |

fia () = | r (Dfz (™2

M (@) = | @)z (1) |

N2 (8) = &15 (£)

s () = & (q, p, 1)

_(&@ ()
MO={10 Lo

N (@ ={z(®", (Y

. _{cos £ (x)
“@*ngm,
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We write | A | to represent the matrix whose elements are the moduli

of the elements of the corresponding matrix A.
3. A Basic TRANSFORMATION

The system (1) is equivalent to the system

T O —pPu=r@o

j:;) 4 A~ g v =r{u @,
By means of the transformatioiq
E(x) = i f (A= p O (A — g (W 2alt
(), L0y =i (= p @) (= ¢ (), v () 7
the system (6) is transformed to
G K@) = Y — g @)y =n (0L ®)
Gor H KN = Q= p @) = (92
ie.,
(L — K(x M) Q2=0, ©
where
K@ M =—[1Dp Q—py* Q= +4" A— g Q—p)%
GO —py S (A — gy 4 g A — @ (- Py
- (1/8) g 2 ()]
P ()= —rz®7,
and 2 |
) —IETTTm 7 ()
L, is the operator & »
(%} = e SR U

0 =00 g(zgfg - (Z) = {n, 0.
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The system (8) is of the same form as (6) where the co efficients of n
and [ tend to zero when x tends to infinity. This happens for example,
for a given finite X when

(i) r (x) is bounded and negative for all x but [p |, | ¢ tend lo infinity
as x tends to infinity.

(i) p (%), ¢(x) satisfy the conditions stated in (i) but

r=0{p) or 7 == O(p).

If however X tends to infinity, we can take r = 0{pg), where p, ¢ satisfy the
conditions stated in (i).

Let

P(x) =z (xy" H(x) (10)
where

H(x)={H{x), H: ()
with

) = [0 1]~ iz o ¥

112(x)=§—[ - Cv‘{-l——l (%) MZx’U
Then from (10) and (6)

Px) = M (x) 2(x}. (10
et I={fL I} = f’:(z)usm(g(x) — E(O) P(Ddr (12)

so that

x

n- fonce—cof ot
HEQ—p @) u) —r o () 2 (0 | dr

- f sin (£ (x) — ¢ () Zr [z ()2 (‘Zl] dt 1+
o
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= » [ - r (1 172
+6f sin (£ (x) — £(2)) [f“,\’":'q(i))}%i/'z 7(0)

— i@z a
= Iy + Iy, say.

On integration by parts and subsequeni simplification, we have

Iy = — z Oy Y27’ (0) sin € (x) — # (O cos £(x) + ip (3) +
+ g sin (€ (x) — £(0) z (W2 % (1) d.

Therefore,
I = — 20y "%sin £ (x) ' (0) — i cos £(x) (0) + in (x) +

+ of sin (£(x) — £@)) 2 (2 dr +

+ fsin(eo— e@) [F2EE 1 00

— L@z 2} dt
with a similar result for Z,.

Hence if 4 (1) ={£& (), n (1)), it follows that
n (x) = n{0)cos £(x) — in’ (0) z (@) *sin £ (x) +

+7 fsin(¢00— W) (L (0, Q@)ar (13)
Similarly, ’
L (x) = £ (0)cos £(x) — i L' (®) z(O) ¥ 2sm £ (x) +
L f sin (£() — () (R (1), Q@) dr (14)
where

L) = {"71 ®, L@k
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Hence finally

2(x) = NWO)S() + i f sn(£0) — EW) Ny (1) @) dt

where
_m® =0 zOyY®
Yo=QGo o 00
4. ASSOCIATED LEMMAS
Lemma I

Let the coefficients p(x), ¢(x), r(x) of (1) satisfy
(@) either p(x), g(x) > @ (x), r(x) = 0(1)

or,
() ¢ (), () > Q(x), (%) = 0(p (¥) g ()
where ‘
Q0(x)=28 >0, x=0
() p'(x), ' (x) 20
(i) p’ ) =0[p @) ¢ =0[g)), 0< e 52
(iv) p” () ¢" (x) are ultimately of one sign
W) Y2 ) L [0, oo).
Then

TIN (| | Na(@) | dt is uniformly
o
convergent with respect to A in any region for which

[A—=p@ |, |A— ¢gx) | =8 >0 for 0 x<C 00}
N,, N, being defined as before.

Proof—We have

I Ha® |+ 1@ Wz@ | dr

|
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X x
SPlE@PRd s A= p Oy = g0y

+ ll’(l)Z(l)‘“"‘ldf-F}g [ M)z ()% | de (16)
=Jn -+ Jiz -+ iy + i, say
Now,

X

Jip==01[ [ 1O (r) dr] = 0(1), uniformly in A.
Ay
X

Jip=0[ [ 1/JQ*(¢) dt] = 0(1). uniformly in A
Ko

By condition (i) of the lemma it follows that
Jiz == 0(1), uniformly in A

x X
Jig=O[ [ p"p2q 2 de}+ 0 [ ¢'p~¥2g~*2dl) +
Xo Xy
+OL T pq p 2 d) L 0L | pp ™ g2 di] +

X
FO[J qrgTiptdil.
Xo
=Jy+Jy + I+ Ty + g, s2y

On integration by parts #2d using conditions (iii) of the problem, it follows
that

x
Jl -0 {){ pu p-—si 9 d[]
= 0(1), uniformly in A,

where ;

0« c< 5/2.

Similarly,

Jy=0(l), uniformly in A, where 0« ¢ 512
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By the Schwartz inequality,

X x ,
J, =0[f p2psdt | q® g5 difv®
Xo EN

X x ;
=0[ [ p'petdt | g ¢t drf®
X, Xy
== 0 (1), vniformly in }, where 0< ¢< 4.
Again,

x
Ja=0[ [ p?p™tat
Xy

o 0 [ fp’PC—7l2dt]
ES
= 0(1), uniformly in A, where 0< c<< 5/2.
Similarly.
J; = 0(1), uvniformly in 2, where 0<< ¢<C 5/2,

Therefore,

X
{{ M (2) z(t)¥* dt = 0 (1), uniformly in A,

where 0< c< 5/2.

It follows therefore from (16) that [ [[ & |+ |n, [}/ z | d¢ converge uni-
<
formly with respect to A (real or complex). Similar result holds for
T+ 14z a
The lemma therefore follows.
Lemma II.
If Ind >0, 0< arg A< =, then

exp [i€ (x)]— oo as x — oo, £(x)
being defined in (7).
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Proof—Since p (¢), q(¢) >0,
(1/2) arg A< arg [(A — p (D)21< =f2
(1/2) arg A< arg (A — q ()] < 72
so that
arg A< arg [z (V< =
Again,
w2 4 arg A<T arg [z (V] 302
It follows from the definition of ¢(x) that
Im € (x) >0.

Also, if | A] is bounded as x tends to infinity, then
# @)~ i(pOyEi(g)yra
0

= Of (pg)v* d.
Hence the lemma follows.
5. SoME ORDER RELATIONS
We assume that all the conditions of the lemma I are satisfied,
Let
2, () = {12 (x). L0} = z(x) 2 () exp [i§ ()]
Therefore from (15),
Q,(x) = ) z () [ +exp (— 2i ()] 2O —
— Bz z @2 [1 —exp(— 2i £ ()] 2 (0) +
Dz f—exp(2—iE®— £ 2O X
X Ny (;) Q (1) dt.
Then
|72 Gz () 1< 10 @) | + 120727 O |+ [ ) | 1)

+ 195 () | L (1) ] dt

451



452 BasuDEB RAY PALADHI
for large x. Hence,
[m2 )z () | < (@) |+ [2 OV + 9" (O ] -+ { (€ ks,
(D22 0, x (17
where

(Y, 2)0,x= | (Y, Z)dt

for two vectors
Vo= {y, 32} Z = {zy, 23}
See Chakrabarty [3].
Similarly,
[z ) < [LO] + 2020 O]+ E
(182q} 0, x. 18)

Since the same arguments hold if p, ¢ be interchanged in the differen-
tial system (1), we can, without loss of generality, assume that p(x) > g (x)
in the discussion which follows.

Then
nes ()<< €15 (1)
Therefore,
9200z < {7 @) |+ |29 @ | + ((€nha. (90)ap) O. x
180z () < TE@ [+ |22 0 (0) | 4 {(mfhzy (18D} O, x
Hence,
P2 Gz () |o ] &a ()2 (x) [ Ky + (91, 820 0, & (19)
where
Ky=max[|7(0) |+ |z@ 2y ©0) |, |£(© ]+ 1z(0y2 L (0) ]]
(83> 52) = max {[{(£n)1zy (9)2a)s (5 (18)aa)]
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with

$1 = {01, Caf se={|ma(2) ], | & ()]}, say.
1t follows that

¢yt ea = &1s + M. (20)
From (19),
D1 (/2 G b | 00z () |< &+ e [ 72 ()2 (1) |
ey | LDz ) dt ' (43}
where
en=cy|z()], en=1c |z(8) ]
Making use of the following well known result, viz.,

“If Iy, hy g, g be non-negative functions of x over the interval
0= x=x X and if I, /i, be continuous and g, g, be integrable over this inter-
val then,

h (), ()< Bexp [ [ {81 () + ga ()} ], 0< x< X,

where
(), e (D B+ [ U () g1 (1) + he () g (D] 1,
o
B constant ” Conte and Sangren [4],
it folows from (21) that

Gz b | GGz () < Koexp L] (eu + aw) ]
— Kyexp [ f (e + o) [ 2(2) | drl

Thus
L9 (), jg(x)[<l<1exp[of(cl+c‘z)lZ(t)ldt]lexp(ff(x)ﬂ

=Kiexp [ 2() | | (bt o) |20z (0 [ ] [ exp G ()]
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so that
G 1 LG IS Keoxp U200 | T e+ s0) ]
Jexp GE () |
Since
12+ 1m0 = 0 (H/Q (M),
T (i () s (0 it = 0.1,

Therefore,

G L1 EGa | =00]exp (K p () g () Hexp (€ (enjl.

6. ASYMPTOTIC RELATIONS

We have from (15),

- (1) 2 (O V2 fexp (i€ (0)) — oxp (— i§ ()] 2 0) 4
+ @ j lexp (i (£ () — £ (1))
—exp (— (£~ £ Na (1) 2 (1) dlt

= (&) exp (i€ (D) {[1 + exp (-— 2i¢ ()] 2 (0) — 2 (O)2
[1 — exp (—27 (X)) 27 (0) -+ = (x) exp (K, p () ¢ (%))

[ 2 G exp [— () + K2 p (9 ¢ (0]
CX L= exp (— 206 () — £ ()] N () e}
where
Ny () = {(}, @), (L, D}
Now, by (23)

lexp (— 2 () L — exp (— 20 (£ (x) — £ ()] (1, QY
z(yexp (Kaop (x) q (1) |

o2
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< lexp(— @) [ (h. @ [z [ lexp (Kep (g (D) |
SKUEOT+HIn@ DizE ],
where K; is a constant.
Also, by (23)
[exp (— i€ (D)) [1 — exp (— 20 (€ (x) — £ H)] (o, )
s exp(Bep @ ¢ IS K(In@i+1a@ ) 2@,
where K, is a conslant,

But

TNy () || Np(2) | dt is convergent (uniformly with respect to A)

by lemma I.

Hence,
2(x) — &) z(x) exp [i (x) + Kip (x) g (W] R 4
where
R={Ry R} =lim [oxp(— @) [~ 2 )~ £ @)z
% exp (— Ky p(x) g (x)) Ny (1) di (25)
which is finite.
Let

X (%) = iz (xP % Qp (%, X) (k= 1,2)

Yie () = iz (O i (x5, ) 26)

where
X = {Xies, Xuals Yy = { Yk, Ykaj, say.
Then
X (0) = (— 1)¥ z (0" {a14, o)
X' (0) = (— 1) *1 2 (0)* {awg, ai} + (1[4) [P (0)
(A—p@)*(r—gq ©) + ¢’ (0) (@ — g (O)*
= p O™ (— DF {a, an) Q@D
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(when k =1, /== 2 and when k == 2, [ =1}, with a sumilar expressions for
Vi (0), 1" (0) (k=1,2).
It follows from (26), (27), (22)
Pxre (o, ) o i Co ) [ =011 2O [Jexp (Kap (0) g () | x
x Jexp (i€ () | |z ()4 ]
for all x and Im A >0.

There are similar expressions for wux (x, X), v {x, A). Thus we have
for a fixed A, as x tends to infinity,

Xie (x) ~ () z (x)exp [i€ () + Kpp (%) g (x)] T (x)
Yie (x) ~ (5) z (xyexp [i€ (x) + Kop (x) g (x)] Sk (x)

(k= 1,2) (28)
where
Tt = {Rye> Rat)s Sk == {Sik, Sak}
and Rk, Sie (7, k == 1,2) are independent of A.
7. BAaSIC THEOREM
‘We now establish the following theorem.

Tareorem. If all the conditions of the lemma I are satisfied then the
spectrum of the system (1) with boundary conditions (2)-(3) at the end point
x = 0, is discrete over the whole range (- oo, o0) except possibly at the
point at infinity.

Proof—1Let
d=0Go N+ F e O ()

(T muy + mmuz)
3 & M P11,

. . Xy -+ myy Yy - my, ¥,
o= iz (xy1a (A1 1 Lo 12 m)
Xyp + my ¥ip + My Yoy

so that
dhy ~ (4) {exp i (x) + Kap (%) g ()] z ()% W (M) 29
where

WX = (W, (=), W,(A)}
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with
Wi () = Rig + iy Sy + myy Sjo (0= 1, 2). (30)

Now in the singular case O<{x< oo, for values of A other than
real values, there exists at least two linearly independent solutions of (1),
say xr(x. A} (== 1, 2) such that

2 (%, 2) € L2 [0, o)
(compare Chakrabarty [3]).
In order that i, may be an L2solution of {I) we must have

Wy(A) =0, W,(A) =0,
since (1/2i)exp [i£ (x) + Ky p(x) g {(x)] z (x)?* does not belong to L2[0, o).

Therefore,

1Sy + My Sie = — Ry

My Sqy + My Sap = — Ryy. (31)
Similarty for the solution

bo= 035 )+ £ mar ) e (5 )
it follows that

by ~ (12 exp [i€ (x) + Kap (%) ¢ ()] 2 (Y = V' ()
where

PO = (o ), v (W}
with

Vi (N) = Rjs + may Sz + mae Sjs (=12}
By arguments similar to those given as before we obtain

My Sy + MaS1a = — Ry

(32)

191801 + Mgz Sae = — Ros
Solving (31) for m,;, my, and (32) for my, my We have
Mys (W) = Nps D (V) (15 =12)
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where

= Ryr Soy =~ Rop S if s =1, r=12,
and
D(A) = Sy Saa — Sia Sy
From (23) we have

7 (), £ (%) = 0 [[exp (i (0)) || exp (Kep (x) ¢ (0) []

uniformly with respect to A as A approaches any point in the interval of
the negative real axis. Then &, i, 4. Ry, Sik arc all real there, £(r) being
purely imaginary, Finally, Nps (1), D () are real and continuous. There-
fore it follows that the numerator and denominator of each element of the
matrix (smyj) are real and continuous up to any point on the negative real
axis. Similar arguments hold if X approaches any point in an interval of
the positive veal axis. For, let B be the right hand end point of the interval
under consideration and let A tend to 8. Then the cases p(x), g{x)<< f
or > f lead to the same behaviour of the elements of (myj).

Since the numerator and the denominator of each element of the matrix
(my;) are regular in the upper-half plane, it follows from the principle of
reflection that Nyg (A), D (A) are entire functions of A so that each element
of (my;) is a meromorphic function of A

Therefore, the spectrum of the system (1), (2)—(3) is discrete over the
whole range (— oo, 00) if p(x), g(x)<< B or > .

I Atends to a and ¢ (o)< B< p(a), « being a fixed real number, then
the whole argument can be repeated by changing the interval [0, co) by
[X, o0) (so that p(X), g{X) >B) and the limits 0, x in the expressions
Rite, Sie (G k= 1,2) by X, x.

The spectrum is then discrete over the whole range (— oo, o).

To examine the point at infinity on the real A-axis we note that

Ry lm [0 (&) +m @)zl
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== lim j.() [z dt

=O[ lim f (pgyredr)
= 0(1).
Similarly,
Sie = 0(1)
Again,
£ () 4+ 71 (2) > z (D)2 (X large but fixed)
10 that
(&® + )z = ()2
Therefore,

F(fl )+ Oz @) dr = T(p ¢)? dt = a constant

independent of A. It follows that
Ry = ks Sik == Mk
zie and 7y being positive constantr.

Also,
(1) + & () = z (DY (A large but fixed).

It follow: similerly that N
Ry = Gk, Sox == Hak,

G,k, Hsx being positive comnstants.

Therefore,

/D) =0 ().

LI. S¢.—3
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Hence,
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lm  aipg (A) = Him Npg (N)/D(Y)
A > 00

N > oo

=0

Therefore the point at nfinity is a regular point.

Principal,

Thus the thcorem is proved.

8.
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