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ABSTRACT

in long circular columms  under axial loads, the effect of area of load distri-
bution and Poisson’s ratio has been studied.  The results of the analysis show that
the magnitudes of maxivum  tensile  siresses o, or oy decrease as the load distri-
bution avea e increases and also stresses ave maximum when the Poisson’s ratio is
zero. The resulls wre applied for the anchorage zone of a prestressed concrete
beam or column.
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1. INTRODUCTION

The stress distribution in a long solid circular columm under loads which
are partially distributed over the end surface of the column is a practical
problem often e¢ncountered in practice. Solutions to such problems for
strips have been given by Sundara Raja Iyengar [17]and he has applied this
solution to determine the anchorage zone stresses in prestressed concrete
[2]. Hiltscher and Florin [3, 4] have applied photoelasticity to the strip
problem. However the problem of the cylinder under end loads is a three-
dimensional one.

Treating the column as a long one that is, & semi-infinite cylinder,
Sundara Raja Tyengar [5] has given a solution and in this paper references
to a number of other solutions are given. Recently Hiltscher and Florin
[6] have given solutions to the same problem using dynamic relaxation
method and they have given results for maximum tensile bursting stresses
occurring near the ends. In the present paper, using the solutions derived
in ref. [5], detailed stress distributions are given showing the effect of the
area of the distribution of load and Poisson’s ratio. Some results as applied
to the end block of a prestressed concrete beam are compared with those

available.
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2. SOLUTION

The cylinder with its co-ordinate axes and loading are shown in Fig. 1.
The radius of the cylinder is taken as unity. The loading is on o circular
area of radius e (when e« 1). Since the stresses near the loaded end ate
important, the cylinder can be considered to be long enoueh such thut the
effsct of the other end is not felt near the loaded end.  Henee 0w vonsidered
as a semi-infinite cylinder.

The basic axi-symmetric problem can be formulated in terms of Lowes
function ¢ satisfying the bi-harmonic equation
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The stresses are
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and the radial and axial displacements are
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. where p and G are Poisson’s ratio and shear modulus réspectively

The boundary conditipns considered are:

On r=1, 0, = 7,0 = 0

On z=0, oy =f(), 7pp =0 )
where the given £(r} is self-equilibrating, /...

Froymr =0 ,
| (r) rdr (5)
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as z —» oo, the stresses and displacements vanish. The solution for this basic
problem has been derived in ref. (5). Here only the final expressions are
given.
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where the summation in the serics is tuken over the roots of 4 (A, U
excluding Ky == v, f, (ar) and /; (ar) are the modified Bessed functions of the
first kind and of the zeio and first order respectively.

The constants By, Dyp and the function C () are determined fur the
boundary conditions (4) [Ref. 5].

3. NUMERICAL RESULTS

Numerical results "are obtained for the following problems: A long
cylinder is loaded on the end face by 2 normal load P distributed vver
a radius e (e < 1) as shown in Fig. I. By removing the average
compressive stress ¢ =- 7[:, from the applied loading, rudially <y mmetric
self-equilibrating normal stiess distribution is obtained on the end face and
for this problem, the solution given above is applied. To thiv solution the

stress o = — ¢ must be added 1o obtain the final distribution, in this case,
. 24 ({Kn)
B AT @

It bas been shown in ref. (5) that for 16 terms in the series the conver-
gence is very good. Stresses have been evaluated at different locations for
various areas of load distribution (¢). To determine the effect of Poisson’s
ratio on the stress distribution three values of Poisson's ratio have been
considered p = 0, 0.2, 0-3.
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4. PRESENTATION OF RESULTS

The numerical results are presented to determine
(i) the effect of the area of load distribution () at the end.
(ii) the effect of Poisson’s ratio ().

() Effect of Load Distribution

Figures 2 and 3 give the radial stress non-dimensionalised with respeet
to g, along longitudinal sections » — 0, r - 02 and r == 0-8 for g = 0-2
for values of ¢ ranging from 0.1 to 0-9. The distribution of tangential
stress o, are shown in Fig. 4 for different values of e 12 p = 0-2 along r ==
1-0. Due to synunetry o, -- o along the central axis (i.e., r = 0). The
distribution of axial siress oy along r=: 0, 02 and 1 are shown in Figs. 5
and 6. The shear stress distribution at r ==0-2 and 0-4 are shown in
Fig. 7.
(ii) Effect of Poisson’s Ratio

Figure 8 shows the distiibution of o for the theee different Poisson's
ratios along r == 0 for ¢:=0-2 and 0-5. Distributions of o4, and o, are

shown in Figs. 9 to 12. Variation of radial and axial displacements across
z== 0 are shown in Figs. 13 and 14.

TaABLE [

Variation of magnitude of max. fensile siress (radial) at r = Q

%Differences % Differerces

€ w03 p 02 o 03 ® Z?“(;’e:;:d pbitv&e?;(\d
w03 p= 02
0-1 307219 1-7688 0-9684 73981 52.475
02 [-1360 0- 5715 0- 4501 50- 389 49- 690
0-3 05807 03764 0« 3229 - 304 35130
0-4 03810 0-2952 02635 30-839 22460
0-35 - 2850 0-2328 0-2071 27,587 18- 600
0-6 B2179 01767 0-1570 27.848 18- 900
0-7 0- 1571 0-1274 0-1132 27-943 18-500
0-8 0-1021 0- 0830 0+0746 18- 707 18- 700
0-9 0+ 0503 0-0411 . 0-0371 26- 240 18-2590
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Fio. 1. Co-prdinate axes and the loading system.
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Fic. 2. Distribution of radial stress (u = 0+2},

5. DISCUSSION OF RESULTS

Erom the results presented in the previous figures. the following con-
clusions can be drawn:



36 K. T. SuNpars RaJa [SENGAR AND N, G JAy Axpiagd

& SUUIIU

20 Ws ) T

10

Fic, 3. Distribution of radial stress (u= 02},

(i) Along the central axis, the magnitudes of the muximum tenmikc
stress o or oy decrease as the load distribution area increuses.

This is true for all the horizontal sections where the tensile region is
away from the end face. As can be seen from Fig. 3 neur the curved boun.

dary there are two regions where the tensile stresses can cecur Jepending
on the value of .

(i) Maximum tensile siress og also decreases with incruising value of
e on all horizontal sections.

(ii) Longitudinal stress o, becomes uniform at a distance of shout
twice the radius of the cylinder and on the curved edge 5 -

<1, the strewses
are tensile in nature for all values of « (Fig. 6.

(iv) The maximum shear stress value decreases with increase in value
of ¢ along r =0 and r =10-4,
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Frc. 4. Distribution of hoop suess o (@ = 0-2).

(V) From a consideration of all the stress components in a long cylinder
with concentric louding on the end fuce, the St. Venant's zone is limited to
a length equal to the diameter of the cylinder.

(vi) Since this problem is a three-dimensional one Poisson’s ratio will
have an effect on the stress distribution.  This can be clearly seen in  Figurs
8 to 14. The maximum tensile transverse stresses op and oy decrease asp
increases from U to 0-3 except for o, near the boundary where the trend is
otherwise. (Fig. 10). The value of the longitudinal stress o, (Fig. 11) decreases
as p increases. On the boundary 7 = 1, the maximum tensile stress oy is
higher for higher value of . Along the louded end (2= 0), the radial
displacement is higher for x - - 0 and it decreases as u increases.

Tables 1 and Il indicate the percentage difference in magnitude of max;..
mum tensile stresses op and o, for different load distribution areas (<) fo,
Poisson’s ratios g == 0 and p = 0-2. and « == 0 and 0-3. It can be geen
that the magnitudes of the tensile (max.) stresses are greater at u = 0 than
at p = 0-2. The percentage difference is maximum for ¢ = 0-1 (for both
radial and tangential stresses_) and decreases as load distribution area increases
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Flcj. 5. Distribution of axial stress (u =« 022},
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Fie. 7, Distribution of shear stress ¥ (g = 0°2).

(for radial stress). There is no significant difference in % difference of the
stresses for € == 0-5 to 0-9. For both the stresses, the maximum difference
is at ¢ =~ 0-1 and minimum at e = 0-9. Since the magnitude of the tensile
stresses ar¢ greater at p = 0. for all practical purposes p can be assumed
as zero.

6. APPLICATION OF THE SOLUTION

The solution derived in the foregoing problem. can be applied to the
problem of long circular concrete columns under axial loads applied over
a part of the end face and also to determine the stress distribution in the
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ol €205
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¥ra. 8. Variation ol radial stress ¢, with Poisson’s ratio (r = 0).

anchorage zone of the post-tensioned prestressed concrete beam or column.
Since concrete is weak in tension, to reinforce it properly the positions of
maximum tensile stresses and the tensile zones are to be determined, Figes.
15 and 16 show the magnitudes of maximum tensile (radial and hoap) stresses,
positions of maximum tensile stress, and zero stress for w = 0, 0-2 and 0-3
at ¥ =0 (for radial stress) and r == 0-2 (for hoop stress).

The above results may be used in determining the anchorage zone siresses
in a prestressed concrete beam.

The three-dimensional problems of stress distribution in the anchorage
gone of the post-tensioned pre-stressed goncrete beam have been solved in
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L / €05
(b)
F16. 9. Variation of hoop stress oy with Poisson's ratio (r == 0+2),

ref. [7, 8]. The elasticity solution presented in this paper for the semi~
infinite cylinder satisfies all the boundary conditions and hence the results
can be made use of to obfain the stresses in the anchorage zone and for
comparison with other theories [2, 7, 81.

7. DISCUSSION OF THE RESULTS

Figures' 15 and 16 indicate that the position of the maximum (radial and
hoop) tensile stress and the position of zero stress (radial) shift towards the
loading end as load distribution area «is decreased. The magnitude of the
maximum tensile (radial and hoop) stress increases as the Poisson’s ratio
increases. The position of the maximum tensile stress (radial and hoop)
and the position of zero stress (radial) shift towards the loading end as
Poisson’s ratio decreases. There is not much variation in the position of
zero stress for hoop (tensile) stress for change of ¢ and p.
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Fra, 10. Variation of hoop siress op with Poisson's ratio (r = 1-0).

Figare 17 shows the contowrs of the tranverse stress obtained for the
semij-infinite cylinder for the value of ¢ = 0-2. Such contowrs for other
two and three-dimensional problems havebeen given in ref. {7], Figure 18
shows the magnitude of the maximum tensilestresses for different loading areas
for the semi-infinite cylinder and the two other problems shown in Fig. 19.
It can be observed that in this solution both the radial and tengentiul stresses
can be thought of as transverse stresses.  Henee it can by seen from Fig. 17
that spalling zone exists if radial stress is considered as the one corresponding
to oy of the three-dimensional rectangular prism. Similar resufty exivt even
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€=05
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Fie. bl Varialion of axial stress o, with Poissen’s ratio (r = 0).

in the problem of a hollow cylinder {7]. From the foregoing discussion
the following conclusions can be drawn:

(1) The magnitude of the maximum (ransverse tensile stiess s less
than the three-dimensional prism solution, when the ratio of the loading
area to the cross-sectional area () is less than 0-4 and beyond 0-4, both
the results agree with cuch other (Fig, 18 o).

(2) For e* >0-2, the two-dimensional resnlie give higher value for
the maximum tensile stress than that of the prism or present solution (Fig.
18 @)



44

~0-8
1.0

-0.2
-0.4
-0-6
-08

-10

Fr6i,12, Variation of oxial stress a,

K. T. SunpARA RAR

IvPRGAR AND N, €50 Jav sttt

o E G
Z
Pl Psx(}
i $ 5
e O
& i
(o) r
g ot .
; |
% T
S .8
- T
.

with Poisson's ratio {r = 1oy,




Stress Distributivn in a Long Cylinder 45

-0,4-0,6-0,8-1;0-12 -1;4

iy

PEY
s P02
e P O3

€:06 €08

F1c. 13, Variation of radial displacenient « with Poisson’s ratio across the cross section
at Z = 0.
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Fie. 14, Variation of axial displaczment w with Poisson’s ratio along the radius at Z =0
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e =00
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e =02
5 0-6 (1) magnitude of max tensile stress.
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(2) position of max tensile stress:
o (3) position of zero stress.
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Fig. 15. Variation of radial stress with Poisson’s ratio (v == 0},

If ¢ is assumed to correspond to B (Fig. 19), the magnitude of the maxi-
mum tensile stress in the axisymmetric problem is greater than that obtained
by the three-dimensional solution (Fig. 18 5), For e >0-3, the results of
the present solution agree with those of the two-dimensional solution.
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Fia. 16, Variation of hoop stress with Poisson’s ratjo (v 0-2).
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Fia. 17. Transverse stress contours in the anchorage zone (semi-infinite cylinder).
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Fic. 19. Loading system for the rectangular prism,
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