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Abstract

Aim of this paper ?s to study the flow of a viscous liquid through a porous annular region between two
slowly rotatu:.lg cylinders, employing a generalized Darcy’s law proposed by Brinkman. Expressions
for the velocity, moment and drag acting on the cylinders are given.

. As special cases (i) Poiseulle flow, (ii) Couette flow and (iii) Flow between two paralle] piates are
erived.
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1. Introduction

Flows through porous media have important applications in hydrology, petroleum
Industry and in agriculiural engineering, etc.

Flows of different fluids through various types of porous media are studied ?mploying
the classical Darcy’s law, which states that the seepage velocity of the fluid 1s propor-
tional to the pressure gradient. This law fails to explain the phenomel}a occurring in
highly porous media such as fibreglass. The viscous stress at the sgrface is able to pen;-
trate into the medium and produces flow near the surface even In tt}e absence of ;h e
Pressure gradient. Brinkman® generalized the Darcy law taking into account the

effect of viscous stress.

se of highly porous media. Tam?® der_ived
nold’s number past a swarm of particles
bodies using the generalized law.

Brinkman’s law gave good results in the ca
the law analytically to study flow at low Rey
Yamamoto® 4 investigated flow past porous

ion in between twO
In this paper, the flow of a viscous liquid throughap oletSOiz:ill‘i’: ﬂl:w (ii) Couette
rotating cylinders is examined. Also some special cases (i) ’

flow, and (jii) Flow between parallel plates are derived.

. ained.
Momentum and drag acting on each cylinder are obtal
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2. Formulation and solution of the problem

Thne cylindrical co-ordinate system (r,8,2) i§ chosen S}lch that z-axis lies along the
length of common axis of the cylinders, r in the radial direction. All the phyg,

quantities are independent of 0 due to the axial symmetry.

Let the two cylinders of radii @ and b rotate slowly with angular velocities Q, and
Q, respectively. A porous region is contained between the cylinders and we take

a<r<b>\.

The equation of motion of a viscous liquid through a porous medium as proposed by
Brinkman is

->

-
O=—vp—zV +VV (2.1)
together with the equation of continuity
ﬁ
divy =0 (2.2)

-
Here p, i/ stand for pressure and velocity fields and g, & stand for coefficient of viscosity
of the fluid and the permeability constant of the medium respectively.

—
The choice of the velocity 7 {o, v (r), w(r)} satisfies the equation of continuity and
the pressure

p=c—Gz+ o_[r r= [v(r)) dr (2.3)

i$ taken to balance the centrifugal force generated by the velocity component v{f)
where

a constant and ¢ is constant of integration.

Equation (2.1) gives
d*v dv

=+ r-1 g = P+ kNHv=0 (2.9
d2w d
g2 Fr ) —kdw=—Glu 2.9

These equations are to be solved using the boundary conditions:

w(r):o, “D(r)=aQaatr=a .
w(r) =o0, v(r) = bQ, at r=b} (2'6)
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Equations (2.4) to (2.6) give
v(r)=1[aQ, T,(r,0) = bQ, T, (r,a)] X [T} (a, b)]~ 2.7)
! w(r) = ka* [T, (r, &) — T (r,a) — T, (a, b)} X [T, (a, b)] . (2.8)
with
T i (x, ¥) = I; (x[K"?) K (p[kM?)  — L, (p/k?) K, (x/kV?%) i=0, 1 2.9)
a* = — G/
:and I,, K, are modified Bessel functions.
A. When the permeability of the medium is very small
j.e., when k is very small, 1/k is very large.
Therefore
Ti(x,3) =} (k/xy)2 [exp {(x — y)/k"2} — exp {— (x — »)/k¥2}) (2.10)
and we get

v(r)=r2(@2Q, exp {— (r —a)/k¥?} + b¥2 Q, exp {— (b — n)[kV}) (2.11)
w(r) = ka* (r12 [a'2exp { — (r — a)[K2} — BU2exp {— (b — JkNZ}] — 1)

(2.12)
We observe that
Op=r— a, 0,=b —r becomes very large
v(r)=0 (2.13)
w(r) = — ka* = a constant (2.14)

Equations (2.13) and (2.14) show that as the distance from the axis to _the wall
increases, the velocity w (r) —a constant. The classical Darcy effect 1s felt in a core
very near to the axis of the cylinders. v (r) = 0 shows that there exists a thin la}{cr
between the cylinders far away from the boundaries of the cylinders, where the velocity

v(r) is zero.

Moment acting on the cylinder r =a
. (b/a)m exp {(a - b)/km} [k—-m - 3b/a])

M, = — 2na? (Q, [3/2 + a* k=) D
Moment acting on the cylinder r = b
: o VN [(32) (afb) + KM — Q,
M, = — 27b% ((ajby® Q, exp {— (b — DK} /2) .

[ k-2 — 3/2])
L1.Sc.—7
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Drag on the cylinder r=a
D, = 2nu ka* (ak™* + }) [(bla)'t exp {— (b — a)}k*2} — 1] @)

Drag on the cylinder r =105
D, =2mp ka* (k™% + ) [I —(a/b)'* exp {— (b — a)/k1"*}] (2.18)

1
B. When the permeability k — oo, & 0.

Then
— & Q,— Q) ...
o ()= BB ER) oy G ey
w(r) = g‘ [@® — r? + (b® — a®) log (r/a)/log (b/a)] (2.19)

are the same as those obtained in the case of flow through two rotating cylinders
without porous region.

3. Special cases

(1) Poiseulle flow when Q, = Q, = 0, we get from equations (2.11) and (2.12)
v(r)=20 | (3.1
w(r)=ka*(r12[a"2exp {— (r — a)'/k”?} —biexp {— (b — k"] —1) (3.2
(11) Couette flow
.~ We take the pressure gradient to be absent, then G=0 from (2.11) and (2.12)
w{r)=0
- (r) =yl [g32Q exp {— (r — a)[k'?} + b2 Q, exp {— (b — r) kM%) 3-3)
(a) When the cylinders rotate with same angitlar velocities
lie,, 2 = £, =)
v(r) =r?* Qa2 exp {—(r — Q)[kM2} + 5% exp {— (b — D] G4
(b) FI;IW in a rotating cylinder

i.e., a~ 0, Q -0

v (r) = Q,b% exp {— (b — P12} (3.9)

ﬂEq.uat'ions (3.4) and (3.5) show that unlike in the case of the usual flow of a Newtonia?
uid in a rotating cylinder, the motion is not rigid one,
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(iii) Flow between parallel plates
? |

Flow through the porous region bounded b
be derived by taking a ~ b = 24, as the djs
to the cartesian co-ordinate system (x, y,

Y two infinite parallel plates y = + k cap
tance between the two plates with respect
z). The velocity components are given by

v(r)=20
(3.6)
w(r) = ka* [Ty(r,b) — T, (r,a) — T, (@, )] [T, (a, b)]-! &
_ ka*[ 1 4 bY? sinh (r — @) + a'? sinh (r — b)
r'2 sinh (@ — b) ] (3.8)
Let
r=b+h+ y.
we get
. o B A cosh (y) k2 7~
. w() = ka [ L+ —= T (3.9)
(@) When the permeability constant, k, is very small
then 1/k is very large and we have
w(y) = ka* [—1 + exp {— (h —)/k"*}] (3.10)
(b) When the permeability constant, k, is very large
then 1/k is very small and we get |
e [¥ 3.11)
2 &
The effect of the porous region is thus to reduce the velocity by (2 + h%/k)
If
k— oo, 1lk—=o0
then
(3.12)

) a*‘ h2 2

which is same as in the case of flow bet
region.

ween the infinite parallel plates without porous
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r, 0,z
Qﬂﬁ Qb
P

->

vV
{o, v(r), w(n)}
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NOMENCLATURE

Cylindrical co-ordinate system

Angular velocities of cylinders of radii a, b

Pressure field

Velocity of field
Velocity components in r, 8, z directions

Coefficient of viscosity of the fluid
Permeability constant of the medium

grad

0% 10 02 102
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Constants

Modified Bessel functions

Distance between two plates.

Applied Science Research, 1947, A1 27-34,
J. Fluid Mech., 1969, 38,

Ji. Physical Society of Japan, 1971, 31, 1572.

JI. Physical Society of Japan, 1973, 34, 814



