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Abstract 

Aim of this paper is to study the flow of a viscous liquid through a porous annular region between two 
slowly rotating cylinders, employing a generalized Darcy's law proposed by Brinkman. Expressions 
for the velocity, moment and drag acting on the cylinders are given. 

As special cases (i) Poiseulle flow, (ii) Couette flow and (iii) Flow between two parallel plates are 
derived. 
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1. Introduction 

Flows through porous media have important applications in hydrology, petroleum 
industry and in agricultural engineering, etc. 

Flows of different fluids through various types of porous media are studied employing 
the classical Darcy's law, which states that the seepage velocity of the fluid is propore 
tonal to the pressure gradient. This law fails to explain the phenomena occurring in 
highly porous media such as fibreglass. The viscous stress at the surface is able to pene- 
trate into the medium and produces flow near the surface even in the absence of the 
pressure gradient. Brinkman' generalized the Darcy law taking into account the 

effect of viscous stress. 

Brinkman's law gave good results in the case of highly porous media. Tam
2  derived 

the law analytically to study flow at 
low Reynold's number past a swarm of particles y 

 

aniamoto 3 9 4  investigated flow past porous bodies using the generalized law. 

In this paper, the  flow of a viscous 
liquid through a porous region in between two 

rotating cylinders is examined. Also some special cases 0) Poiseulle flow, (ii) Couette 

flow, and (iii) Flow between parallel plates are derived. 

Momentum and drag acting on each cylinder are obtained. 
37 

1.I.Sc.-6 



38 	v. NARASINEHACHARYULU AND N. Ch. PATTABHI RAMACHARYULU 

2. Formulation and solution of the problem 

The cylindrical co-ordinate system (r, A, z) is chosen such that z-axis lies along the  
length of common axis of the cylinders, r In the radial direction. All the physical 

quantities are independent of 0 due to the axial symmetry. 

Let the two cylinders of radii a and b rotate slowly with angular velocities Q. wit! 
1.4 respectively. A porous region is contained between the cylinders and We t ake  
a < r < b. 

The equation of motion of a viscous liquid through a porous medium as proposed by 
Brinkman is 

P (2.1) 

together with the equation of continuity 

div v = 0 	 (2.2) 
-+ 

Here p, V stand for pressure and velocity fields and p, k stand for coefficient of viscosity 
of the fluid and the permeability constant of the medium respectively. 

The choice of the velocity v {o, v (r), w (r)} satisfies the equation of continuity and 
the pressure 

p = 	Gz 	J r'[v (r)] 2  dr 
0 

is taken to balance the centrifugal force 
where 

(2.3) 

generated by the velocity component ta ,  (1) 

• - 5P-G az 	' 

• 

a constant and c is constant of integration. 

Equation (2.1) gives 

d'v as 	-1, dv 
dr2 	' r 	dr 
d2wdw _i_ 	_.1  
dr2 m r 	di 

- (r2  k v = 0 

- k w —G /p 

(2.4) 

(2.5) 

These equations are to be solved using the boundary conditions: 

r = at 
w (r) =--- o, v (r) b nb at r = b 

(2. 6) 
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Equations (2.4) to (2.6) give 

v (r) = [a Q. 	(r, b) b ObTi (r, c)1 x [Tx (a, OP 	 (2.7) 
w (r) = ka* [T o  (r, b) 	(r, a) — T 0  (a, b)] x [T o  (a, b)]-4. 	 (2.8) 

with 

T 4 (x, y) 	1. (x102) K, (y /k" 2) 	1,(y10 2) K 4 (xIk 1 ' 2) i 0, 1 	(2.9) 
a* = Gip 

and I, Ki  are modified Bessel functions. 

A. When the permeability of the medium is very small 

i.e., when k is very small, lik is very large. 

Therefore 

T (x, y) =4 (lc/xi/)" 2  [exp {(x y)/k" 2} exp {— (x y)10 2}] 	(2.10) 

and we get 

v (r) r -112  (a3)2  Q4  exp {— (r — a)110 2} 	1,312  tz, exp {— (b — r)1k 112}) (2.11) 

w (r) ka* (r -112  (an exp 	(r a)110. 12} — 1)112  exp {— (b — r)110 12}] 1) 
(2.12) 

We observe that 

1 — r —a, 6 2  = b r becomes very large 

v (r) =-- 0 	 (2.13) 

(2.14) w (r) = ka* = a constant 

!oscillations (2.13) and (2.14) show that as the distance from the axis to the wall 
increases, the velocity w (r) -,a constant. The classical Darcy effect is felt in a core 

very near to the axis of the cylinders. v (r) = 0 shows that there exists a thin layer 
between the cylinders far away from the boundaries of the cylinders, where the velocity 
v(r) is zero. 

Moment acting on the cylinder r r- a 

Mo = — 2 Ra2  (Q. [3/2 + a2  k --142) (b/a)" 2  exp {(a 	b)lkii 2} (k -v 2 	3b/a]) 
(2.15) 

Moment acting on the cylinder r = b 

Mb = — 2 irb2  ((alb)V 2  Lz exp {— (b 010 2} [(3/2) (alb) k -11 — 

[b2  k -112  — 3/2]) 
(2.16) 
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• 

Drag on the cylinder r = a 

D = 2 nil ka* (a/c 112  4. 	Rblar exp {— (b a)jklI 2) — 1] 

Drag on the cylinder r b 

Db = 2 ir p ka* (bk -' 12  + 	[1 — (a/b)" 2  exp {— (b — a)/k" 2}] 

1 
B. When the permeability k -4 oo, -4 0. 

(2.17) 

(2.18) 

Then 

(Li2 % 	a2  no) 	Ma — oh) 
b2  — a2 	

r + 	a2b2  r -1  

w (r) = zip  [a2  r2  + (b2  — a2) log (r/a)flog (Net)] 
(2.19) 

are the same as those obtained in the case of flow through two rotating cylinders 
without porous region. 

3. Special cases 

(1) Poiseulle flow when 0. = C/b  = 0, we get from equations (2.1 1) and 	(2.12) 

v (r):= 0 	 (3.1) 

w (r)= ka* (r- 112 [02 exp 	(r a)/k"2} mi2 exp j— 	r)10 21] —1) (3.2) 

(ii) Couette flow 

,• We take the pressure gradient to be absent, then Gr.-A) from (2.11) and (2.12) 

w(r) = 0 

61) 	C1/2  [a3t2  Q„ exp {— (r a)/k" 2} 	b312  Ob exp {— (b 	r)/k" 2}1 0. 3) 

(a) When the cylinders rotate with same angular velocities 

v(r) --- 	42  Q (C1312  eXp 	(r a)110 2) 	b" exp {— (b 	r)jk12}1 	(3.4) 

(b) Flow in a rotating cylinder 

i.e., a -4 0, 0. 

v (r)= r" 2 	b312  exp {— (b 	r)110 72) 	 (3.5) 

Equations (3.4) and (3.5) show that unlike in the case of the usual flow of a Newtonian 
fluid in a rotating cylinder, the motion is not rigid one. 
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(ill) Flow between parallel plates 

Flow through the porous region bounded by two infinite parallel plates y= ± It can 
be derived by taking a 	= 2h, as the distance between the two plates with respect 
to the cartesian co-ordinate system cr, y, z). The velocity components are given by 

v (r) = 0 
(3.6) 

w (r) = ka* [T o  (r, b) 	To  (r, a) — To  (a, b)] [T o  (a, b)]-' 	 (3.7) 
,  

= ka*[ 	
, 	sixth (r — a)  +  a" sixth (r b)  

r112  sinh (a 	b) 	 (3.8) 

Let 

r = b + h + y. 

we get 

.cosh  (y) k 	a  
W 07) = ka* [ 

cosh (hilcu2).1 	 (3.9) 

(a) When the permeability constant, k, is very small 

then Ific is very large and we have 

w (y) = ka* (-1 exp {— (h Alk 112}1 	 (3.10) 

(b) When the permeability constant, k, is very large 

then 1fic is very small and we get 

w 07)  = a* h2h2 [ 15 	1 ] 	 (3.11) 

2+ - k 

The effect of the porous region is thus to reduce the velocity by (2 ÷ /eft) 
If 

k 00, 1 fic -+ o 

then 

a* h2 r y2 	1 
w(Y)  = r 1 172 I  

(3.12) 

which is same as in the case of flow between the infinite parallel plates without porous 
region. 
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NOMENCLATURE 

r, 0, z 	 ... Cylindrical co-ordinate system 

Oa, Ob 	 ... Angular velocities of cylinders of radii a, b 

... Pressure field 

... Velocity of field 

fo, v (r), w (r)} 	Velocity components in r, 0, z directions 

... Coefficient of viscosity of the fluid 

... Permeability constant of the medium 

grad 

02 	1 	492 	182 
V2 	

• • • ar2  F.& 	az2+  r2002  

G, c 	 ... Constants 

ki 	 ... Modified Bessel functions 

211 	 ... Distance between two plates. 
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