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Abstract

The paper describes the use of integer arithmetic on a method of transforming a matrix {o a Smith
Normal Form and hence computing a generalized inverse that gives all the integral solutions to linesr
equations.
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1. Introduction

Hurt and Waid* propose a generalized inverse which gives all the integral solu-
tions to linear equations. An exact computational approach for computing such a
generalized inverse based on modular arithmetic 1s suggested by Adegbeyent and Krishna-
murthy? for integral solutions of linear equations. This is costly from computing
power and programming points of view in a general purpose computing system. Also,
choice of n primes and combining the resulting # outputs (in the last stage) using the

Chinese Remainder Theorem are added problems.

We present here the method due to Marcus and Minc,® and Hurt and Waid,?
mention the main results and then describe the use of integer arithmetic to obtain
any integral solution (exact) economically. [llustrative numerical examples are given.

2. Definitions

(1) Integral vector and integral matrix
© Let
(@) K = the ring of integers 0, + I, £ 2,...;

(b) K™ = the m dimensional vector spacc over K,

(¢) K™ = the m X n matrices OVer K, and

(d) K™n = the m X n matrices with rank r over K.

3 mxn o an integral matrix
, : Any clement of K 18 ¢
Any element of K™ is an integral veclor. J f rank r

i . ; 1IX O
and any clement of K™ is an intcgral matrnx 111
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(ii) Unimodular matrix

‘ ' o - -1 1 mxm : ;
Any nonsingular matrix PeK whose inverse P~ 1s alsoin K 1S 2 unimogyj,,
matrix.

(iii) Elementary row and column operations

A sequence of elementary row and column operations used here consists of
(a) Type | : interchanging two rows (columns), and

(b) Type 2 : subtracting an integral multiple of one row (column) from another
row (column).

(iv) Eguivalent matrices

Two matrices 4, S € K™" are equivalent over K if there exist two unimodular matrices
Pe K™™ and Qe K™" such that =3

PAQ = S. o
(v) Smith Normal Form
A matrix S = (s;) € K" is the Smith Normal Form (SNF) if
(@) sx% 0, i=1(1)r
(b) sy = 0 otherwise, and
(¢) sq divides Si4q, 441, I=1()r —1.
(vi) Generalized Inverse of Smith Normal Form
The generalized inverse (g-inverse) of SNF S is the matrix S+ = (s})e K™ if
(@) sii=s3, i=1()r and
(b) s§ = 0 otherwise.
(vi1) Integer arithmetic

Let +, —, ., /be integer add, subtract, multiply and divide operations respectively.
Let a, be K.

Then
Add : a+b=cek
Subtract : a—b=dek
Multiply : a.b=¢eekK

Divide : alb= fe K(b# 0)
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provided

@ (c+d)j2=aand (¢c—d)/2=> (for add and subtract operations)

® c¢/la=b(ar0) and e/b=a(bs# 0) and
. 3 : e=0 whenever a= 0 _
both are zero ; e is negative When a or b negative (for multipl}’ngff'«’.'l-:a:t'0 (;r
ion).

o |a|=|b].|f];
For |a|> |b]|, fis negative when a or & is negative, otherwise f is positive :
For 0<|a| < ]|b|, f=0; ’
r=|a|—[b].|f|lek;
0<r < |b&| (for divide operation).

Note: If r=20 then b divides a.

Examples : a=—5€kK, b=2€K
a+b=—54+2=—3=cek
a—b=—-5—-2=—7=dekK
a.b=—5.2=—10=e€ckK
alb= —52=—2=fek

since
(=3 +(=7)2=—-5=a, (=3 —(—7N)2=2=0b.
—10/(—=5)=2=b, —10/2=—5=4, la|=5>2.2=4,

f=2 is negative as g is negative.

r=5—-22=1€K, 0<r<2.

3. The method
Let Ae KP*",

(s,) € K" ¢

) of the elements of A.

Step 1 : Computation of SNF 5 =

(i) Find the greatest common divisOr (GCD
e | and/or Type 2 operations.

(ii) Bring it to the position (1, 1) bY using Typ
t column and first row using Type 2

(ii1) Make zeros of all other elements in the firs
operations.

Note © The matrix C = (¢y) SO obtained is that

(@) Ce K™ is equivalent Over K to 4,
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(b) ¢,, divides ¢ (i>1.J> 1}, and
(€) iy = €y = 0 (i > 1, > 1)

(iv) Setting §,, = Cu Tepeat the algorithm for the (m —1) X (7 —1) mayjy (e,)
@>1j>1.

(v) Repeat the algorilh‘m thus r.ti'mcs and stop when the bottom right (i — 1t %
(n — r) submatrix s zcro giving the SNF.

Srep 2 : Computation of A~

(i) Computc the unimodular matrix P (Q) defined in Sec. 2 (iv), Which is the progy
of all th: elem:ntary row (roluma) matrices, in the right order. Thus P49 =g

(i) Compute A~ = QS P.
Note : A- satisfies A4- A~ A, A~ AA-— A-, AA— e K™, A~ Ae K**,

Step 3 : Computing a solution vector
(i) If AA-b+# b then Ax = b is invonsistent, i.e., it has no solution.

(ii) If AA-b = b but x = A~ b is not integral then Ax = b has no integral solution
(it has nonintegral rational solutions though).

(iii) If AA-b=5 and x = A~ b is integral then compute any integral solution.
x=A"b+y—A-Ay

by assigning a value to ye K™" which is arbitrary.

4. Main results

The method follows from th: theorem and corollaries below. The theorem states that
any integral matrix is equivalent over K to a diagonal integral matrix.

Theorem

Let A€ K7™". Then A is equivalent over K to SNF Se K™",  Fora constructive
proof see Marcus and Minc.?

Corollary 1 : Let P and Q bz unimodular matrices and PAQ — S be the SNF of

A€ K™ Also, let 4-~ QS+P. Then AA-A=A, A-AA-=A-, A~ AeK”
AA—e K™™

_ Proof i PAQ =S5 =SS S PAQS' PAQ — PAA- AQ. Hence A=AA"4

A~ AA~ is proved similarly. Since A-AQ - OS* PAQ QS*+ S and PAA~= PAQS
P=SS"P, the integrality of A- 4 and A4~ follows.

Corollary 2: (Hurt and Waid!) Lef 4e K™ be K=,
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solution if and onlyif 4A-5,
x=5is

Let Ax = b be consistent. Then Ax - b hay ap mtegral
is integral, in which case the general integral solution of A

x-":A-b +_1'-"A_AJ:

where y e K" 1s arbitrary.

8§ Use of intcger arithmetic

Let Ax —= b where A€ K%' be K™. The foregoing method (Sec. 3) involves (i) finding
the GCD, (ii) transforming 4 to SNF S. and computing P and Q where PAQ = S,
(iii) obtaming 4 ~ = Q5° P, (iv) checkingif 44~ b = b, and (v) computing x = A~ b +-
y — A~ Ay, ye K"

(1) To find the GCD of the elements of A

(a) obtain the smallest element in modulus,

(b) 1l it does not divide any one element of 4 then compute the remainder r, ;

divide the smallest element by r,. If it divides then ry is the GCD, otherwise
divide r; by the remainder r, and repeat the process.

(¢) If the smallest magnitude element divides all the elements of 4 then the
modulus of 1t is the GCD.

(1) To transform A4 to SNF and compute P and QO we evidently need only integer
arithmetic.

jiii) To obtain A~ = QS* P,

r
(@) Compute o« = 7 5y,
i=1

(b) compute (i, j)th element of oA~ =
i‘q{hpl:i T Su, i=1)r, j=1()r
k=1 f=1

15k
A-e K™ has zero for the other elements.

(iv) Compute Axd-b. If it is equal to ab then solution t_exists. Otherwise the
system has no solution (either non-integral rational or integral).

() If Axd-b — ab then compute aA—b. If a divides all the clements of ad~b,
then integral solution exists. Then obtamn

x = (0A-bJe) + y — A~ Ay for any ye€K ”

6. Present algorithm versus finite-field algorithms

i ' ' ost always advo-
Finite-field computational techniques using residue arithmetic are alm ay

: ; 2s0NS
cated for exact computation for the following reason

(1) the parallelism in computation, and
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(ii) the disadvantage of integer arithmetic which demands very long precision Operang
and hance makes computation siow.

As to (i), if we use n7 primes then the problem is solved # times independently, A myg

processing system or many independent (monoprocessing) systems are needed to Use the
parallelism. The processing power, however, 1s actually not saved.

As to (ii), the present algorithm finds the GCD of the elements of 4 to Computs

the SNFS. In many problems, it avoids very long precision operands and thyg is not
that slow. Precisely, the integer arithmetic is inherent to this algorithm The
modular arithmetic nesd to be used only when the integer arithmetic fajls

The efficiency of the present algorithm compared to the algorithms based op residue
arithmetic varies to some extent with the entry (element) size and the problem g
Assume that the computer used is a general purpose one, and the number () of prime
bases used is reasonable. Then the present algorithm is nearly (n) times faster,

7. Numerical examples

5 3 7
(i) A= [2 4 3]
7 7 10

The GCD of the elements of 4 is 1. To bring it to the position (I, 1) subtract
2 times the second row from the first :

1 -2 0 R I
PA=10 1 0} A={2 4 3
0 0 1 7 7 10

To reduce the first column elements below diagonal zero premultiply P4 by Ps:

1 0 0 1 -5
PPA=|-2 1 o] Ppa=|0 14 1
-7 0 0 42 3

To reduce the first row elements above diagonal zero postmultiply P.P4 by Oi'

1 5 —1 l 0 0
P,P\AQ, = P,P,A]| 0 ] 0 = 0 14 |
0 0 1 0 42 3

The GCD of the elements of the trailing 2 X 2 submatrix is 1 which is itself an cle-

ment. To bring it to position (2, 2) interchange second and third columns, i.€., P
multiply P2P1AQ1 by 0, :

1 o0 0 1 0 0
PP AQQ,=P,P A0, }0 o0 1} =lo | 14
0 1 0 0 3 42
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To reduce the second column element below diagonal zero premultiply P,P,40,0,

| 0 0 ] 0 0
PP,PLAQQy = | 0 1 0 PyPiAQ,0, =10 1 14
0 —3 ] 0 0 0

by P,:

To reduce the second row element above diagonal zero postmultiply P3P,P,AQ,0,by Q,:

1 0 0 | 0 0
P,P,P,AQ. 0.0y = P3PPAQ,Q, [0 l "“14] = I:O I 0]=S(SNF)
0 0 1 0 0 0
1 -2 0 1 -1 19
P=P3P2P1=[_2 S 0]3 Q=Q1Q2Q3=[O 0 1],PAQ=S.
-1 -] 1 0 1 —14_

] 0 0 3 -7 0
St ={0 1 0], A =0S"P=| O 0 0
o 0 © —2 5 0
If 5, = (15 9 24)* then A4~ b, = b,. Hence a solution exists. If y =0 (null column

vector), then x =A~-b, =(—18 0 15)°. If y=(191 —14)), then x= (1 1 1)
If b, =(20 2 25)!, then A4~ b,# b,. Hence no solution exists, ie., the system is

inconsistent.

—1 2 3 3
i) A= 2 5 6 3
5 -8 =9 =3

The GCD of the elements of A is 1. To bring it to position (l.1), subtract — 1 time
the second row from the first:

1 1 0 | 7 9 6
PAa=|0o 1 0| 4=| 2 5 6 3
0 0 I -5 -8 -9 =3

' - » P : -
To reduce the ficst column elements below diagonal zero premultiply P4 by P,

1 » e

: iply P.PyA b :
To reduce the first row elements above diagonal Zere postmultiply P;PiA4 by €

{ =% = =0 I 0 0 0
0 1 0 Ol _|o 9 =12 -9

P,P,AQ, = P,P,A 0 0 ] 0 0 27 36 27
0 o 0 :
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The GCD of the elements of the trailing 2 X 3 submatrix is 3 To bring it to the DOsit
(2, 2), subtract | time the second column from the first :
I 0 0 O |
0 1 0 0 0 " 0 0
P;;PIAQ]_QE"—"P:!PIAQ.‘. 0 _— | 0 - —12 .‘]
0 0 0 I —9 % q

To reduce the sccond column element below diagonal zero premultiply PﬂPiAQngbyPI-

I 0 0 1 0 0 0
P.P,A0,0,= 1|0 ! 0| PP AQ,Q0.=]0 3 —=12 -9
P3 as 1 Ql [0 3 l O O 0 0

To redu:e the second row elements above the diagonal zero postmultiply P,p, 140,0,

by @;:
L 098 oo
P3P2P1AQJQ2Q3=P:;Pi'.PlAQLQ:: 0O 0 |1 0 =10 3 0 0 = § (SNF)
0O 0 0 0
O 0 O ]
1 2 —55
: - 0 ] 4 g
P=PPsP = -2 —1 0 , 0= 0,0:03 = s 3 3 . PAQ =§.
= z 0 0 0 1
-1 1 0 1o O
3.A-=3.08' P 5 | olwheres =10 O
0 0 0 0 0 0

If b,=(7 16 —25)°, then AA- b, = b,. Hence a solution exists. x=474=
(3-10 10 0)' for y = O(nullcolumn vector). If y= (-2 11 -9 1), then x=(I11 1y

References
1. ADEGBEYENI, E. O. AND Finite fi:ld computitional technique for the exact solutiot
KRISHNAMURTHY, E. V. of systems of linear equations and interval linecr progr m‘;l;'“
problems. Int. J. Systems Sci., 1977, 8 (10), 1181-%
2. BeN-ISRAEL, A, AND Generalized Inverses - Theory and Applications, 1974, WileY
GREVILLE, T. N. E. Interscience, New York.
3. Marcus, M. anp Ming, H, A Survey of Matrix Theory and Mutrix Inequalities. 1964 A
and Bacon, Boston, Mass., USA.
. ; jons
4. Hurt, M. F. AND Wap, C, A g:neralized inverse which gives all the integral SOt

97.
to a system of linear cquaticns. STAM J. Appi. Math., I
19, 547-50,



