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Abstract 

The paper describes the use of integer arithmetic on a method of transforming a matrix to a Smith 
Normal Form and hence computing a generalized inverse that gives all the integral solutions to linen 
equations. 
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1. Introduction 

Hurt and Waid4  propose a generalized inverse which gives all the integral solu- 
tions to linear equations. An exact computational approach for computing such a 
generalized inverse based on modular arithmetic is suggested by Adegbeyeni and Krishna- 
mw-thy' for integral solutions of linear equations. This is costly from computing 
power and programming points of view in a general purpose computing system. Also, 
choice of n primes and combining the resulting n outputs (in the last stage) using the 
Chinese Remainder Theorem are added problems. 

We present here the method due to Marcus and Minc, 3  and Hurt and Waid,4  
mention the main results and then describe the use of integer arithmetic to obtain 
any integral solution (exact) economically. Illustrative numerical examples are given. 

2. Definitions 

(i) Integral vector and integral matrix 

Let 

(a) K= the ring of integers 0, -1- 1, ± 

(b) = the in dimensional vector space over K, 

(c) Kni" = the in x n matrices over K, and 

(d) KniXot 
r =Br- the m X n matrices with rank r over K. 

Any element of Km is an integral vector. Any element of Kmx" is an integral matrix 

and any element of Krxn is an integral matrix of rank r. 
111 
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(ii) Unimodular matrix 

Any nonsingular matrix P e K"x" whose inverse Pal is also in IC" is a unimodwar  

matrix. 

(iii) Elementary row and column operations 

A sequence of elementary row and column operations used here consists of 

(a) Type I : interchanging two rows (columns), and 

(b) Type 2: subtracting an integral multiple of one row (column) from anothe r  
row (column). 

(iv) Equivalent matrices 

Two matrices A, S e IC" are equivalent over K if there exist two unimodular matrices 
P e leix" and Q e Ke" such that 

■ 

PAQ = S. 

(v) Smith Normal Form 

A matrix S = (so) e K;PIX  is the Smith Normal Form (SNF) if 

(a) sij O 0, =--- 1 (1) r 

(b) sij  = 0 otherwise, and 

(c) sit  divides si+i , i+1 , 	i == I (1) r — 1. 

(vi) Generalized Inverse of Smith Normal Form 

The generalized inverse (g-inverse) of SNF S is the matrix 5+ == (st) e Kr if 

(a) st = 	i = 1 (1)r and 

(b) s t = 0 otherwise. 

(vii) Integer arithmetic 

Let -I-, 	/ be integer add, subtract, multiply and divide operations respectivebc 
Let a, b e K. 

Then 

Add : 	 al-b=ceK 

Subtract : 

Multiply : 

Divide : 

a. b=--eeK 

alb = fe K (b* 0) 



INTEGRAL scumnoN OF LINEAR EQUATIONS USING INTEGER ARITHMETIC 	113 
provided 

• (c 4- d)/2 = a and (c — 02 = b (for add and subtract operations) 
• efts = b (apie 0) and e lb = a (b 0) and e = 0 whenever a = 0 

both are zero ; e is negative when a or b negative (for multiply 
or b =-- 0 or 

Operation). 

• I a I ..>= 1 b I . If I ; 
For Jai> I td, f is negative when a or b is negative, otherwise f is positive ; 
For 0<lal<lbl,f=0; 

"-Hal eibl- IfIEK; 
0 Cr < lb I (for divide operation). 

Note : If r =-- 0 then b divides a. 

Examples : 	a= —5G.K, b=2EK 

aleb=-5+2=-3=--- ceK 

a—b= —5 	2=-7=de K 

a. b= —5.2= —10=meeK 

alb= — 5/2 = — 2 =feK 

since 
(— 3 + (— 7))/2 =--- — 5 = a, (— 3 — (— 7))12 = 2 = b. 

— 10 I(— 5) = 2 = b, — 10/2 = — 5 = a, I a I = 5 > 2.2 = 4, 

f = 2 is negative as a is negative. 

r= 5 — 12 =-- 1 e IC, 0<r< 2. 

3. The method 

Let A e K:ix" . 

Step 1 : Computation of SNF S - -= (sii)e Krx" : 

•(i) Find the greatest common divisor (GCD) of the elements of 
A. 

(ii) Bring it to the position (I, 1) by using Type 1 and/or Type 2 operations. 
(Hi) Make zeros of all other elements in the first column and first row using Type 2 

operations. 

Note : The matrix C = (c,1) so obtained is that 

(a) Ce Krx" is equivalent over K to A, 
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(h) c11  divides c (i > I. j > 1), and 

(c) en 	c" -:Ø (1>  1, j> 1). 

(iv) Setting s o. = ca.  repeat the algorithm for the (m — 1) X (n 
— 1) matrix  

(i> I, j > 1). 
	(cu) 

(v) Repeat the algorithm thus r times and stop when the bottom right On se. x  

(n — r) submatrix is zero giving the SNF. 

Step 2: Computation of A -  : 

(i) Compute the unimodular matrix P (Q) defined in Sec. 2 (iv), which is the product 
of all di, elementary row (:olumn) matrices, in the right order. Thus FAQ= s.  

(ii) Compute A - 	QS .  P. 

Note: A -  satisfies AA - A A, A -  AA - — A. AA -  e Km", A -  A e 

Step 3 : Computing a solution vector 

(i) If AA -  b# b then Ax 	h is inconsistent, i.e., it has no solution. 

(ii) If AA - b =b but x= A - b is not integral then Ax =--- b has no integral solution 
(it has nonintegral rational solutions though). 

(iii) If AA - b=b and x = A - b is integral then compute any integral solution. 
x= A -  b + y A -  Ay 

by assigning a value to y eKsza which is arbitrary. 

4. Main results 

The method follows from th .. theorem and corollaries below. 	The theorem states that 
any integral matrix is equivalent over K to a diagonal integral matrix. 

Theorem 

Let A e Krxn . 	Then A is equivalent over K to SNF S e Kr. 
proof see Marcus and Minc. 3  

For a constructive 

Corollary 1: Let P and Q bc unimodular matrices and PAQ = S be the SNF of 
A e Kma. Also, let A -  QS -I P. Then AA -  A = A, A -  AA -  = A -, A -  Aer i  
AA -  E Km". 

Proof: PAQ 	SS. S PAQS • PAQ FAA -  AQ. Hence A= AA -  A. 
 

• 

S  A -  AA is-  proved similarly. Since A -  AQ --- QS + PAQ QS E S and 	Pn Ya  
P = SSI.  P, the integrality of AA and AA -  follows. 

Corollary 2: (Hurt and Waid4 ) Lek 14 e Kmx", be Km. 
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Let Ax b be consistent. Then Ax b has an integral solution if and only if A -  b, is integral, in which case the general integral solution of Ax = b is 
x A -  b + y A -  Ay 

where y e K" is arbitrary. 

5. Use of integer arithmetic 

Let Ax b where A e Kr", b e Km. The foregoing method (Sec. 3) involves (0 finding 
the GCD, (ii) transforming A to SNF SI, and computing P and Q where PAQ = 419 

	

(iii) obtaining A 	QS P, (iv) checking if AA -  b = b, and (v) computing x = A -  b 
v A -  Ay, y E K". 

(0 To find the GCD of the elements of A 

(a) obtain the smallest element in modulus, 

(b) if it does not divide any one element of A then compute the remainder r1  ; 
divide the smallest element by r 1 . [fit divides then r 1  is the GCD, otherwise 
divide r1  by the remainder r2  and repeat the process. 

(c) If the smallest magnitude element divides all the elements of A then the 
modulus of it is the GCD. 

(ii) To transform A to SNF and compute P and Q we evidently need only integer 
arithmetic. 

iii) To obtain A -  = QS -L P, 

(a) Compute a=7t sit , 
t =1 

(b) compute (i, j)th element of aA - 

pki 	= 1 (1) r, 1= 1 (1) r 

	

kel 	 tas 1 
tOk 

A 	Kr" has zero for the other elements. 

(iv) Compute AaA -  b. If it is equal to rib then solution exists. Otherwise the 

system has no solution (either non-integral rational or integral). 

(v) If Axel -  b = ab then compute aA -  b. If a divides all the elements of aA -  b, 

then integral solution exists. Then obtain 

x = Out - Nu) + y A -  Ay for any ye K n . 

6• Present algorithm versus finite-field algorithms • 	• 

Finite-field computational techniques using residue arithmetic are almost always advo- 
cated for exact computation for the following reasons: 

(i) the parallelism in computation, and 
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tii) the disadvantage of integer arithmetic which demands very long precision n ...perandi  
and hence makes computation slow. 

As to (i), if we use,/ primes then the problem is solved n times independently. A raw b. 
processing system or many independent (monoprocessing) systems are needed to use the.  
parallelism. The processing power, however, is actually not saved. 

As to (ii), the present algorithm finds the GCD of the elements of A to Comp
the SNF S. In many problems, it avoids very long precision operands and thus is riot 
that slow. Precisely, the integer arithmetic is inherent to this algorithm. Th e  
modular arithmetic need to be used only when the integer arithmetic fails. 

The efficiency of the present algorithm compared to the algorithms based on residue 
arithmetic varies to some extent with the entry (element) size and the problem size. 
Assume that the computer used is a general purpose one, and the number (n) of prim e  
bases used is reasonable. Then the present algorithm is nearly (n) times faster. 

7. Numerical examples 

	

5 	3 	7] 

	

(i) A = [2 	4 	3 

	

7 	7 	10 

The GCD of the elements of A is 1. To bring it to the position (1, 1) subtract 
2 times the second row from the first 

	

1 	—2 	0 	I 	—5 	1] 

	

PI A = [0 	1 	0] A = [2 	4 	3 

	

0 	0 	I 	7 	7 	10 

To reduce the first column elements below diagonal zero premultiply P iA by P! 

1 0 0 1 —5 
P2P1A = [ -2 1 0] PI A =-- [0 14 

1] 
1 

• —7 0 I 0 42 3 

To reduce the first row elements above diagonal zero postmultiply P2P1A by Q : 

 

1 5 —1 1 0 
P2P1AQ1 = P2PIA [0 1 = [0 14 

0] 
1 

0 CI 1 42 3 

The GCD of the elements of the trailing 2 X 2 submatrix is 1 which is itself an de- 
ment. To bring it to position (2, 2) interchange second and third columns, i.e., P° st  
multiply P2PI AQ1  by Q2 : 

1 
P2PA A 2 = P2 1),AQ 1 [0 M 

0 

0 
0 
1 

0 
I 
0 

= 
1 
0 
0 

0 
1 
3 

0 
14 
42 

] 
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To reduce the second column element below diagonal zero premultiply P2P1AQQ
2  by P3: 

1 	0 	0 	 1 	0 	0] 
P3P2PiA M 2 =-- [0 	1 	0 1 P2PIA Qi Q2 = [0 	1 	14 

0 	—3 	1 	 0 	0 	0 

To reduce the second row element above diagonal zero postmultiply P3P2P1A Q1 
Q2 by Q3: 

01 	0 _ 140 	1 	0 	0  
P3P2P1A Q1Q2Q3 = P3P2P1A Q1Q2 	

0 	1 	
=S (SNF) 

0 	o 	 Lo 	0 	0 
1 —2 	0 	 1 —1 	19 

P P3P2Pi  =[ —2 	5 	3 Q = Q1Q2Q3---=- [o 	o 	11, PAQ=S. 

	

—1 —1 	I 	 0 	1 	—14_ 

1 	0 	0 	 3 	—7 	01 
S+ = [0 	1 	0] , A -  = QS -1 P =[ 0 	0 0 

0 	0 	0 	 —2 	5 	0 

If th= (15 9 24) t  then AA -  b i n- b 1 . Hence a solution exists. If y = 0 (null column 
vector), then x = A -  b, =(- 18 0 15)t.  If y = (19 1 — 14)% then x 	(1 1 1)'. 
If b2  = (20 2 25) t , then AA -  b 2 b 2 . Hence no solution exists, i.e., the system is 
inconsistent. 

—1 	2 	3 	3 
(ii) A=I 	2 	5 	6 	3] 

—5 —8 —9 —3 

The GCD of the elements of A is 1. To bring it to position (1.1), subtract — 1 time 

the second row from the first : 

1 	1 	0 	 1 	 9 	63] 

PIA = [0 	1 	0] A -=--[ 2 	5 	6 

0 0 	1 	—5 	—8 	—9 —3 

To reduce the first column elements below diagonal zero premultiply P IA by 192 

7 9 
0 

[01 	27 
—9 —12 

6] 
—9 1 

36 27 

1 	0 	0 

P2PiA 	[ —2 	1 	0] PI A ----=-- 

5 	0 	1 

To reduce the first row elements above diagonal zero postmultiply 
FAA by Q, : 

P2P1AQ1 = PAA 

	

[

1 	—7 —9 —06 1 

	

0 	1 	0 

	

0 	0 	1 	0 

	

0 	0 	0 	1 

0 = 
 [

1 

0 

0 
—9 

27 

0 
—12 

36 —9 2o7] 

• 
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The GCD of the elements of the trailing 2 x 3 submatrix is 3. To bring it to th e 	, 
(2, 2), subtract 1 time the second column from the first : 	

Fuslitoi 

I 
0 	1 	0 	0 

P2PI4 Q1Q2 =---- P2P1AQt 	0 	—I 	1 	0 [

0 	0 	01 

0 	0 	0 	1 

	

0 	0 

L01  3 —12 ,9 
0 —9 36 2] 

To reduce the second column element below diagonal zero premultiply P2P/ 4 Q 1  Q 2  by  ps:  

I 	0 	0 	 1 0 	0 	0] 

P 3P2P1 A  Q 2 t" [ t) 	1 	P2P LA  Q1 Q2 = 0 3 —12 
0 	3 	1 	 00 	0 	0 

To reduce the second row elements above the diagonal zero postmultiply P 3P2P1Aus  
by Q3: I  i0 0 0 

 
n 

 

014   3 
P3P2P1A QJ Q2Q3=--  P3P2P1A Q.iv 2 0 0 1 0  = 

0001  

	

[ 1 
	101  0 

P = P 3P 2P 1  = —2 —1 0 , Q= Q1Q2023-= 0 

	

—1 	2 1 0 

1 

	

000 
0 	3 	0 	0 	= S(SNF) 
0 	0 	0 	0 

I2 —55 	0 

1 	 4 	3 

—1 	 3 	—3 	 ' ' 	 - S 

PAQ- 

0 	 0 	1 

	

—1 	1 	0 
le 10 

	

2 	1 
[ —2 —1 01 

3.A -  = 3. QS' P= 	 where S = 0 	 0 

	

0 	0 	0 	 .0 

1 0/3 	01 
0 	0 
0 	0 

If bi  = (7 16 — 25)t, then AA -  b i = 1)1 . Hence a solution exists. x = A 
(3-10 10 Or for y= 0 (null column vector). If y= (-2 11-9 If, then x = (1 l 
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