A method for detecting free phenol, aniline, indole and quinone derivatives in paper chromatography

M. SUGUMARAN AND C. S. VAIDYANATHAN Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India

Received on January 12, 1978

Key words : Color reaction, nitroprusside, phenols, anilines, indoles, quinones.

Abstract

Sodium nitroprusside reaction with phenols, anilnes, indoles and quinones under alkaline conditions can be used to detect these compounds on paper chromatograms.

1. Introduction

Various reagents are available for the detection of phenolic compounds, anilines, quinones and indole derivatives. Diazonium salts¹, tertazotized benzidine^{2, 3}, antimony pentachloride⁴, phosphomolybdic acid⁸ and ceric ammonium nitrate⁶ are widely used to detect phenols and anilines, while Ehrlich's reagent⁷ and magnesium acetate⁸ are used for the detection of indole and quinone c'erivatives, respectively. We have found that sodium nitroprusside, a commonly used reagent for the detection of acetone and its derivatives⁹ react with phenolic compounds, anilines, indoles and quinone derivatives. This reaction can be arranged as a detection method for the above compounds in paper chromatography.

2. Materials and methods

10-25 μ g samples of each compound in appropriate solvent were spotted on Whatman No. 3 chromatographic papers and air-dried. The paper sheets were sprayed at first with a freshly prepared 15% solution of sodium nitroprusside and then with 2N ammonium hydroxide. Various colors appeared were immediately recorded. The papers were then heated for about 5-10 min at 110°C and the stable colors obtained were noted. Inclusion of hydroxylamine hydrochloride with nitroprusside reagent increased the sensitivity and intensity of the colors.

3. Results and discussion

The nitroprusside reaction is specific for phenols, anilines, quinones and indole derivatives. Aliphatic alcohols, amines, saturated cycloalcohols, carboxylic acids, sugars and aldehydes did not react with nitroprusside, while acetone and its derivatives which 51

I.I.Sc.-7

M. SUGUMARAN AND C. S. VAIDYANATHAN

3

are known to react[®] gave violet colored spots. The colors developed by various poly. hydroyphenols are summarized in Table I. These compounds developed deep colored

Table I

Color reaction of sodium nitroprusside and ammonium hydroxide detection reagent with polyhydroxy phenols

Compound	Color produced after sparying	Stable color obtained after heating
Catechol	blue	black
Protocatechuic acid	violet	dark blue black
Pyrocatechuic acid	violet	dark blue green
Homoprotocatechuic acid	pink	deep brown
4-Methylcatechol	pink	dark brown
Protocatechualdehyde	green	brown
2, 3-Dihydroxy-p-toluic acid	pink	deep green
3. 4-Dihydroxymandelic acid	pink	bluish grey
Dopa	brown	dark brown
Dopamine	grey	bluish grey
Epinephrine	brown	dark brown
Chlorogenic acid	green	brown
Isochlorogenic acid	•••	brown
Caffeic acid	light blue	dark grey
Dihydrocaffeic acid	pink	brown
Resorcinol	bluish green	green
Orcinol	light orange	yellowish green
2, 4-Dihydroxybenzoic acid	pink	dark blue
2, 4-Dihydroxybenzaldehyde	blue	blue
Quinol	light brown	brown
Gentisic acid	light pink	bluish violet
Homogentisic acid	green	deep brown
Homogentisic acid lactone	violet	grey
Hydroxyquinol	grey	black
Pyrogallol	brown	dark brown
Phloroglucinol	brown	bluish green
Gallic acid	green	black
Methyl gallate	light brown	grey
Phloroglucinol carboxylic acid	brown	grey
2, 4, 6-Trihydroxybenzaldehyde	pink	blue
3, 4-Dihydroxy-5-methoxy-benzaldehyde	brown	brown
1, 3-Dihydroxynaphthalene	brown	brown

52

spots and can be easily distinguished from monohydroxyphenols which produced blue, green and pink colored spots (Table II). Apart from the phenolic compounds, mandelic

Table II

Color reaction of sodium nitroprusside and ammonium hydroxide detection reagent with phenolic compounds

Compound	Color produced after spraying	Stable color obtained after heating
Vanillin Vanillic acid Ferulic acid	grey blue bluish grey	silky green green pink
Isoferulic acid	light grey	bluish grey
Syringic acid Sinapic acid	pale blue bright blue	gleen bright pink
Vanilmandelic acid	grey	violet
Vanillalcohol	violet	bluish violet blue
Chromotropic acid	pink	bluish green
4-Hydroxyphenylacetaldehyde	grey	bluish green
m-Tyrosine	•••	yellowish green
p-Tyrosine Octonomine	• • •	bluish green
l-Naphthol	blue	bluish green
		h h h h h h h h h h h h h h h h h h h

2-Naphthol Phloretin 4-Hydroxybiphenyl 4-Hydroxyphenylpyruvic acid 3-Hydroxybenzylalcohol Guaiacol 4-Hydroxyphenylpropionic acid o-Coumaric acid m-Coumaric acid p-Coumaric acid 4-Hydroxyphenyllacetic acid 3-Hydroxybenzaldehyde Salicylaldehyde 3-Hydroxymandelic acid 4-Hydroxymandelic acid 2-Hydroxyphenylacetic acid 3-Hydroxyphenylacetic acid 4-Hydroxyphenylacetic acid Salicylic acid 3-Hydroxybenzoic acid 4-Hydroxybenzoic acid 4-Hydroxybenzoylformic acid

blue ... bright red pale blue ... blue blue ... bluish green light blue ... light blue pale blue yellowish brown

bluish grey pale grey pale brown bluish green pale blue light grey pale blue pink light blue light blue bluish green light blue light blue sky blue blue bluish green bluish green bluish green bright blue blue blue orange

M. SUGUMARAN AND C. S. VAIDYANATHAN

acid, benzoylformic acid, phenylpyruvic acid, acetophenone, phenylacetaldehyde, 4-methoxybenzoylformic acid, 2-phenyllactic acid, phenylalanine, dicoumarol, 3-phenyllactic acid, isonitrosoacetophenone and 2-nitrobenzoic acid produced light blue to pink colored spots. The following phenolic compounds, however, did not react: Phenol o-cresol, m-cresol, p-cresol, thymol, p-chloro-m-cresol, 4-hydroxybenzaldehyde, 4-hydroxybenzylalcohol, isovanillic acid, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol and 3, 5-dinitrosalicylic acid.

The color reactions of various aniline derivatives with sodium nitroprusside are given in Table III. These compounds generally produced bright green, violet and brown coloured spots. However, m-toluidine, sulfanilic acid and 4-nitroaniline did

Table III

Color reaction of sodium nitroprusside and ammonium hydroxide detection reagent with aniline derivatives

Compound	Color produced after spraying	Stable color obtained after heating
Anthranilic acid	pale brown	reddish brown
3-Aminobenzoic acid		bluish grey
4-Aminobenzoic acid	•••	brown
3-Hydroxyanthranilic acid	brown	brown
4-Aminosalicylic acid		light brown
Aniline	***	light brown
2-Aminophenol	brown	yellowish brown
3-Aminophenol	green	bright silky green
m-Toluidine		•••
p-Toluidine	pink	violet
Methylanthranilate	pink	brown
Ethylanthranilate	light violet	brown
DL-Kynurenine		green
Sulfanilic acid		
4-Nitroaniline		
4-Dimethylaminobenzaldehyde		
4-Dimethylaminobenzonitrile		
Diphenylamine		light brown
o-Phenylenediamine	green	dark green
m-Phenylenediamine	green	dark green
p-Phenyleaediamine	green	dark green
Benzidine	bluish green	dark green

NITROPUSSIDE COLOR REACTION

not react with the reagent. The reaction is also applicable to indole and quinone derivatives (Table IV).

Table IV

Color reaction of sodium nitroprusside and ammonium hydroxide detection reagent with the derivatives of indole and qunione

Compound	Color produced after spraying	Stable color obtained after heating
A. Indole derivatives		
Indole Indoleacetic acid Indolepropionic acid Indoxylacetate Tryptophol Tryptophan	brilliant blue light red violet light red yellowisb green	blue blue light blue violet blue yellowish green
 Naphthoquinone Diphenylenedioxide-2, 3-quinone Isophenoxazine Cinnabarinic acid 6-Dichloro-p-benzoquinone- 4 chloroimide Manadione 	blue light grey light brown yellow grey	violet violet yellow bright pink silky gree . yellow

The following compounds did not produce colored spots (in concentrations up to Mug): Benzoic acid, phenylacetic acid, benzene, toluene, coumarin, p-toluic acid, 2-fluorobenzoic acid, 3-fluorobenzoic acid, 4-fluorobenzoic acid, 4-chlorobenzoic acid, cimamic acid, phenylpropionic acid, benzaldehyde, cinnamaldehyde, phenylpropionaldehyde, phenoxyacetic acid, 4-nitrobenzoic acid, 3-nitrobenzoic acid, 4-nitrophenyl acetic acid, 4-fluorophenylacetic acid, 2-nitrobenzaldehyde. phenethanol, benzylalcohol, ²⁴dichlorophenoxyacetic acid, 2, 4, 5-trichlorophenoxyacetic acid, 2, 3-dimethoxybenzaldehyde, 2, 4-dimethoxybenzaldehyde, 2, 5-dimethoxy-benzaldehyde, anisic acid, ^{3,4}-dimethoxycinnamic acid, phenylacrylic acid, *p*-toluinanilide, 2-methoxybenzoic acid, ^{3-methoxybenzoic acid, phthalic acid, phthalic anhydride, isonitrosopropiophenone, shikini} shikimic acid, quinic acid, 4-hydroxycoumarin, naphthoxyacetate, naphthylacetic acid, anisole, nicotinic acid, nicotinamide, quinoline, 4-chloromercuribenzoate, trichloroacetic acid, allantoin, citric acid, NAD, NADP, NADH. NADPH, ethylacetate, chloroethylacetate, formic acid, acetic acid, acetaldehyde, isopropanol, n-propanol, ethanol, butanol butanol, cyclohexane, pyridine, collidine, sulfanilamide, benzylamine, Tris, valine, iso-1.1.Sc. -8

leucine, leucine, asparagine, aspartic acid, glycine, lysine, citrulline, ornithine, thianine, thianine,

This method can be used to distinguish vanillic acid from isovanillic acid, 2-nitrobenzoic acid from 3- and 4-nitrobenzoic acids, isonitrosoacetophenone from isonitroso propiophenone, phenylacetaldehyde from benzaldehyde and phenylpropionaldehyde, mandelic acid from phenylacetic acid and 4-hydroxybenzaldehyde and 4-hydroxybenzoic acid from the other isomers.

References

-		
1.	NEU, R.	Microchim. Acta., 1957, 196.
2.	KOCH, J. E. AND KRIEG, W.	Chem. Ztg., 1938, 62, 140.
3.	PASTUSKA, G.	Z. Anal. Chem., 1961, 179, 355.
4.	STAHL, E.	Chem. Ztg., 1958, 82, 323.
5.	Stahl, E. and Schorn, P. J.	J. Physiol. Chem., 1961, 325, 263.
6.	Chrastil, J.	J. Chromatography, 1975, 115, 273.
7.	DALGLIESH, C. E.	Biochem. J., 1952, 52, 3.
8.	Shibata, S., Takito, M. and Tanka, O.	J. Amer. Chem. Soc., 1950, 72, 2789.
9.	ROTHERA, A. C. H.	J. Physiol., 1908, 37, 491.

56