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Abstract

A unified method for determining the lowest natural frequ¢ncy of linear vibrations of Ol'thotropic
plates of any shape under inplane forces and placed on elastic foundation is given. Conformal
mapping technique is introduced and Galerkin’s method is used to calculate approximate values
of lowest natural frequency.
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Introduction

A change in the natural frequencies of a plate can be achieved by altering its stiff-
ness, mass or by the influence of inplane forces in an elastic plate. The natural frequen-
cies are thus lowered or remain unchanged depending on the nature of the inplane forces
applied. Such type of problems are of great practical use to the engineers dealing with
thermal] stresses and with panels of rockets at take off conditions.

In this paper the author makes an attempt to present an analysis of calculating the
natural frequencies of orthotropic plates of any shape under inplane forces and placed
on elastic foundation of the Winkler type. The boundary of the plate 1s transformed
conformally onto a unit circle and the solution is obtained with the help of error func-

tion and Galerkin procedure.
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where p is the mass density per unit volume, @ (x, y; t) is the transverse d8ﬂect, hi

the plate thickness, % the foundation modulus, N the uniform inplanc tensije fo;
and D =E.h3112(] — P ly) D = F ,13112(1 — Vv,V ﬂ):l Dn. —| 1? D + 6}13/6 E E
Ve, ¥V ;nd G being material constants of an orthotropic md‘[(’:l‘ldl "
£ '}

If
ot

w(x,V; t)= W(x,y)e ' (2)

where & is the circular frequency, and 1if
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Let z = f () be the analytic function which maps the given shape in the ¢-plane onto
a unit circle.  Thus equation (3) transforms into complex coordinates as
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Method of solution

Since an exact solution of equation (4) is, at best, very difficult, it is convel_ﬁent to
usc an approximate method to solve it. We shall use Galerkin’s mecthod in this study.

The solution of equation (4) can be expressed in the forms.?

W A 55‘1 I, {1 - (&8} &)

nwe=y

or
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where a, = D,/D, (for isotropy, @, = v, the Poisson’s ratio), and & =rc, {E=—r
The form of W in equation (5) satisfics—
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quation (4) yields the error functiop n (£, )

o tion (5) or (6) nto e .
Substituting equation ( equation (5) or equation (6) is not ap

which does not vanish, in g. neral, smce
solution.

Galerkin’s procedure requires that the error function gy be orthogonal over the domaip

under consideration, [.¢,

[Foa(& B WEHds =0, (1= 120, ). 0)

exacy

From equation (7) a system of linear homogeneous equations is obtained. Sych ;
system can have non-trivial solution only if the determinant of the coefficients of the
unknowns vanishes identically. For fundamental frequency the lowest root of this

is to ba taken.

Applications

Let us apply the procedure explained above to the case of a clamped circular plate
for which the mapping function is given by

z = dac. (8)

Taking the first term approximation of W given bv (5) and substituting this along with
(8) into equation (4) one gets the error function, ¢,, as:

_ ba'®
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Iatroducing & in equation (7) one gets
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o AOD, +6D: +4) + K= ) (1 — r2) 4 8 (1~ 29] (1 — Py rdbir = 0.
(19)

Q Sy

Equation (10) gives rise 1o the frequency equation as

3 =20(6D, + 6D, + 4) + 3% + 20N (1)

Equation (11) shows that th

e frequ . .
foundation than when not quency of the plate is greater when placed on elasts
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The values of natural frequencies obtained from (11) by attributing different val
ues

to D, D3, K and N can be improved by considering first .
Therefore & QITSt 1wo terms of the series (5).
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+ (K — ) {h(l - EER + L(1 —~ &)%) + 8N {1, (1 — 268
+ 41, (E8 — 282 89))]. (12)

Since from (7),
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n=1

where

A=6D, + 6D, + 4.
Integrating 13 (i) and taking n =1 and n =2, one gets the following two simul-

taneous equations
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uency.
from which the lowest root gives the fundamental frequency



PARITOSH BISWAS
78

I) is constructed showing the variation of rundamtnlal |

The following table (Table { inplane forces and foundation modulus, Considering

: ‘ lues ©
frequency for diflerent va |
theqset of values for plywood material,

D, = 4 341, D, = 1-6136.

Table I

-
Q (N = 0) 7335 96-83
Q(N = 25) 8541 8772
Q(N = — 25) 64-13 6719

___W

Observation

The frequency of vibration of a plate is greater when placed on elas}ic foundation
than when not. Also, frequency is greater when the forces arc tcnsile than when
compressive. .

Discussion

Finding the exact mapping function is usually out of the question. Several approxi-
mate techniques, however, are available for the determination of accurate mapping
function (1). Also mapping functions of plates ot different shape are given in (2)
Thus after knowing the proper mapping functions the natural frequencies of any

desired plate can be obtained under different conditions imposed on the plate following
the above method.
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