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Abstract 

A unified method for determining the lowest natural frequency of linear vibrations of °allotropic 
plates of any shape under inplane forces and placed on elastic foundation is given. Conformal 
mapping technique is introduced and Galerkin's method is used to calculate approximate values 
of lowest natural frequency. 
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Introduction 

A change in the natural frequencies of a plate can be achieved by altering its stiff- 
ness, mass or by the influence of inplane forces in an elastic plate. The natural frequen- 
cies are thus lowered or remain unchanged depending on the nature of the inplane forces 
applied. Such type of problems are of great practical use to the engineers dealing with 
thermal stresses and with panels of rockets at take off conditions. 

In this paper the author makes an attempt to present an analysis of calculating the 
natural frequencies of orthotropic plates of any shape under inplane forces and placed 
on elastic foundation of the Winkler type. The boundary of the plate is transformed 
conformally onto a unit circle and the solution is obtained with the help of error func- 

tion and Galerkin procedure. 

Equation of motion 

The Lagrangian differential equation for small amplitude vibrations of orthotropic 
plates in the presence of inplane forces and placed on elastic foundation, in their usual 

notations, reduces to 
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Dig  = D, Gh 3 	p' 

where p is the mass density per unit volume, a) (x, y; 0 is the transverse deflection %  A 
the plate thickness, k the foundation modulus, N the uniform inplane tensile 

force orce  
and A= E,h3/12 (I -- 	 Eit3/12 (1 — ve v,), 

v and G being material constants of an orthotropic material. 
16; E, 
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S (x, y; = (x, y) eic 

where Ext is the circular frequency, and if 

z = X + iy, 

so that 
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then equation (1) transforms into 

w 8 4 w 	 84w 
(Ds + D, — 2Dn)(— 0z4 (6D,  + 6D, + 4E00, az4 	 3Z2  322 

154 w 	04  w 
± 4 (D. D)(-5. -z3T2, airti) (k phiaa 2) W 

82 
—4N 

W 
 =0 az a2 

Let z =f  (t) be the analytic function which maps the given shape in the &plane onto 
a unit circle. Thus equation (3) transforms into complex coordinates as 
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Method of solution 

Since an exact solution of equation (4) is, at best, very difficult, it is convenient to 
use an approximate method to solve it. We shall use Galerkin's method in this study. 

The solution of equation (4) can be expressed in the forms) 
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or 
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where ch =-- AID. (for isotropy, a1  = v, the Poisson's ratio), and 	ref°, 

(6) 

The form of 14/ in equation (5) satisfies- 
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and can be taken as an admissible Junction for the clamped edge conditions. Also 

the form of W in equation (6) satisfies W 0 at r I, and moment 41„= 0 at r =1 

and can be taken as an admissible function for simply-supported edge conditions.3 
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Substituting equation (5) or (6) into equation (4) yields the error function en  ?, 
which does not vanish, in g. neral, since equation (5) or equation (6) is not a n ex;c; 

solution. 

Galerkin's procedure requires that the error function EN  be orthogonal over the domain 

under consideration, i.e, 

f (, 4i) W 	ds 0, (n = 1 , 2„ 	, N). 

From equation (7) a system of linear homogeneous equations is obtained. Such a 
system can have non-trivial solution only if the determinant of the coefficients of the 
unknowns vanishes identically. For fundamental frequency the lowest root of this 
is to be taken. 

Applications 

Let us apply the procedure explained above to the case of a clamped circular plate 
for which the mapping function is given by 

z = 	 (8) 

Taking the first term approximation of W given by (5) and substituting this along with 
(8) into equation (4) one gets the error function, e l. , as: 
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Introducing €1  in equation (7) one gets 

I I (4(6D1  + 6D2  + 4) + (ke n9(l —r2)2 + 8R 0 — 2r2A 0 r2yrdedr= 0. 00 

(0) 
Equation (10) gives rise to the frequency equation as 

01) = 20(6Di  + 6D2  + 4) ± 3/-Z 20147. 

Equation (11) shows that the frequency of the plate is greater when placed on elastic 
foundation than when not. 
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The values of natural frequencies obtained from (11) by attributing different values 

to D1, D2, and N can be improved by considering first two terms ot the series (5). 
Therefore 
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where 

A = 6Di  + 6D2  + 4. 

Integrating 13 (i) and taking n = 1 and it = 2, one gets the following two simul- 

taneous equations 
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For non-trivial solution one must have 
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from which the lowest root gives the fundamental frequency. 
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The following table (Table I) is constructed showing the variation of fundam ental  
frequency for different values of inplane forces and foundation modulus, considering 

the set of values for plywood material, 

DI  rem 4.341, 	D2 = 1.6136. 

Table I 

	

= 0 	 K= 400 400 

(R = 0) 	 73 . 35 	 9613 

f2(ii ...-=. 25) 85 a 41 8712 

f2 (/%7 — — 25) 6413 6719 

Observation 

The frequency of vibration of a plate is greater when placed on elastic foundation 
than when not. Also, frequency is greater when the forces are tensile than when 
compressive. 

Discussion 

Finding the exact mapping function is usually out of the question. Several approxi- 
mate techniques, however, are available for the determination of accurate mapping 
function (1). Also mapping functions of plates ot different shape are given in (2). 
Thus after knowing the proper mapping functions the natural frequencies of any 
desired plate can be obtained under different conditions imposed on the plate following 
the above method. 
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