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Algebraic Approaches to Space-Time  
Code Construction for Multiple-Antenna  
Communication

U. Raviteja1, I. Sharanappa2, B. Vanamali2 and P. Vijay Kumar2

Abstract | A major challenge in wireless communications is overcoming the deleterious 
effects of fading, a phenomenon largely responsible for the seemingly inevitable dropped 
call. Multiple-antennas communication systems, commonly referred to as MIMO systems, 
employ multiple antennas at both transmitter and receiver, thereby creating a multitude of 
signalling pathways between transmitter and receiver. These multiple pathways give the 
signal a diversity advantage with which to combat fading. Apart from helping overcome the 
effects of fading, MIMO systems can also be shown to provide a manyfold increase in the 
amount of information that can be transmitted from transmitter to receiver. Not surprisingly, 
MIMO has played, and continues to play, a key role in the advancement of wireless 
communication.

Space-time codes are a reference to a signalling format in which information about the 
message is dispersed across both the spatial (or antenna) and time dimension. Algebraic 
techniques drawing from algebraic structures such as rings, fields and algebras, have 
been extensively employed in the construction of optimal space-time codes that enable the 
potential of MIMO communication to be realized, some of which have found their way into 
the IEEE wireless communication standards. In this tutorial article, reflecting the authors’ 
interests in this area, we survey some of these techniques.
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Introduction 

While the use of multiple receive antennas goes back to the times of Marconi and 
Bose, the use of multiple transmit antennas is far more recent. Upon closer examina-
tion, it turns out that there is a tradeoff between the benefits of increase reliability and 
increased information rate offered by MIMO (short for multiple input, multiple output 
antenna) systems. We show in this article how space-time codes that optimally achieve 
this tradeoff can be designed. There are two general approaches to the design of ef-
ficient space-time codes and there is a different rate-reliability tradeoff to be achieved 
in the two cases.



Journal of the Indian Institute of Science  |  VOL 91-1 Jan-March 2011 journal.library.iisc.ernet.in1 5 6

Under the first approach, space-time (ST) codes are designed to communicate a fixed amount
of information across the channel, independent of the signal to noise ratio (SNR) of the
channel. The tradeoff encountered here, is referred to as the rate-diversity tradeoff. Under the
second approach, the rate of information transfer is indexed in a natural way to the operating
SNR. Here again there is a tradeoff to be achieved, known as the diversity-multiplexing gain
tradeoff. An overview of some of the algebraic techniques that have gone into the design of
ST codes that are efficient when measured against the two tradeoffs is provided here.

In Section 2, we introduce the ST channel and discuss its fundamental limits. In Section
3, two approaches adopted by the ST research community for efficient code design are ex-
plained. In Sections 4 and 5, two types of constructions corresponding to the first approach
are addressed. Space-time code design based on the second approach is explained in Section
6. We conclude the discussion in Section 7.

§ 1 Space-Time Channel

We will work throughout with the model of the ST channel presented below. Let nt ,nr repre-
sent the number of transmit and receive antennas respectively. We assume that communica-
tion takes place in blocks, each block comprising a T -unit duration of time. Without loss of
generality, the presentation will be in terms of a representation of the channel known as the
equivalent, baseband, complex representation that abstracts away radio-frequency aspects of
communication such as the carrier frequency and phase. For example, under the representa-
tion, the radio-frequency signal Acos(2π fct +φ) of frequency fc and phase shift φ , has the
simpler representation Aeıφ , where ı =

√
−1.

1.A Channel Model

We will assume that each block of T channel uses is processed independently. While this
assumption does place a limit on performance, it has the important practical advantage of
reducing the latency of communication. The transmitter addresses the channel by transmitting
a T -length sequence of nt-component vectors, known as a code matrix. Thus, each code
matrix X is of size (nt ×T ). The (i, j)th entry of a code matrix X represents the transmission
by the ith transmit antenna during the jth channel use. The code matrix is drawn from a
collection X of such matrices, known as a ST code. The word “space” as used here, is a
reference to the spatial or antenna dimension. Similarly, let Yi j represent the signal received
by the ith receive antenna during the jth channel use. We will refer to the corresponding
(nr × T ) matrix Y as the received matrix. Then the transmitted and received signals are
related by the equation

(1) Y = θHX +W

in which the (nr ×nt) matrix H represents channel gains with Hi j denoting the channel gain
along the path from jth transmit to ith receive antenna.

Channel fading is an inherent feature of most wireless communication and much of the activ-
ity in ST coding research is directed towards devising means of overcoming the deleterious
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Figure 1: MIMO Channel Model

effects of fading. The effects of fading are modeled by allowing the channel gains Hi j to
vary with time in random fashion. In our model, we make the block-fading (also known as
quasi-static) assumption in which we assume that the channel matrix remains constant for the
duration of a block, i.e., a duration of T channel uses. Across blocks, the channel matrices
are assumed to be statistically independent.

The (nr×T ) matrix W represents the additive noise that is present in the channel. We assume,
as is typical, that the components of W are independent and identically distributed (i.i.d.) and
complex, circularly-symmetric Gaussian, i.e., that each component Wi j of the noise matrix W
is distributed according to

(2) PWi j(z) =
1
π

e−|z|2 , ∀z ∈ C.

The scalar θ =


ρ
nt

where the constant ρ represents the transmitted signal power and at the
same time, SNR, since in our noise model, the variance of the complex noise variable is set
equal to 1. The denominator nt appearing in the expression for θ ensures that the transmitted
power is the same regardless of the number of transmit antennas used. In referring to ρ as
the SNR, we have also implicitly assumed that the variance E(|Xi j|2) of the each code-matrix
component is set equal to 1 in the code design.

1.B Decoder

In our channel model, the receiver is assumed to have full knowledge of the channel matrix
H. We assume a decoder that, given a received matrix Y , selects the code matrix X̂ that was
most likely transmitted. Such a decoder is known in the literature as a maximum-likelihood
(ML) decoder. It can be shown that the ML decoder minimizes the probability of decoding to
an incorrect code matrix. This probability will be referred to as the probability of codeword
error and denoted by Pe. Given the Gaussian nature of the noise, it can be shown that ML
decisions result when, for a given received matrix Y , the decoder selects that code matrix X̂
as having being transmitted, having the property that HX̂ is closest in Euclidean distance to
the received channel matrix Y , i.e., the decoded code matrix X̂ minimizes the quantity

(3) Y −θHX̂2
F ,
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called the ML metric, where AF denotes the Frobenius norm of matrix A. Determining a
closed-form expression for the probability of error of a ST communication system is typically
difficult. We often settle for a simpler description that describes the behaviour of Pe for large
values of SNR. Towards this end, we introduce the following convenient notation. We will
write f (SNR) .

= SNR−b if

(4) b =− lim
SNR→∞

log( f (SNR))
log(SNR)

.

Analogous definitions hold for the notation ≤̇ and ≥̇. If in a communication system where
fading is encountered, the probability of error satisfies

(5) Pe
.
= SNR−d

we will say that the system has diversity d. As will be seen, the diversity d of a ST commu-
nication system can often be determined exactly.

1.C Fundamental Limits

Entropy and Capacity Consider an information source that outputs a sequence {Xi}n
i=1 of

i.i.d. discrete random variables, having probability density function pX(x), x ∈X, where X is
the symbol alphabet of the source. The entropy of such a source is a measure of the uncer-
tainty dispelled when a particular source symbol is received. When uncertainty is dispelled,
we say that we have gained information. It can be shown via an axiomatic approach, that the
entropy H(X) of such a source is given by the expression

H(X) =


x∈X
pX(x) log(

1
pX(x)

)dx bits (continuous alphabet),

H(X) = ∑
x∈X

pX(x) log(
1

pX(x)
) bits (discrete alphabet).

In the expression, logs are taken to base 2. If, in the discrete-alphabet case, all outcomes are
equally likely, i.e.,

pX(x) =
1
|X|

, ∀x ∈ X,

then

(6) H(X) = log(|X|).

It follows from this, that H(X) = 1 if |X|= 2 and both outcomes are equally likely and hence,
a bit may be quantified as the amount of information conveyed or uncertainty dispelled upon
being told of the outcome of the toss of a fair coin. The capacity C of a communication
channel is a measure of the amount of information that can be reliably transmitted across the
channel. By reliable communication, we mean communication in which the probability of
decoding error can be made as small as one desires by suitably encoding data. A major result
in information theory, due to Shannon [3] states that reliable communication is possible only
as long as the entropy of the source is strictly less than the capacity of the communication
channel, i.e., provided

H(X) < C.
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Additive, White, gaussian Noise Channel A common example of a communication chan-
nel, the additive, white, Gaussian noise channel commonly abbreviated as the AWGN chan-
nel, is a channel in which the output Y of the channel, a scalar, is given by Y = X +W , where
X is the input and W represents the additive Gaussian noise distributed according to

PW (z) =
1
π

e−|z|2 , ∀z ∈ C.

It can be shown that for large values of the SNR, the capacity of the additive white Gaussian
noise (AWGN) channel is given by

(7) CAWGN ≈ log(SNR).

Ergodic capacity of the Space-Time Channel The ergodic capacity Cergodic of the ST
channel modeled by (1) is the capacity of the ST channel for the case when it is permitted to
code across blocks. By this we mean that information about a particular message is spread
across potentially infinite number of communication blocks. It can be shown that at large
SNR, the ergodic capacity takes on the form

(8) Cergodic ≈ min{nt ,nr} log(SNR).

Thus in a sense, the ST channel has the capability to carry an amount of information equal
to min{nt ,nr} times that which can be carried by the AWGN channel. This observation
caused much excitement in communication circles when it was first announced since it meant
that just by adding a number of transmit and receive antennas and incurring some additional
communication complexity, the capacity of a communication channel could be increased
manyfold. To a cellular operator, it meant that he could with two receive and two transmit
antennas, serve twice as many customers as he could with just a single transmit and receive
antenna.

Probability of Outage We now return to our communication setup wherein it is not per-
mitted to code across blocks. Thus we limit our attention to a time span of T channel uses and
accept that during this time interval, the matrix H appearing in (1) is a single realization of a
set of ntnr random variables. We will also assume that the receiver knows the channel matrix
H, but that the transmitter does not, as the latter would require the presence of a feedback
channel. Let R be the desired rate of communication in bits per channel use (bpcu). We would
like to highlight two key differences between the above framework and the ergodic capacity
framework. Shannon’s channel capacity theorem, when applied to the ergodic ST channel
states that as long as a code is attempting to transmit information at rate R, that is less than
the ergodic channel capacity C, i.e., R < C, the probability of codeword error can be made
to approach zero by encoding information across an ever increasing number of blocks, i.e.,
Pe → 0, using appropriately designed codes with infinite codeword lengths [4]. For the block-
fading model of the ST channel (1), the goal of driving Pe(R)→ 0 can never be achieved for
any finite non-zero rate R that is chosen independent of the channel condition. This is due to
the fact that there is always a certain probability that the channel realization H is unable to
support the rate R of information transmission for any value of information rate R, however
small. A channel that is unable to support the rate of attempted communication across it, is
said to be “in outage" and the corresponding probability is denoted by Pout(R). Thus, the
capacity of the ST channel (1) in the strict Shannon sense [3] is zero. It can be shown via
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an information-theoretic inequality known as Fano’s inequality [4], that the probability of
codeword error is lower bounded by the outage probability, i.e.,

Pe(R) ≥ Pout(R).(9)

Thus in contrast to the ergodic capacity scenario, where one can ensure that Pe → 0, in the
block-fading setup, the best performance one can hope to achieve with a code operating over
the ST channel (1) is Pe(R)≈ Pout(R). A second point of difference, which we will see later
is that at high SNRs, explicit codes with short block lengths T ≥ nt suffice to achieve the best
performance. This is in contrast to Shannon’s coding theorem [3] which require encoding via
codes of infinite block length.

Not surprisingly, the central goal of ST communication is to come up with a coding scheme
whose associated probability of codeword error Pe(R) is as close to the outage probability
Pout(R) as possible.

§ 2 Two Approaches to Code Design

The ST community has in a sense, adopted two approaches to achieve this goal.

First Approach Under the first, it is assumed that the entries Xi j of each code matrix X are
drawn from an alphabet A of size q =| A |. To transmit at rate R bpcu, the code designer
typically constructs a ST code X of size | X |= 2RT and then selects each code matrix with
equal likelihood in accordance with a given stream of input message symbols. It follows from
(6), that the average amount of information transmitted per successful reception of the code
matrix at the receiver end is equal to R bpcu. In this case, it can be shown that the probability
of outage has a large SNR exponent equal to (−1)ntnr, i.e.,

Pout(R)
.
= SNR−ntnr .

Second Approach Under the second approach, the rate of information transmitted is al-
lowed to vary with the SNR and is given by an expression of the form

(10) R = r log(SNR) bpcu.

The parameter r in the expression, is called the multiplexing gain (MG). The expression for
ergodic capacity given above in (8) suggests that the range of r for which the probability of
error can be kept low is limited to the range 0 ≤ r ≤ min{nt ,nr} and this can be shown to be
the case. Thus our interest is now in the probability of error performance of a ST code for
MG in the range 0 ≤ r ≤ min{nt ,nr}. Here again, the goal is to make the probability of error
as close to the probability of outage as possible. For large values of SNR, let us define outage
exponent dout(r) by

Pout(r)
.
= SNR−dout(r).(11)

We can similarly associate an error exponent de(r) with the probability of error, i.e.,

Pe(r)
.
= SNR−de(r),(12)

then the goal of ST code design under the second approach, is to design codes whose error
exponent de(r) equals the outage exponent dout(r).
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§ 3 Fixed Rate Approach

In the fixed-rate setting, ST codes are designed to operate in the block-fading setting, at a fixed
rate R bpcu. Since determining a closed-form expression for the probability Pe of codeword
error is difficult, analysis typically focuses on a related measure that is more tractable, namely
pairwise error probability.

3.A Pairwise Error Probability

The pairwise-error probability (PEP), Pe(X1 → X2) is defined as the probability that X1 is
transmitted, but that X̂ = X2 is decoded as having been sent, under the assumption that the ST
code is comprised of just the two code matrices X1,X2. Given the PEP for every pair (X1,X2),
one can derive a simple upper bound on the codeword error probability Pe.

Given that we are employing an ML decoder, it is not surprising that the PEP is a function of
the squared Euclidean distance d2

E between the received matrices HX1, HX2:

Pe(X1 → X2|H) = Q


dE(H)√
2



≤ e−
d2
E (H)

4 ,(13)

where

(14) Q(x) =
1√
2π

 ∞

x
e−

u2
2 du.

This is the PEP for a given realization of the channel matrix H. By averaging over all possible
realizations of H, one obtains Pe(X1 → X2). We now provide an alternate expression for d2

E
which provides insight into the problem of code design for improved performance and which
is easier to average over various channel realizations. Let X := X1 − X2. Then, since
XX† is a Hermitian matrix, we have the decomposition

XX† =V LV †,

where L is the diagonal matrix of eigenvalues of XX† and V is a unitary matrix. We set
D = HV . Then in terms of the components {l j} of L and di j of D, the squared Euclidean
distance has the alternate expression:

d2
E = θHX1 −θHX22

F

= Tr(θ 2HXX†H†)

= θ 2
nt

∑
j=1

l j

nr

∑
i=1

di j2 .(15)

Using (13) and (15), and averaging over all channel realizations H, one obtains the upper
bound on PEP given below :

(16) Pe(X1 → X2)≤


SNR
4nt

lgm

−νnr

,
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where ν = rank(X) = rank(XX†) and lgm = (∏ν
j=1 l j)

1
ν is the geometric mean of the

non-zero eigenvalues of XX† . If PEP ≤ 1
(kSNR)d then k is called the coding gain and d is

called the diversity gain of the system. Thus from (16), we can see that the diversity gain is
nrν and the coding gain is lgm.

It follows from the discussion above, that from the point of view of minimizing the probability
of pairwise error, the code designer should aim to design codes in such a way that the rank
of the difference matrix X = Xi − Xj be as large as possible and then, given the rank,
making the product of the non-zero eigenvalues as large as possible. These design criteria are
formalized below :

• Rank Criterion : Maximize

min{Rank(Xi −Xj) | Xi,Xj ∈ X, i = j}.

While it is clear that the maximum possible value of difference rank equals the number
nt of transmit antennas, as we shall see below, rate considerations may force us to work
with a lesser value of minimum difference rank.

• Determinant Criterion : Maximize the minimum of the product of non-zero eigenval-
ues of the difference matrix X = Xi −Xj as this maximizes the coding gain.

3.B Rate-Diversity Tradeoff

For a fixed size |A| of the code-symbol alphabet A, the amount of diversity gain achievable
is a function of the rate of information transmission. For the purposes of quantifying this
tradeoff, it will be found more convenient to use a slightly different measure of information
rate. Let RA be the information measured in number of symbols from the alphabet A per
channel use. This is equivalent to saying that the ST code is of size

(17) |X| = |A|RAT .

Since we also have
|X| = 2RT ,

we have the rate conversion equation,

(18) R = RA log(|A|).

The rate-diversity tradeoff is a consequence of the Singleton bound below. This bound dic-
tates the maximum possible rate RA of a ST code X when the difference rank is constrained
to be no smaller than ν , 1 ≤ ν ≤ nt .

Theorem 1. [5] Let A be a symbol alphabet of size |A|= q that is a subset A⊂ F of some
field F. Let X be a ST code over A such that the difference X1 −X2 for any pair of distinct
matrices X1,X2 ∈ X has rank ≥ ν . Then the size of the ST code X is upper-bounded by

|X| ≤ qT (nt−ν+1).

Thus the code rate RA must satisfy the upper bound

RA ≤ (nt −ν +1).(19)
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Proof: If the first nt −ν + 1 rows of the two distinct code matrices X1,X2 are identical, the
difference matrix X = X1−X2 will have rank < ν . It follows that X cannot be of size larger
than |A|T (nt−ν+1). The result follows.

Remark 1. (19) is known as the rate-diversity tradeoff 1. Note that the tradeoff is independent
of the number of receive antennas nr and for nt ≤ T , is independent of T as well. The
maximum achievable diversity for a given rate RA can be determined from the rate-diversity
tradeoff as plotted in Fig. 2 for the case when nt = 4.

Figure 2: Rate Diversity Tradeoff for nt = 4

3.B.1 Maximal-Rank Codes

Codes that achieve the rate-diversity tradeoff are known as maximal-rank codes. In this
section we will show how maximal-rank codes can be constructed for the case when the code
symbol alphabet is the popular 16-QAM constellation. The ST code matrices constructed
in this section are square and hence correspond to the case when nt = T . Starting with the
construction of maximal-rank codes over the binary field, we construct maximal-rank codes
over 16-QAM alphabet.

Additive Polynomials Polynomials of the form

L(x) =
RA−1

∑
i=0

Lix2i
, Li ∈ F2T

are called additive polynomials because L(x+ y) = L(x)+L(y). It follows from this, that the
collection of zeros (lying in F2T ) of an additive polynomial forms a vector space over the
scalar binary field F2 of dimension not exceeding RA−1. Such polynomials will be used in
the constructions presented below of maximal-rank codes.

Maximal-Rank Binary Codes A maximal-rank-ν , (nt × nt) binary code B, is a maximal
collection of matrices over F2 such that the difference X1 −X2 of any two distinct matrices

1Not to be confused with the diversity-multiplexing gain tradeoff which also discusses the tradeoff between
rate and reliability, but which applies only to the case when the operating rate is a function of SNR.
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has rank ≥ ν . The size of the code must necessarily satisfy the Singleton bound and is hence
given by:

|B| = 2nt−ν+1.

We show below, how additive polynomials can be used to construct maximal-rank codes.
In turn, maximal-rank binary codes will enable the construction of ST codes achieving the
rate-diversity tradeoff.

Theorem 2. [5] For any nt ≤ T < ∞ and 1 ≤ ν ≤ nt , let RA = nt −ν+1 and define the set
of code polynomials by

L= {L(x) : L(x) =
RA−1

∑
j=0

L jx2 j
,L j ∈ F2T }(20)

Associate to every code polynomial L in L, the vector

cT
L = [L(1),L(α), ....,L(αnt−1)]

where α is a primitive element of F2T . We associate with every code vector cL , the (nt ×T )
code matrix

CL = [L(1),L(α), ....,L(αnt−1)]T

where, by L(α j) we mean, the representation of the element L(α j) as a binary (T ×1) column
vector. Then the collection

X= {CL | L ∈ L}

is a binary, linear, maximal-rank-ν code.

Proof: We only need to establish that any difference matrix has rank ≥ ν and for a linear
code, it suffices to show that any code matrix CL has rank ≥ ν . The theorem would then
follow from the Singleton bound. Note that if aT = [a1,a2, · · · ,ant ], then a belongs to the
left null-space N(CL) of CL iff

nt

∑
j=1

a jL(α j−1) = L


nt

∑
j=1

a jα j−1


= 0.

Since, each such polynomial L(x) has degree ≤ 2RA−1 it follows that |N(CL) |= 2dim(N(CL))≤
2RA−1. The theorem then follows, as the rank(CL) = nt − dim(N(CL)) ≥ nt − (RA− 1) =
ν .

The 16-QAM Alphabet The 16-QAM alphabet AQAM is a popularly employed signal con-
stellation in present-day communication systems and hence it is of interest to design ST codes
over this alphabet. The constellation may be described as the collection of 16 points in the
complex plane (see Fig. 3) given by

(21) AQAM = {a+ ıb | |a|, |b| ≤ 3, a,b odd} ,

where, M is even. The constellation has the alternate description

AQAM = {(1+ ı)[ıa +2ıb] | a,b ∈ Z4},

which will prove useful in our construction of maximal-rank codes over this alphabet.
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Figure 3: QAM Constellation

Maximal-Rank Codes over the QAM Alphabet The theorem below shows how a maximal-
rank binary code can be used to put together a ST code X over the 16-QAM constellation AQAM

that achieves the Singleton bound.

Theorem 3. [5] Let C be a maximal rank ν , (nt ×T ) code over F2. Then, the ST code

X=


(1+ ı)

1

∑
k=0

2k ıCk,0+2Ck,1



where Ck, ∈ C, k,  ∈ {0,1}, also has the property that the difference rank between any two
distinct code matrices is ≥ ν and a code rate R that achieves the Singleton bound given by

RA = nt −ν +1.

Proof: Let X ,Y be two distinct code matrices given by

X = (1+ ı)


ıA0+2A1 +2ıB0+2B1

,

Y = (1+ ı)


ıC0+2C1 +2ıD0+2D1

.

Our aim is to show if the matrices {Ai,Bi,Ci,Di | i ∈ {0,1}} are all drawn from a maximal-
rank-ν code, then X −Y also has rank ≥ ν . We will regard X ,Y as matrices over the ring
Z[i]/8Z[i]. This is a chain ring, i.e., a principal ideal ring possessing a unique maximal ideal
(1− ı) by McDonald’s theorem [6]. Also, any matrix ıP0+2P1 can be expanded in the form,

ıP0+2P1 = [1− (1− ı)]P0  (−1)P1

= [J−P0(1− ı)] [J−2P1]

= J− (1− ı)P0 −2P1 +2(1− ı)P0 P1,

where  refers to Schur product between matrices. Thus, 
1+ı =

X−Y
1+ı can be expanded as

=

ıA0+2A1 +2ıB0+2B1


−

ıC0+2C1 +2ıD0+2D1



= (1− ı)(C0 −A0)+2(C1 −A1)+2(1− ı) [(A0 A1 −C0 C1)+(D0 −B0)]+4(D1 −B1).

Next, assume C0 = A0 and consider



Journal of the Indian Institute of Science  |  VOL 91-1 Jan-March 2011 journal.library.iisc.ernet.in1 6 6


(1+ ı)(1− ı)

= (C0 −A0)+(1+ ı)(C1 −A1)

+2[(A0 A1 −C0 C1)+(D0 −B0)]+2(1+ ı)(D1 −B1).

Since (C0 −A0) is a matrix over F2 with rank ≥ ν , it follows that some (ν × ν) principal
submatrix of (C0 −A0) has non-zero determinant. For any (m× n) matrix G, we will use
G(S1,S2) to denote the principal submatrix of G whose rows are indexed by elements in S1 and
columns are indexed by S2. It follows that

det



(1+ ı)(1− ı)



(S1,S2)

= 0 since,

det

C0 −A0


(S1,S2)

= 0 (mod2),

where (S1,S2) identify the rows and columns of the principal submatrix having non-zero
determinant. If C0 = A0, but C1 = A1, we consider instead 

(1+ı)2(1−ı) and argue in a similar
fashion.

§ 4 Orthogonal Designs

A major and often overriding concern in communication systems is decoding complexity. A
ST code maps a collection {ui}K

i=1 of message symbols onto a code matrix. In general, decod-
ing requires us to identify the particular set of message symbols that yields the code matrix
that is most likely to have been transmitted given the received signal matrix Y . Interestingly,
at times, it is possible to construct ST codes in such a way that one can decode each message
symbol ui without regard to the values of the other symbols. Such ST codes are said to be
single-symbol decodable and clearly incur significantly reduced decoding complexity.

Space-time codes derived from combinatorial objects known as orthogonal designs possess
the property of single symbol decodability and the Alamouti code [7] is a prime example of
such a code and possesses a particularly simple structure.

4.A Alamouti Code

The Alamouti code is a ST code that is designed for the case when there are nt = 2 transmit
antennas. Each code matrix in the Alamouti code has the form:

(22) X =


x1 −x∗2
x2 x∗1


,

where x1,x2 are drawn from an alphabet A that is a subset of the field C of complex numbers.
The difference X1 −X2 between any two distinct matrices X1,X2 is of the form

X :=

x1 −x∗2
x2 x∗1


.
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The difference matrix X is of full rank since the columns of the matrix can be verified to be
orthogonal and thus satisfies the rank criterion needed to obtain full diversity. From Theorem
1, we see that the Alamouti code has nt = 2, ν = 2, RA = 1 and is hence a RA = 1, full
diversity code and thus achieves the rate-diversity tradeoff. The Alamouti code is now part
of the WiMAX IEEE 802.16e wireless communication standard.

Single-Symbol Decodability We now go on to explain the reason why the Alamouti code
is single-symbol decodable. We observe, first of all, that every code matrix X in the Alamouti
code X has a representation as the linear combination, over the reals, of certain fixed matrices
known as dispersion matrices. To see this, let us expand the symbols x1,x2 appearing in (22).

x1 = u1 + iu2,

x2 = u3 + iu4,

where ui ∈ R, 1 ≤ i ≤ 4. Then X can be written in the form

X =
4

∑
i=1

uiAi,(23)

where,

A1 =


1 0
0 1


A2 =


i 0
0 −i



A3 =


0 −1
1 0


A4 =


0 i
i 0


.

The matrices Ai, 1 ≤ i ≤ 4 are called dispersion matrices. We can easily check that these
matrices satisfy

AiA
†
i = I ∀i = 1,2,3,4

AiA
†
j +A jA

†
i = [0] j = i,

(24)

and as we shall see, this is key to the single-symbol decodability of the code. The received
signal at the receiver is given by

Y = HX +W,

where θ in (1) has been absorbed into X . From (24), it follows that the real inner product of
any two matrices HAi,HA j i = j, HAi,HA j equals zero as shown below:

< HAi,HA j > = Re [ Tr(HAiA
†
jH

†)]

=
1
2
[ Tr(HAiA

†
jH

†)+( Tr(HAiA
†
jH

†) )∗ ]

=
1
2
[ Tr(HAiA

†
jH

†)+Tr(HA jA
†
i H†) ]

=
1
2

Tr(H(AiA
†
j +A jA

†
i ) H†)

= 0.
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Projecting Y onto {HAi | 1 ≤ i ≤ 4} we get,

< Y,HAi > = Re [ Tr(YA†
i H†) ]

= Re [ Tr((H
4

∑
j=1

u jA j +W )A†
i H†) ]

= uiRe [ Tr(HAiA
†
i H†) ]+Re [ Tr(WA†

i H†) ]

= uiH2
F +Re [ Tr(WA†

i H†) ].

In this way, message symbol ui has been isolated and can be decoded independently of the
other message symbols. The code is single-symbol decodable since each of the other message
symbols can be decoded in similar fashion. It is natural to wish to extend the Alamouti code
to a larger number of antennas while maintaining rate RA = 1, i.e., we would hope to find in
the case of a (3×3) ST code, a collection of 6 complex matrices {B j | 1 ≤ j ≤ 6} such that
every code matrix can be expressed as a real linear combination of these 6 matrices {B j} and
furthermore that the matrices satisfy the analogue given below, of condition (24) appearing
above:

BiB
†
i = I ∀i = 1,2,3, ...,6

BiB
†
j +B jB

†
i = [0] j = i.

(25)

But as shown below, these are precisely the defining relation of a complex orthogonal design.

4.B General Orthogonal Designs

Definition 1. An (n× T ) complex, linear-processing orthogonal design (C-LPOD), in the
complex variables (xi; i = 1,2, ...,K) is an (n × T ) matrix P whose elements are linear com-
binations (typically, 0; ± xi; ± x∗i ) of the variables xi,x∗i , that satisfies

PP† = (
K

∑
i=1

|xi|2)I.(26)

We will say that the C-LPOD has rate = K/T .

By the linearity of P, we can express P in the form,

(27) P =
2K

∑
i=1

uiAi

for some complex (n×T ) matrices Ai, where

ui = Re(xi) = xi,I, 1 ≤ i ≤ K,

uk+i = Im(xi) = xi,Q, 1 ≤ i ≤ K.

Substituting (27) in (26) and equating variables we get,

AiA
†
i = I ∀i = 1,2, ....2K

AiA
†
j +A jA

†
i = [0] j = i.

(28)
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The equations above imply in particular, that any non-trivial real linear combination P =

∑2K
i=1 λiAi, is a scaled version of a unitary matrix as shown below :

PP† =


2K

∑
i=1

λiAi


2K

∑
j=1

λ jA j

†

= ∑
i, j

λiλ jAiA
†
j

=
1
2 ∑

i= j
λiλ j(AiA

†
j +A jA

†
i )+∑

i
λ 2

i AiA
†
i

=
2K

∑
i

λ 2
i I.

In particular, it follows that any real linear combination of the matrices {Ai} is nonsingular
and hence that the matrices {Ai} are linearly independent. The theorem below by Adam et.
al. places bounds on the number of such matrices {Ai} that one can construct, of a given size.

Theorem 4 (Adams, Lax and Phillips). [8] Let C be complex field. Let {Mi | i= 1,2, .....,Kn}
be (n×n) matrices over C having the property that every real linear combination

λ1M1 +λ2M2 + ........λKnMKn

of the matrices Mi is nonsingular. Let C(n) denote the largest integer Kn for which such a
collection of matrices can be found. Then

C(n) = C(2a(2b+1)) = 2a+2 .

From Theorem 4, when n = T = 2a(2b+1) we have,

2K = Kn ≤ C(n) = (2a+2).

Thus we have that K ≤ a+ 1. As a consequence, the complex symbol rate RA of a (n× n)
square orthogonal design has its maximum value limited by

(29) C(n)/(2n) = (a+1)/(2a(2b+1)),

as shown in the table below:

n C(n) MAX RATE
2 4 1
3 2 1/3
4 6 3/4
5 2 1/5
6 4 1/3
7 2 1/7
8 8 1/2

.

Note that it is not possible to construct a rate RA = 1 square orthogonal design for nt > 2
transmit antennas.
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4.C Orthogonal Designs from Clifford Algebras

Clifford algebras offer a means of constructing orthogonal designs as explained below.

Definition 2. The Clifford Algebra CliffL is defined as the algebra over R generated by L
objects γk, k=1,2,...,L, which are anti-commuting

γkγ j =−γ jγk, ∀k = j,(30)

square roots of unity

γ2
k =−1, ∀k = 1,2, ...,L.(31)

As a vector space over R, CliffL has the basis

BL = {1L}∪{γk | k = 1,2, ...,L}
L

m=2

{
m

∏
i=1

γki | 1 ≤ ki ≤ ki+1 ≤ L}.(32)

Note that the product of more than L generators {γk} can be reduced to a ± product involv-
ing each generator at most once by using the defining relations (30) and (31). To make the
connection with ST codes, we turn to a complex representation of the elements of CliffL.
Clearly, any such representation is completely specified by a representation of its basis ele-
ments which in turn are completely specified by a representation of the generators γks. We are
interested in particular, in unitary representations of γks which when coupled with (31) will
result in an skew-Hermitian representation of the γks. Thus, in summary, we are looking for
a representation of the L generators which will form a collection of L anti-commuting, skew-
Hermitian, unitary matrices over the field C of complex numbers. The matrix representations
Gi of the γi will then satisfy

G2
i = −I and GiG j +G jGi = [0] or equivalently,

G†
i = −Gi and GiG

†
j +G jG

†
i = [0]

and thus satisfy the conditions needed for constructing orthogonal designs (28). Thus or-
thogonal designs of different sizes can be constructed through the representation of CliffL for
different L.

Example 1. A representation of anti-commuting, skew-Hermitian, unitary matrices over C
for the case L = 2 is presented below:

R(12) =


1 0
0 1


:= σ0 R(γ1) =


0 1
−1 0


:= σ1

R(γ2) =


0 ı
ı 0


:= σ2 R(γ1γ2) =


ı 0
0 −ı


:= σ3,

where R denotes the representation, σ1, σ2 and σ3 are unitary skew-Hermitian and σ1σ2 =
σ3.

Starting with the unitary representation for Cliff2 given in Example 1, the unitary represen-
tation of CliffL for any L can be derived. From Proposition A.8 of [9], Cliff2M−2 can be
represented as a tensor product of M − 1 copies of representations of Cliff2. Thus the ma-
trices which represent Cliff2M−2 are of size 2M−1. We get an explicit unitary representation
of Cliff2M−1 for all M as given by the Theorem A.2 of [9]. The unitary representation for
Cliff2M−2 is also obtained from the representation matrices of Cliff2M−1 by Theorem A.2
of [9]. Thus, unitary representations of both Cliff2M−1 and Cliff2M−2 are of size 2M−1.
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Application to Space-Time Code Construction We now consider the problem of code
construction from orthogonal designs corresponding to unitary representations of Clifford al-
gebras. Given a specific number nt of antennas, we consider the representations for generators
of CliffL where L = 2log2 T +1 for T = 2log2 nt. The representations of the L generators of
this Clifford algebra, together with the identity matrix, form a collection of (L+1) matrices
each of size (T ×T ). This collection of (L+1) matrices can be converted into a set of L+1
unitary matrices {βi | 1 ≤ i ≤ (L+1)} over C satisfying the following conditions needed for
complex orthogonal designs by multiplying them on the left by an arbitrary unitary (T ×T )
matrix β1:

βiβ †
i = I ∀1 ≤ i ≤ (L+1)

βiβ †
j +β jβ †

i = [0] ∀1 ≤ i = j ≤ (L+1).
(33)

Finally, the ST code for nt antennas is obtained from these (T ×T ) matrices by deleting the
same set of (T − nt) rows from each of these matrices. It can be easily shown that the sub-
matrices thus obtained continue to satisfy the conditions (33). Thus, the complex symbol rate
of a ST code for nt transmit antennas, derived from unitary representation of clifford algebra
is given by

RA =
log2 T +1

T
,

i.e., RA =
log2 nt+1

2log2 nt
.(34)

From this, it follows that ST codes derived from Clifford algebras in this manner are optimal
when nt is a power of 2. For other values of nt , rectangular codes obtained from Clifford
algebras do not achieve the maximum rate achievable by a complex rectangular orthogonal
design [10].

Remark 2. Orthogonal designs permit maximal transmit diversity at the cost of rate. The
rate can be recovered by relaxing the single symbol decodability condition to multi-symbol
decodability. Clifford algebras can also be used for constructing multi-symbol decodable ST
codes, see [22].

§ 5 Fixed Multiplexing Gain Approach

We pursue in this section, a second approach to ST code design where the goal is to design
a ST code that is designed to transmit at fixed MG r. This means that the rate in bpcu
communicated by the ST code will vary with SNR as shown below:

R = r logSNR bpcu.

Since the rate is a function of the SNR, we speak of a coding scheme, by which is meant a
family of codes indexed by SNR as opposed to dealing with a single code in the fixed-rate
case.
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5.A Diversity-Multiplexing Gain Tradeoff

It was shown in a landmark paper of Zheng and Tse [11] that there is a tradeoff between rate,
represented by MG r, and reliability, measured by diversity gain d(r). This tradeoff is termed
the diversity-multiplexing gain tradeoff (DMT) and is characterized in the theorem below for
the case of the Rayleigh-fading channel.

Theorem 5. [11] Assume T ≥ nt + nr − 1. The optimal (i.e., best possible) tradeoff curve
d∗(r) is given by the piecewise linear function connecting the points
(r,d∗(r)), r = 0,1, . . . ,min{nt ,nr}, where

(35) d∗(r) = (nt − r)(nr − r).

In particular,

max
d∗(r)>0

{r} = min{nt ,nr},

max
0≤r≤min{nt ,nr}

d∗(r) = d∗(0) = ntnr .

Figure 4: DMT curve for the case of nt = nr = T = 4.

Zheng and Tse [11] showed that random Gaussian codes achieve the DMT provided T ≥
nt + nr − 1. The restriction T ≥ nt + nr − 1 appearing in the theorem was relaxed to T ≥ nt
by Elia et. al. [12] who presented explicit ST code constructions with T = nt , based on cyclic
division algebras (CDAs) that achieve the DMT tradeoff. This construction is discussed in
greater detail below.

Fig. 4 illustrates the DMT over the ST channel (1) for the case nt = nr = T = 4. An ST coding
scheme that achieves the DMT is said to be DMT-optimal, or simply optimal. Zheng and
Tse [11] also show that the DMT allows for the comparison of diverse ST coding schemes.
For example, the tradeoff achieved by the Alamouti code is shown in Fig. 5 and it can be
seen from the figure, that the Alamouti code does not in general, achieve the DMT 2.

2The Alamouti scheme is however, DMT-optimal for the case of two transmit antennas and a single receive
antenna i.e nt = 2, nr = 1.
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Figure 5: Comparing the optimal DMT curve for nt = nr = T = 2 with the DMT of the
Alamouti code.

5.B Sufficient Criterion for DMT-Optimality

A sufficient condition for a ST code to be DMT-optimal over the Rayleigh-fading channel
was established by Elia et. al. in [12]. The same condition is shown to be both necessary
and sufficient for a code to be DMT-optimal over any statistical characterization of the fading
channel in [13].

Theorem 6 (Sufficient Condition for DMT-Optimality). [12] An (nt ×T ) ST code X oper-
ating at a MG r and satisfying

1. The energy constraint:
θX2

F ≤ T (SNR) ∀X ∈ X.

2. The non-vanishing determinant (NVD) criterion:

(36) min
Xi, Xj∈X

∆X=Xi−Xj =0

det(∆X∆X†) ≥̇ SNR0

is DMT-optimal over the Rayleigh-fading channel.

This theorem can be proven by showing that the probability of error of a ST code satisfying
the conditions laid out in the theorem is negligible for large SNR whenever the channel is
not in outage for the rate of information being transmitted. As a result, the probability of
codeword error of the ST code in the high SNR regime, is equal to the probability of outage,
thereby causing the code to be DMT-optimal.

5.C DMT-Optimal Codes from CDAs

Space-time code construction from CDAs was first proposed by Sethuraman, Rajan and
Shashidhar [14–17]. Motivated by considerations of coding gain for large values of infor-
mation rate, Belfiore and Rekaya [18] introduced an approach for constructing CDA-based
square (n×n) ST codes that satisfied the NVD property. Elia et. al. [12] then established the
DMT-optimality of ST codes from CDA that possessed the NVD property.
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5.D CDA Construction and Property

We will now show how one can go about constructing a CDA-based ST code that possesses
the NVD property. We begin by examining the structure of CDAs and taking note of a key
property. A convenient means of constructing a CDA is given below.

Proposition 1. [14, 18, 21] Let F and L be fields such that L/F is a Galois extension of
degree n whose Galois group G = Gal(L/F) is cyclic, with generator σ . Let γ ∈ F∗ be such
that the smallest power t for which γ t is the relative norm NL/F(u) of some element u ∈ L∗

equals n. The element γ will be referred to as a non-norm element. Let z be an indeterminate
such that zn = γ and impose the multiplication rule: z = zσ() for  ∈ L. Then the direct
sum D= (L/F,σ ,γ) given by

D= L⊕ zL⊕·· ·⊕ zn−1L

is a CDA having index n.

The CDA D is a vector space over its center F of dimension n2. In addition, D is a right-vector
space over the maximal subfield L of dimension n. Every element d ∈ D can be written in
the form d = ∑n−1

i=0 zii where i ∈ L.

D= L⊕ zL⊕·· ·⊕ zn−1L
n

Division Algebra

L
n

Maximal Subfield

F Center

Figure 6: Structure of a CDA.

Left-Regular Representation A ST code X can be associated to D = (L/F,σ ,γ) by se-
lecting the set of matrices corresponding to the left-regular representation of elements of a
finite subset of D [14]. The left-regular representation X of the element x = ∑n−1

i=0 zii, i ∈ L
takes on the form

(37) X =




0 γσ(n−1) . . . γσn−1(1)
1 σ(0) . . . γσn−1(2)
...

...
...

...
n−1 σ(n−2) . . . σn−1(0)


 .

Note that the elements of X are drawn from the maximal subfield L. The non-commutativity
of the CDA endows these matrix representations with a very useful determinant property,
namely that the determinant is always guaranteed to lie in the subfield F of L that is the
center of the CDA.

Lemma 1. Let X denote the (n× n) matrix that is the left-regular representation of the ele-
ment

x =
n−1

∑
i=0

zii, i ∈ L.

Then det(X) ∈ F.
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Proof. We have


n−1

∑
i=0

zii


· z =

n−1

∑
i=0

zi+1σ(i) ,

= z ·


n−1

∑
i=0

ziσ(i)


,

∴ z−1 ·


n−1

∑
i=0

zii


· z =

n−1

∑
i=0

ziσ(i).

It follows as a result, that the left-regular representations of ∑n−1
i=0 zii and of ∑n−1

i=0 ziσ(i) are
similar matrices and therefore have the same determinant. However, from inspection of (37),
it follows that the left-regular representation of ∑n−1

i=0 ziσ(i) equals σ(X) where X is the left
regular representation of ∑n−1

i=0 zii. It follows that X and σ(X) are similar and hence, have
the same determinant, i.e.,

det(σ(X)) = det(X)

i.e., σ(det(X)) = det(X),

so that det(X) ∈ F.

The construction begins by choosing F to be a number field. The particular choice for F
depends on the choice of the underlying signal alphabet A. For the rest of this paper, we
will assume the M2−QAM constellation given in (21). Since, AQAM ⊆ Q(ı) it is natural to
consider CDA with center F = Q(ı).

5.E CDA Possessing the NVD Criterion

Let OF = Z[ı] be the ring of integers in F. Let OL be the integral closure of OF in L. Let
βi, i = 1, · · · ,n be an integral basis for OL/OF. This means that the βis are a basis for the
vector space L/F with the additional property that every element in OL can be expressed
as a linear combination of the βis with coefficients lying in OF. We then choose a suitable
non-norm element γ ∈ F∗ and proceed to construct the CDA D(L/F,σ ,γ). The ST code can
be constructed by only considering the left-regular representations of elements of the CDA
of the form ∑n−1

i=0 zii with i ∈ OL (See Fig. 7). The determinant of the difference of any two
code matrices belongs to F∩OL = OF by virtue of Lemma 1. Since, OF = Z[ı] it follows
that the squared magnitude of any of non-zero element of OF is an integer ≥ 1. As a result,
we have that

(38) min
∆X=Xi−Xj =0

Xi,Xj∈X

det(∆X∆X†) ≥̇ SNR0,

i.e., the ST code so constructed, possesses the NVD property. From Theorem 6, it follows
that CDA-based square (n×n) ST codes with the NVD property achieve the DMT.

Example 2. The Golden code [23] is an example for a CDA-based (2× 2) ST code that is
DMT-optimal. A variation of this code is now part of the WiMAX IEEE 802.16e wireless
communication standard. The CDA associated with the Golden code is of the form D= (L=
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Q(ı,θ)/Q(ı),σ , ı) where θ = 1+
√

5
2 and σ : θ → θ̄ = 1−

√
5

2 . Each codeword matrix X ∈X of
the Golden code is of the form

(39) X =
1√
5


l0 l1

ı ·σ(l1) σ(l0)


,

obtained by restricting each i to the form i = (1+ ı− ıθ)(a+ bθ), where a,b ∈ Z[ı] and
i = 0,1. The non-norm element in this CDA is given by γ =

√
ı.

D= L⊕ zL⊕·· ·⊕ zn−1L
n

  OL⊕ zOL⊕·· ·⊕ zn−1OL

n

L
n

  OL

n

F=Q(ı)   Z[ı]

Field Ring of integers

Figure 7: Construction of a CDA that yields ST codes over the QAM constellation possessing
the NVD property.

From the discussion in Section 5.D, it follows that the problem of constructing DMT-optimal
ST codes from CDAs reduces to one of identifying cyclic Galois extensions L of arbitrary
degree n over F = Q(ı) containing a suitable non-norm element γ . The lemma by Kiran et.
al. [19] given below, simplifies the task of identifying a non-norm element γ .

Lemma 2. [19] Let L be a cyclic extension of a number field F. Let OF denote the ring of
integers of F. Let p be a prime ideal of OF that remains inert in the extension L/F and let
γ ∈ p\p2. Then γ is a non-norm element.

Thus, for constructing DMT-optimal square (n× n) ST codes from CDA, it is sufficient to
construct cyclic extensions of Q(ı) of degree n such that OF contains a prime ideal p that
remains inert in the extension. Elia et. al. [12] provided two explicit constructions for CDA
based DMT-optimal square (n×n) ST codes valid for any n = T = nt . One of these construc-
tions is presented in the theorem below.

Let the integer n be factored as follows:

(40) n = 2e0
r

∏
i=1

pei
i = 2e0n1

where the {pi} are distinct odd primes. Given an integer m ≥ 3, let ωm = exp(ı2π
m ).

Theorem 7. [12] Let n be given as in (40). Let pe be the smallest prime power such that
n1|φ(pe). Let G be the Galois group of Q(ωpe)/Q. Let H be a subgroup of G of size φ(pe)/n1.
Let K be the fixed field of H. Let M be the compositum of K and Q(ı) and L be the com-
positum of M and Q(ω2e0+2). Then L is the desired cyclic extension of Q(ı) of degree n
(Fig. 8).
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Figure 8: Illustrating the CDA construction in Theorem 7.

Let ρ ∈ Z∗
pe be a generator of the cyclic group Z∗

pe. Let q be a rational prime such that

q =




ρ (mod pe)

5 (mod 2e0+2)
.(41)

Let β be a prime ideal of Z[ı] lying above qZ in Q(ı)/Q. Then β is the desired prime that
remains inert in the extension L/Q(ı).

§ 6 Conclusion

In this paper, we considered the problem of code construction for block-fading space-time
channel. Two approaches were considered corresponding respectively, to communicating at
fixed rate and communicating at a rate indexed by the SNR as determined by a fixed value
of the multiplexing gain. In each case, a tradeoff between rate and reliability was seen to
hold. The challenge in code design is consequently one of designing efficient codes that
optimally achieve this tradeoff. Algebraic approaches that made use of principal ideal rings,
Clifford algebras and cyclic division algebras to come up with efficient code designs have
been remarkably successful in meeting this challenge and some of these approaches have
been discussed here.
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