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Abstract 

Some results on asymptotic state estimation for a class of continuous time nonlinear stochastic systems 
are Presented. The main property of the estimators developed is that the estimation error goes to ze r o 
with probability one and in mean-square as time tends to infinity. The proofs are based on Ito calculus 
S the martinple convergence theorems. 
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Introduction 

The theory of asymptotic state estimation or observer theory (references 7, 4, 5, and the 
references therein) has been concerned mainly with deterministic dynamic systems. The 
corresponding theory for stochastic systems seems to have been neglected. Some 
results in this direction have however been obtained for discrete-time systems'. The 
need for such a theory can be appreciated in the nonlinear estimation case where finite- 
dimensional realisations of the optimal (minimum error-variance) filters are unavailable 
barring a few cases, and the behaviour of sub-optimal filters is largely unknown. 

In this paper we will be concerned with developing asymptotic state estimators for 
a class of continuous-time nonlinear prof -  abilistic systems. These estimators will not 
be 	in the usual sense but will have the property that the estimate will converge 
(with probability-one) to the true state as time tends to infinity. We will call such 
eos_tunators observers (section 3 gives a precise definition), as an extension of the concept 

observers from the deterministic theory. 

, kt eCen: 1 .Y some work has appeared on " observers " for stochastic continuous-time ys  
4 eins , 11, 12 .  It should be noted however that these " observers " are not asymp- totic 
an  state estimators either with probability-one or in mean-square, nor do they have 

Y 
 

?anal Property - ionly the mean -square error remains bounded as t co. Our 
(4:114  afithe words " stochastic observer" is strictly in the sense of with-probability-one 

sections°3) P°ssiblY in mean-square) asymptotic state estimation 
(see the definitiontin 

227 
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We use the framework of Ito calculus. The basic motivation for the 
approach 

here, is from some results obtained elsewhere' in continuous-time stochastic 
a ustd  mation, and we use essentially similar arguments.* 

2. Preliminaries 

In this section we describe the system to be considered and state some associated u sual, 
tions. These assumptions will hold throughout the paper unless otherwise m entioned' 

The state and observation equations are 

{dx (iv, =f 	x (w, 	di g (t, u (w, 	dt 	(w, db (w , (NL) 
lily (w, t) =-- h 	x (w, 	di 	OV, db (w, t) 

where x, y are n edimensional vectors, b is an RP-valued Wiener process, A, and Atm 
appropriately dimensioned matrices whose elements are meacurable stochastic processes, 
All stochastic processes are defined on a probability space (4, (13, P), with urEq.11, the  
probability space variable. Thece is an increasing family, {A}, of sub a-algebras of B, 
such that b (w, 0 and the elements of A 1  (w, t), A 2  (V, t) are ok, measurable for al} :>, 
and the a-algebra generated by {b (it', t) — b 	or), t 	.51 is independent of uk, r 
all s 	0. Only separable vergions€ of all processes will be considered. 

f (t, x) satisfies the 	usual 	conditions for the existence and uniqueness of the solu- 
tion of the state equation in (NL), i.e., f: [0, 00) xR" .- Hi is Borel measurable and 

11 (1, x l ) — f (t, x 2) 	()il 	x2 II,  for t 	0, xi , x2  dr' 

and 
f (t, x) 11 2 	12 (i) (1 + X 11 2) 9  for t 	0, xE 

where l (t) and 12  (t) are locally bounded. h (t, x) and g (t, u) satisfy the same type of 
conditions. it (w, t) is a {y (w, s), 0 	s 	t} measurable q-vector control, such that 
the solution of (NL) exists—e.g., it could be a function of y which is locally Lipschitz. 
Further restrictions on f and h will be stated later wherever necessary. 

The conditions on A 1  and A z  are 

(A) sup E(11 A 1  (w, 011 2  -I- 	(w, t) 1! 2) .< 00 5  and 
ga-0 
cc 

(B) E (11 A i  (w, 	dt < oo. 
0 

n 	Eit 	1TX ed 
In the above and all that follows, the vector and matrix norms are II x 	• .."11, 

II B 112 	7; (BTB) respectively, where Tr  = trace and superscript T' denotes transit') 

ilabk 
It has been brought to the attention of the author, by a referee, that related resultsa rea  

in a book by R. Z. Hasminsku: Stability of systems of Differential equations under r
17; 

perturbations of parameters, in Russian, an English translation of which has reeentlY 
!is* by the American Mathematical Society. 
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denotes the expectation operator on (V,c, P) and E (. I ott) the conditional expec- tat ion  given the a-algebra at . I„ Is the n-dimensional identity matrix. 

All stochastic differential equations in this paper, such as (NL), are to be interpreted 
oresponding integral equations. The integrals w.r.t. Wiener processes such as as c  

j A i  (w, db (w, s) are the usual Ito integrals 3, fn our development we will need 
integrals w.r.t. the observation process y(w, t). Integrals of the form f B (s) dy (w, s) 
can be defined so that they are {y (w, s), 0 s t} measurable and the 
lion holes 
	 following equa- 

I B (s) dy (w, s) = S B (s) h (s, x (w, s)) ds 
0 	 0 

-I- S  B(s)/1 2 (w,$)db(w,$), 
0 

where B is a locally square-integrable matrix of compatible dimensions. The details 
of tht. definition and proofs of the above can be found in references 8, 9, 1. We will 
use equation (1) in our development wherever necessary without further comment. 

We will use the abbreviation w.p. 1 for 'with probability one '. 

3. Statement of the problem 

We wish to develop under suitable conditions, a stochastic dynamic system whose state 
Converges to the state of (NL) (w.p. it or in mean square) as time tends to infinity, based 
on the knowledge of the control u and the observation y. We have the following: 

Definition : A stochastic dynamic system is said to be a with probability one stochastic 

observer (WP1S0) for the system (NL), if its state 2(w, is measurable w.r.t. the a'- 

algebra generated by {y (w, a), 0 	s 	I}, and w.p. 1 II 2 (w, 	x (w, t) 11  --> 0 as 

t -4 00. It is sRid to be a mean square stochastic observer (MSSO) if 2 is y measurable 

and  E (11 (w, 	x (w, 0 119 	0 as t 	00. 

The general form of the WP1SO and MSSO which we shall consider for (NL), is 

(Iv, = .x. 	f (s, (w, s)) ds 	f g (s, u (w, s)) ds 

(ASE) 	 0 	 0 

+3
C  

0 
Where x0  is an arbitrary n-vector and a (0 

0 is a weighting function satisfying 

00 
(i) 1 a2 (t)dt < oo, 	a (t) dt =-- 00. 

0 
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The estimate 2 is defined by cu. (ASE), the existence of whose solution Will b  
cussed below, and has no relation to the conditional mean or any other Optimal oe dis 
optimal estimator. 

Under the assumptions stated in Section 2, the existence and uniqueness of a 
wcontinuous solution of (ASE) can be shown by a standard Picard iteration 

techand we do not go into the details. Using the {y (w, s), 0 s t} measurability of 
if a (s) dy (w, s) and u (w, t) in the existence proof for (ASE), the y measurability 

off 
can readily b3 shown. The local boundedness of E I (it', 11 2) and E (II x O tt, on 
are also obtained during the exigence proofs. We will draw on these facts later is 
required. 

4. Main results 

In this section we state and prove the main results of this paper. 

Theorem 1: If f and h satisfy the following conditions 

(C) (x1  — x2)7 ( f (t , x 1 ) —f  (t , x 2)] S 0, for all 	X2 E .R" and t 0, 

(D) for every k > 0, there is a b (k) > 0 such that for all t 0 

inf 	(x, 	x 2)T (t 	— h (t x2)} 	b (k) 
ir.sp 2,-2,114Skel 

(interchange k and ka' if k> 1), then (ASE) is a WP1S0 for (NL). 

Theorem 2: If f satisfies condition (C) and h satisfies 

(E) there is a d > 0 such that for all t 	0, x„ X2 E .Rn  

(Xj — x ar [h (t , x i) — h (t , x 2)] 	d fl x , — x 2 11 21 

then (ASE) is a WP1 SO and M SSO for (NL) (Note : (E) (D)). 

To prove the theorems, we have to prove the y- measurability of 2 and the convergence 
of the estimation error 2 (w, 	x (w, t) to zero w.p. I (theorems 1, 2) and in Ine! 
square (theorem 2), as t 	oo. The remarks at the end of the previous section estabbse 
the measurability part. Hence the proofs given below will deal with the convergen ce  

assertions only. 

If A, and A2 are non-random matrices, conditions (A), (B) reduce to 

sup (11 A. (t) 	A 2  Q ) 	< 00, tale 	 0 

In order to preserve the clarity of the proofs 
prove all our results in this context. 

II Al (t) 11 2  dt < oo. 

and avoid making them too 
long, we St 
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proof of Theorem 1 : Let e (w, t) 2 (w, t) X (w, 1). To pi ove the theorem we  
have to 

WhP. I e (w, 0 -- Z (w) 	 i 
show that w.p. 1 II e (w, 11 -4 0 as t oo. We will show this by proving 

as t -4 00, where Z s a finite random variable, and then 
sowing Z () 	w e ll ' 
s 	

11 2  + 
I. We prove the convergence of e (w, OP first. w   

subtracting (NL) from (ASE) 

de 041,0 	e (w, t) 	A (w, 	-f (t,x (w,t))1dt 

± a (t) [h (t, x (w, t)) — h (t,x (w, +  

[a (t) A 2 (i) — 	db (w,t). 	 (2) 

Applying Tto's differentiation rules we obtain for all t 	T1 	0 

e (w , t) 11 2 	11 e (w , T 1 ) 112  + 2 .1 
T t  

er (w, s) (1 (s, e (w, s) + x (w, s)) 

f (s, x (w, s))] ds 

+ 2 ft  a (s) er (w, s)[h (s, x (w, s)) — h (s, x (w, s) + e (w,$))) ds 

+ 2 f ta (s) (w, s) A2 (S) 	(Iv, s) Ai 	db (w, s) 
Tet  

-I- ft  Tr  {(a (s) A 2 (S) 	A t  (s)) (a (s) A 2 (S) — A1 (0) ds. 	(3) 
7, 

As discussed in section 3, 2 and x have locally bounded second moments, which implies 
that E (11 e (w. 0 11 2) is locally bounded. Together with conditions (0, (A), (B) on a, 
Ail A2, (with A 1 , Az non-candom) this implies that the second moment of the integrand 
of the Ito integral term in eqn. (3) is locally integrable. This yields that the Ito integral 

; term is a Martingales i.e., for all t 	0 

E 	[a (s) (w, s) A 2 (S) 	er (w, s) A (s)] db (w, s) I chi} = 0 w.p. 1. 	(4) 
T I go' 

Taking conditional expectations of eqn. (3) and using (C), (D), eqn. (4) we have for 

t 

E  (11 e ()IC 0 11 2 1 tArs.) 	e 	TO 11 2  ± f 

	

R (s) ds w.p. 1, 	 • - 
T 

where R (s) is a non-negative function depending on a, A l , Az, which is integrable Oil 

(0, 00) due to conditions (i), (A), (B). 

Define  z (w, 
t) 	II e (w, 11 2  ± 	R (s) ds (well defined and finite since R is integrable). 

Then Using 
eqn. (5) and the non-negativity of R, it is easy to show that z is a non-negatiye 



232 	 PROD I P SEN 

supermartingale, and hence z (w, 1 
co(reference 6, p. 526 and noting 

00 
Also f R (s) ds -* 0 as t co since 

0 
of z (w, 0 immediately yields, from 

:fonverges w.p.1 to a finite-valued random variable. 
that a supermartingale is a negative submartinoki 
R is integrable. The convergence of this term

am  
the definition of z: 

Ile (w, 011 2  -) Z (w) w .p. 1 as t 	oo, 

where Z (w) is a finite valued random variable. 

We now show Z (w) = 0 w.p. I. Taking expectations of eqn. (3) with r=0 truss  
posing the 2nd integral to the left, using condition (C), eqn. (4), we have 

2E { ft  a (s) et (w, c) [1: (s, x (w, s) + e (w, s)) 	h (s, x (w, s))] ds} 
0 

E (II e (lis , 0) 111 + 	R (s) ds 	< co, 
0 

by the integrability of R and the finiteness of E (11 x (w, 0)112). Condition (D) shns  
the non-negativity of the integrand of the L.H.S. of the above inequality, which permits 
the application of Fubini's theorem to the above to yield 

0 	1 a (s) E {er (w, s)[h (s, x (w, s) + e (w, s)) 

Ii (s, x (w, s))11 ds 	K, for 	0, where K is finite. 

Since I° a (t) dt = oo by (ii), we immediately obtain from (7) • • 	0 

lim inf E fter (w, t) [h (at, x (w, t) + e (w, 	— h (I, x (w, 	= O. 
:430 

Using the definition of lirn inf and the non-negativity of the term in braces [conditim 
(D)] we have 

et (w, 	[h (t i, x (w, t 4) 	e (w, ( 4)) — h (t i , x (w, t i))] -* 0 

in 1st mean as i 14 oo, where {t i} is a sequence of real numbers increasing to infiniri 
Then (ref. 6 p. 164) a subsequence (t in } of {at} can be extracted such that 

lim eT (w, t [h (t in , x (w, 	+ e (w, 40) 1•400 
(8) 

—h(ti„,x(w,t,„))]= 0, W.P. 1. 
...iv PO 

Let S = {intersection of the probability-one sets of (6) and ( 8)}. 
=1. Let wo  € S. Let if possible Z (wa > O. Fix k with 0 < ks < nun (hz 
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Then using the convergence of jJ e (w o , t) 11 2  to Z (w o), there is a T' < oo such that for all t 	T', 	11 e (wo, 0 	k . Condition (D) then yields 
er (w o, t) [h (t, x (w o , t) + e (w0 , 	h (t, x (w 0, On 	b (k) > 0, 

for all t 	, which contradicts eqn. (8) above. Hence Z (w o) is not greater than zero, 
which implies since Z is non-negative, that Z (w o) =-- 0. Since w o  was chosen to be an 
arbitrary element of a probability-one set we have Z (w) --= 0 w.p. 1, which was to be 
shown. 

Proof of Theorem 2 : Since condition (E) implies condition (D), theorem 1 holds and 
w.p. 1 convergence to zero is at hand. For the mean square convergence we proceed 
as follows. Taking expectations of eqn. (3), using conditions (C), (E), the martingale 
property of Ito integral term in eqn. (3) (see eqn. (4) of theorem 1), and the 
definition of R (see eqn. (5)), we have for all t 	T 	0 

E (11 e (w, 	E (II e (w, 	112) + f R (s) ds 

	

— 2d I a (s) E (II e (w, s) 	de:. 
r:  

By the integrability of R (theorem 1) and the non-integrability of a (*) (condition (ii)) 
and d> 0 (condition (E)), we see that the proposition of the appendix holds in its 
entirety with the following identifications 

m (t) =E (11 e (w, t) 11 2) , f (t) = R (t) h(t) = 2d a (0, 

and we therefore have E (11 e (w , t) 11 2) 	0 
appendix gives an explicit bound, we have 
in this case. 

as 	oo. Since the proposition of the 
rate of convergence information available 

Remark 1 The proofs for the general case where 211, A2 are random is a bit too long 

to be given here. The basic problem is that the martingale property of the Ito integral 
term in eqn. (3) is lost unless restrictions on higher (than 2nd) order moments of 
A2 are imposed. To avoid this a truncated process argument is uced. A sequence 
of stopping timese and a related sequence of stopped processes is defined in terms of the 
Process e (w, t). Equations and inequalities concerning these are developed as in the 
proofs presented in this paper, and later limits are taken. In this approach, general 
(nonlinear) dependence of A ) , A 2  on the state x can also be included, subject to the 

usual restrictions on nonlinearities in Ito equations. The details of all this and related 
results are available in the author's thesis'. 

Remark 2 : It should be noted that the conditions on the ot servation function 
h, as 

given by (0) or (E) can be relaxed somtwhat. For example (E) can be repliced by 
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ed 	iche 

for some bounded nntrix K (t). Then, in the observer equation (ASE), ( 0 has  
replaced by a (t) K (t). Similarly for (D). The modifications requir in th

e  
 

are trivial. 	
Proof 

Remark 3 : In the case where f and h are both linear, a variation of th.: app roach  
this paper car be used to rlax the conditions on the system which would otherwisei; 
deeded if the results of Theorems 1 or 2 are applied directly. The conditionc 

on  F (7)  
and If (0, where f (t , x) 	F (t) x and h (t, x) z= H (t) x, are then 

(i) The state transition matrix corresponding to F (1) : 4 (t )  to) is bounded for  
t 	t o 	O. 

.00 (F(t), H(0) is a uniformly completely observable pair. 

The conditions on the noise remain essentially the same. 
(too long to be given here) will be presented elsewhere and 
author's thesis'. 

The details of the abnit 
are also available in the 

5. Discussion 

The restictions on systems 	to which the results of this paper apply are of two types: 
conditions on the deterministic part, and conditions on the noise terms. 

The most important restrictions for the deterministic part are those embodied ta 
(C) and (D) ((E) is a special case of (D)). Condition (C) on the state eqn. means that 
the distance between two solutions of (NL), in the noise-less case, should remain in a 
bounded region depending on their initial distance. Notice that (C) is considerably 
weaker than the condition (x, 	x2)T [f (t, xj ) — f 	x2)] 	k II — x 2 r, *hid 

would imply that all the solutions of (NL) tend to the same solution as 1 -> 00 (in the 
noise free case). In fact in this case an observer which does not use the observations

easily be built ! Condition (D) (with the extensions of Remark 2) on the observatiog 
function can be interpreted as an observability condition. It implies that in a noise- 
les situation the observations due to different states are uniformly distinguishable. lii 

the absence of a reasonably well-developed observability theory for nonlinear systenlsi 
this condition, which requires that the state and observation have the same dimeasingi 
seems unavoidable. 

The major restriction on the noise terms is condition (B) which implies that the PO 

in the state-equation dies out in mean square sufficiently rapidly. This can be also • 
soul' 

to imply that the part of the covariance of x (w, 1) due to the noise, has boundeu 
moment. For example if f = 0, g --= 0, (NL) becomes : dx (w, t) = A 1  Ov7 4111(s: 

bound 0 11 	 edliess tit  which implies E {11 x ( w , 	2 = . E 11 A 1  ( _w s)11 2 } ds. Thus the 
0 	 tion for  E 	x (w, t) 11 2 1 is just condition (B). This seems to be a reasonable assail) ...II on  

studying the infinite time behaviour of stochastic systems. The other restricuu  
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the noise, given by coniition (A), is a mild assumption and is an extension of the 
usual local boundedness required when finite time behaviour is examined. 

The  weighting function a (t) in the observer equation (ASE) is of fiee choice as long 

as it satisfies the general conditions specified in section 3. For example 	k  (4+ oa ' k  0,  j< _< 1, will do. In the general case of theorem 1, information regarding 
the rate of convergen:e is not available and hence selection of a (t) with regard to this 
is not possible. In theorem 2, however, an estimate of the rate of convergence of the 
2nd moment of the error is possible in terms of a (I), as mentioned in the proof. Using 
this information an optimum choice of k and a in kl(t 	1)" is possible. Even here 
it is difficult to get a comparivon of all possible a (t) one may tee. It should also be 
noted that the rate information obtained is only of the 2nd moment of the error the 
rate of convergence of the sample functions is not obtained. 

In the non-linear case, finite dimensional realisations of the optimal (minimum mean 
square-error) filter are very rare, and as such the optimal filter is unimplementable in 
most cases. We have developed here an estimator which is implementable and which, 
though not optimal in the minimum error-variance sense, has the nice property of 
convergence to the true state as time increases. Also the estimator does not require 
the knowledge of the noise coefficient matrices and hence will be useful in situations 
where these are unknown. The optimal filter, even when realisable, would require 
such knowledge. 

Further we emphasize that we have specified w.p. I or sample function behaviour 
of our estimator almost all sample functions converge to the true state. In the case 

of the minimum error-variarre filter or of the observers ofit) -12 , sample function beha- 

viour is not specified, and we point out that in any practical situation only sample func- 
tions of the stochastic processes involved are available. 

As a last point, the minimal amount of computation required by the observer of this 
Paper is obvious from eqn. (ASE). Tais is of course a characteristic property of any 

Scheme originating from stochastic approximation theory whence these results arose. 
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Appendix 

A, result on  
Although 	

integral equations, needed in the proof of theorem 2 is presented here. 

t. 
\\l  this result may be known there does not seem to be a convenient reference for 

lat e develop it under conditions suitable to our needs though more general formu- 
tons are possible. 
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Proposition : Let m (t), f (t) and h (t) be non-nzgative locally bounded 
f 

on [T1 , cc), 	0, satisfying 	 iiinctiot4 

nz (t) m (s) + 	f (u) du — I in (u) h (u) du, t 	s 

Then 

111 (1) 	(TO eXP 	h (s) ds) 	5 f (s) exp (— 5  h (u) du) ds. 

	

TI 	 T3 

0  Moreover if 50  f (s) ds < oo and f h (s) ds = oo, then 
Ts M (1 ) -4  0 as TI  

Proof : It can be verified directly that a solution of the equation Or (t) 0, locally  
bounded) : 

f f (s) ds 	f 
Ti 	 71 

n (s) h (s) ds 

is 

n (t) = n(T1 ) exp(— h (s) ds) + f (s) exp (— h (u) du) ds 

The local boundedness or non-negativity hypotheses justify the invocation of Fublis 
theorem, which is required for this verification. 

We take n (TO = m (TO, then to prove 	the 1st part of the proposition we have to 
show m (t) 	n (t) for all t :_>. T1 . 	Define z (t) = m (t) — n (t). Then by the hypothesis 

z (t) 	z (s) — 	z (u) h (u) du, 	s 	 (A.1) 
• 

Define A =---- {t 	T, : z (t) 	0}. 	This is non-empty since Ti  e A. 
of the proposition we then have to prove that A = (T1 , 00). 

For the 1st Pan 

Define B = {t 	T, : there is a sequence fs,J, s„ e A such that s„ t t). lt is obvious 
that 

AuBC [T 1 , co). 	
(A.2) 

Let t. E B, then by definition there is a sequence {s„} sk„ e A, sy, t t o. using these aod 

(A . 1) we obtain 

Z 	z (s 	? z (id) h (u) du 	fs°  z (u) h (u) du 0 
Sn 

as n 	cc. Thus z 	0, i.e., 

B c A. 
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if possible there be t E (T1 , co) and t i cs:B. Then by definition there is 1 2 E (T1, ri) Let  
such that A n (t2, ti) 	(1) (null set). Define t s  --= sup (A n [0, Id). Then there is a 

sequen 	{r„} C A n [0, t2:1, t 	 th a. Then from e definition of 	hay; ha 	fa  B ce 
and using (A.3) : t a  E A, 1.60,, 

	

z 0 3) 	
0. 

By definition of t 2 , t 3  

(t 3 , t i ) n A =4>. 

	

Now let 	(t 3 , t i ). By (A.1) 

z 	z (t 3) —5 z (s) h (s) ds. 

Using (A.4) and (A.5) and the non-negativity of h therefore z (t) S 0. 

(A.5) since 	t c (t 3 , t 1 ), z (t) > 0—a contradiction. 

Hence t 1  cannot exist, and using T1  e B, 

[Ti , co) C B. 

(A.4)  

(A.5) 

But again by 

(A.6)  

From (A.2), (A.3), (A. 6) we immediately have A = [Ti , co), thus proving the 1st 

part of the proposition. 

For the convergence assertion we use the bound of the lst part of the proposition. 

The 1st term of the bound goes to zero as t co, since 7 h (0 = oo. Since f is inte- 
r, 

grable, Lebesgue's dominated convergence theorem can be applied 
yield its convergence to zero. 

References 

to the 2nd term to. 

Stochastic Differential Systems I, Springer -

Verlag, Berlin, 1973. 

Convergence conditions of a dynamic stochastic approximation 

method for nonlinear stochastic discrete time dynamic systems, 

IEEE Trans. Automatic Control, AC-

17, 1972, pp. 715-717. 

Stochastic Differential Equations, 
Springer -

Verlag, Berlin, 1972. 

Estimation and feedback in linear time-var)ing systems: A 

deterministic approach, SIAM I. Control, 1975, 13, 304-326. 

Exponential observers for nonlineardynamic systems, 
Information 

and Control, 
1975, 29, 204-216. 

Probability Theory. 
3rd ed., Van Nostrand, Princeton, N. J., 1963. 

I. BALAICRISHNAN, A. V. 

2. FUJITA, S. AND 

Funo, T. 

3. GIKHMAI4,I.1.AND 

SKOROKHOD, A. V. 

4. IICEDA, M., MAEDA, H. 
AND KODAMA, S. 

5. Kou, S. R., &morn, D. L. 
AND TARN, T, J. 

6. LOEVE, IVI. 



23 8 
	

PROD I P SEN 

7, LUENSERGER, D. G. An introduction to observers, IEEE Trans. A utomat , lc confroi,  AC-161 /97/, pp. 596-602. 

On stoch stic approximation prccedures in ecntinu
ops s  Journal of the Indian Institute of Science, 1978 , 60(A), 3, pp,13)..leil 

Stochastic observers fer continuoas time systems, 
PhD union,  ion Indian Institute of Science, Bingalcre, May 1977 

Stochastic observability and controllability of nonlineirsystaos 
int. J. Control, 1975, 22 0), 65-82. 

Stochastic observability for noisy nonlinear stochastic syst
tro;  Lit. J. Control, 1975. 22 (4), 461-480. 

Observers for nprilinen stochastic systems, IEEE Tran.r. 4440.  made Control, AC-21, Aug. 1976, pp. 44j-448. 

8. SEN, P. AND 
ATHREYA, K.B. 

9. SEN, P. 

10. SUNAHARA, Y., AIHARA, S. 
AND KISHINO, K. 

11. SUNAHARA, Y., AIHARA, S. 
AND SHIRAWA, M. 

12. TARN T. J. AND 
RAsts Y. 


