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Abstract

it

Some results on asymptotic state estimation for a class of continuous time nonlinear stochastic systems
wepresented,  The main property of the estimators developed is that the estimation error goes to ze10
vith probability one and in mean-square as time tends to infinity, The proofs are based on Ito calcujus
id the martingile convergence theorems. ;
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Introduction

Ine theory of asymptotic state estimation or observer theory (references 7,4, 5, and the
rlerences therein) has been concerned mainly with deterministic dynamic systems. The
wresponding theory for stochastic systems seems to have been neglected. Some
wults in this direction have however been obtained for discrete-time systems®. The
ked for such a theory can be appreciated in the nonlinear estimation case where finite-
dimensional realisations of the optimal (minimum error-variance) filters are unavailable
ba"iﬂg a few cases, and the behaviour of sub-optimal filters is largely unknown.

- In this paper we will be concerned with developing asymptotic state estimators for
8 class of continuous-time nonlinear protabilistic systems. These esﬁmatc_urs will not
heioptimal in the usual sense but will have the property that the estimate “"l“ converge
(“"l}h probability-one) to the true state as time tends to infinity. 'We will call such
“Umators observers (section 3 gives a precise definition), as an exiension of the concept

0
f observers from the deterministic theory.

Recently some work has appeared on ‘‘ observers” for stochastic continuous-time
::s.temm’u’”. It should be noted however that these “ observers > are not asymp-
annc sta'te eStimators ejther with probability-one or in mean-Square, nor do they hgve
usg ;? t:hmal pProperty—only the mean-square error remams boun;ed .’is Iozaz;-?y-o:;

€ w £ : i ¥4 1% tfv in the sense of with-pr i
(@nd g, ords ““stochastic observer ™ is strictly

. . i "
Possibly in medn-square) asymptotic state estimation (see the definitionYin |

“ction 3)
77
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We use the framework of Ito calculus. The basic motivation for tpe ,
here, is from some results obtained elsewhere® in continuous-time syoc

PProa
Ch ygyg
mation, and we use essentially similar arguments.* "

hastjc app

2. Preliminaries

In this section we describe the system to be considered and state some assoc

: . 1ated
tions. These assumptions will hold throughout the paper unless othery; assy

S¢ mentjony
The state and observation equations are

NL {a’x O, ) =f (6, x (v, 1)) dt + g (1, u(w, 1)) dt + 4, (w, 1) db (w, 1)
( ) dy (W, I) — f; ({, X (W, t)) dt + Ag(l‘l’, t) db (W, t)

where x, y are n-dimensional vectors, b is an R”-valued Wiener process, A, and 4, an
appropriately dimensioned matrices whose elements are measurable stochastic Processes,
All stochastic processes are defined on a probability space (W, B, P), with wel, the
probability space variable. There is an increasing family, {(A,}, of sub g-algebras of
such that b (w, ¢) and the elements of 4, (w, £), 4, (w, t) are (A, measurable for all 120,
and the o-algebra generated by {b(w, 1) —b(w,7),t> 1> s} is independent of 4, T
all s > 0. Only separable versions® of all processes will be considered.

f (¢, x) satisfies the usual conditions for the existence and uniqueness of the sol
tion of the state equation in (NL), i.e., f: [0, o0o) xR — R" is Borel meastrable and

“f (5, %) —f (t, x2) ll <L) " Xy — X3 ”s for t> 0, x,, x,€R"
and |
[FEe.x)P< L@ + [ x {2, for = 0,xe R,

where /, (1) and /5 (¢) are locally bounded. % (¢, x) and g (¢, 4) satisfy the same type o
conditions. u#(w,?) is a {y(w,s),0< s< t} measurable g-vector control, such ﬂﬂl
the solution of (NL) exists—e.g., u could be a function of y which is locally Lipschit
Further restrictions on f and A will be stated later wherever necessary.

The conditions on A4, and A4, are
(A) sup E(] 4, (w, 1) |2 + [[42 (w, £) [?) < oo, and

oo

(B) of E(] 4, (w, 1) ug) dt < oo.

. g — ,17.1' 'ﬂd
In the above and all that follows, the vector and matrix norms Are "xt“< a1
| B [& =T, (B"B) respectively, where T, = trace and superscript * T denotes
| o
aﬁlh

* it has been brought to the attention of the author, by a referee, that rdated- resll::;j: randt?
in a book by R.Z. Hasminsku: Stability of systems of Differential equations y beed pub-
perturbations of parameters, in Russian, an English translation of which has recet

lished by the American Mathematical Society.
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g denotes the expectation operator on (W, ®, P) and £ .

: the conditi
ation given the o-algebra a,. [, is the n-dimensional idep ! onditional expec-

tity matrix.

All stochastic differential equations in this paper, such as (NL)

' : : are to be i
g5 corresponding integral equations. The integrals w.r.t. e interpreted

Wiener processes such as

B

In our development we wiil need
;ntegl'ﬂls w.r.t. the observation process y (w, t). Integrals of the form f B (s) dy (w, s)

; can be defined so that they are {y (w,5),0 < s < t} measurable and theufollowing equa-
“tion holds

[ A (W, s) db (w, 5) are the usual Ito integrals?,

[ B(s)dy (w, s) = of B(5) h (s, x (w, 5)) ds
+ :f B(s) Ay (w, s)db (w, s), (1)

wvhere B is a locally square-integrable matrix of compatible dimensions. The details
~of the definition and proofs of the above can be found in references 8,9, 1. We will
“we equation (1) in our development wherever necessary without further comment.

We will use the abbreviation w.p. 1 for ¢ with probability one’.

3. Statement of the problem

We wish to develop under suitable conditions, a stochastic qynamic system wl}ose state
converges to the state of (NL) (w.p. 1 or in mean square) as time tends to mﬁmt_y, based
on the knowledge of the control # and the observation y. We have the followmng:

Definition : A stochastic dynamic system is said t0 be a w:‘rfz probability one stochastic
observer (WP1SO) for the system (NL), if its state % (w, t) is measurable w.r.t. the o-

Algebra generated by {y(w,:),0< s <1}, and w.p. I | % 0w, 1) = 20w, 7) ll :rgb?:
>0, It is said to be a mean square stochastic observer (MSSO) if x 1s y measurat.

0 E(] % (w, 1) — x (w. 1) [2) > 0 as ¢ — oo.
The general form of the WP1SO and MSSO which we shall consider for (NL), is
X (w, 1) = x, + } f (s, % (w,8)) ds + of g (5, u (w, 5)) ds
(ASE) 0
1 a(e)[dy (w,s) — h (5, 2 v, 5)) 5]
o > 0 is a weighting function satisfying

Where x, is an arbitrary n-vector and a(?)

(i):Fa’(t)dr < oo, (ii) ?a(f)df == P
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The estimate X is defined by cqn. (ASE), the existence of whose ol
cussed below, and has no relation to the conditional mean or arp
optimal estimator.

l.l.ﬁOn W

il be 4
Y Other Opti lbl: ds

mal or gy

Under the assumptions stated in Section 2, the existence and uniquenes
continuous solution of (ASE) can be shown by a standard Picard iterat
and we do not go into the details. Using the {y(w,5),0< 5s< t}

Sof g W, |
ion techn; ‘
l‘nf:z’csurabi]j!}t of
t . :

[ a(s)dy(w,s) and u(w, 1) in the existence proof for (ASE), the y measurability of 4
0

can readily bs shown. The local boundedness of E (|| £ (w, t) I2) and E(|
are also obtained during the exictence proofs. We will draw on these f3
required.

X (w, 1) ﬂa)
Cts later 4

4. Main results

In this section we state and prove the main results of this paper.

Theorem 1 : If f and h satisfy the following conditions
©) (x; —x)7[f(t,x) —f (1, x2)] <0, for all x;, x,€R" and >0,
(D) for every k > 0, there is a & (k) > 0 such that for all r >0
inf (x: — x2)T [ (1, x;) — B (£, x5)] = b (k)

- iﬂ“l‘;"‘l: nﬂk'l

(interchange k and k7' if k > 1), then (ASE) is a WP1SO for (NL).

Theorem 2: 1If f satisfies condition (C) and & satisfies
(E) there is a 4 > 0 such that for all ¢t > 0, x;,x, € R"
6 —x)T[h(t,x) ~h(t,x)] > d || x, — x, [,
then (ASE) is a WP1SO and MSSO for (NL) (Note : (E) = (D)).
To prove the theorems, we have to prove the y- measurability of % and the con'-"ergﬂﬂ“
of the estimation error X(w,t) —x (w, t) to zero w.p.1 (theorems I, 2) and 18 m:.u

square (theorem 2), as 7 — oo, The remarks at the end of the previous section establ

the measurability part. Hence the proofs given kelow will deal with the conver®®
assertions only.

If A, and 4, are non-random matrices, conditions (A), (B) reduce t0

W (A O]+ 40D <o, [ [4@]d<oo

il
e W
, ng,
In order to preserve the clarity of the proofs and avoid making them 10 4e
prove all our results in this context.
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: proof of Theorem 1 : Let e(w, ) =X (w, ) —Xx(w,1). To piove the theorem w
pave to show that w.p. 1 [le(w, 1) || >0 as 1 co.  We will show this by proving

wp. 1 [e0w1) |2 = Z (i) as t = oo, where Z is a finite random variable, and then
gowing Z(#) =0 w.p. 1. We prove the convergence of | (w, 1)f? first, B

subtracting (NL) from (ASE)
de (w,1) = Lf (1, € (0, 1) + X (0, 1)) — £ (1, % (w, 1))] di

+a@)h(t,xw,. ) —h(t,x(w,t) + e (w, 1))] dt

+ [a(t) A, (t) — A, ()] db (w, 1). (2)

Applying Tto's differentiation rule® we obtain for all t> 7, > 0 -

leOe,)) 2= | eCw, T |2+ 2 1 "W, ) LS (s, e(m5) + x(w, )

1

— f (s, x (w, 8))] ds

+ 2 j’It a(s)eT (w,s)[h (s, x(w,s)) —h(s,x(w,s)+ e(w,s))]ds
+2 Tf [a (5) e (1, 5) A5 (5) — €T (w, 5) 4; ()] db (w, 5)

+ [ TAEOHAO - 4O @O 4O =4O} b O

As discussed in section 3, % and x have locally bounded second moments, which implies

that E (“ e(w. 1) II*) is locally bounded. Together with conditions (1), (A), (B) on a,

4, 4,, (with A4,, A, non-candom) this implies that the second moment of the mFegrand
 of the Ito integral term in eqn. (3) is locally integrable. This yields that the Ito integral
term 1S a Martingale® ie., for all t > T, >0

Ey _j [a (s) eT (w, 5) As (s) — eT (w, 5) 4, ()] db (W, $) | Anf =0 W.p. 1. )

.
Taking conditional expectations of eqn. (3) and using (C), (D), eqn. (4) we have for
‘2T, 20

' B
E(fleCo,0) 2| An) < e 0, T [P + T{ = (S).ffs w-p- 1 S
Where R (5) is a non-negative function depending on 4, A,, Aq, which 1S mtegrable ol

19, o) due to conditions (i), (A), (B).

Define 2 (w, 1) = | e@w, ) |2 + T R (s)ds (well defined and finite since R is integrable).
' £

: L. B i -negati
Then using eq. (5) and the non-negativity of R, it is easy to show that 28 & TOTHEETAT
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supermartingale, and hence z (w, t) converges w.p.l to a finite-valyed random y
ar

? - mngrefcrence 6, p. 526 and noting that a supermartingale is a negative 5“bmanlizh::

Also 6[ R(s)ds = 0 as t — oo since R is integrable. The convergence of this term )

of z(w, t) immediately yiclds, from the definition of z: %
[ eGw ) [F—Z(w) wp. 1 as ¢t oo,

where Z (w) is a finite valued random variable. v

We now show Z (w) =0 w.p. 1. Taking expectations of eqn. (3) with .

posing the 2nd integral to the left, using condition (C), eqn. (4), we have

2E | J't a(s) e™ (w, s) [A (S, x(w,s) + e(w, 3)) S/ (_5', x (w, 5))] ds}
<E(lemn0]) + [ RO ds =K < oo,

by the integrability of R and the finiteness of E (]| x (w,0) [®). Condition (D) shows
the non-negativity of the integrand of the L.H.S. of the above inequality, which permi
the application of Fubini’s theorem to the above to yield

0L J't‘j.:zh(s) E {eT (w, s) [h (s, x (w, 5) + e (w, 5))
—h(s,x(w,5)]}ds < K, for t >0, where K is finite. 0

Since Tﬂ a(t) dt = oo by (ii), we immediately obtain from (7)

0

lim inf E{e"(w,)[h(t,x(w, 1) + e(w, 1)) — I (¢, x (w,1))]} =0.

>0
Using the definition of lim inf and the non-negativity of the term in braces [conditet
(D)] we have

eT (W, fi) [h (th X (W, ti) + € (W, ’l)) - h (“, * (H—’, t‘))] -0

in 1st mean as i 1 oo, where {t,} is a sequence of real numbers increasing 0 infai}
Then (ref. 6 p. 164) a subsequence {r, } of {#,} can be extracted such that

| Lug et (w, ) [h (¢, x (w, te,) + e(w, t.)
6

~h(t,x(w,1,))] =0, wp. 1.

Obvio J{(«fa))

Let § = {intersection of the probability-one sets of (6) and (&)} %,

=1, Let woeS. Let if possible Z(w,) >0. Fix k with 0< k*<
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Then using the convergence of | e (wy, 1) 2 to Z (), there ; -
P i . ’ g 1sa Ve
all t=>T, k2= | e(wst)|| > k. Condition (D) then yields W

e (wo, ) [ (1, x (o, 1) + € (was 1)) ~ (8, x (wa, )] = b (k) > 0,

for all ¢ = T, which contradicts eqn. (8) above. Hence Z (Wo) iS n

i B . . 2 . Ot greater th
which implies since Z is non-negative, that Z (w,) = 0. Since Wo wasgihosen t?)nbzee::
arbitrary element of a probability-one set we have 7 (w) =0 w.p. 1, which was to be
shown.

Proof of Theorem 2 : Since condition (E) implies condition (D), theorem 1 holds and
w.p. 1 convergence to zero is at hand. For the mean square convergence we proceed
as follows. Taking expectations of eqn. (3), using conditions (C), (E), the martingale

property of Ito integral term in equ. (3) (see eqn. (4) of theorem 1), and the
definition of R (see eqn. (5)), we have for all ¢t > T, > 0

E(Jew, ) |) < E(Jetw, Ty ) + -.j R(s)ds

—2d -j a(s)E(]| e w, ) [}) &

By the integrability of R (theorem 1) and the non-integrability of a (*) (condition (ii))
and d > 0 (condition (E)), we see that ths proposition of the appendix holds m its
entirety with the following identifications

m(t)=E([|ew, ) [),f () =R@),h(t)=2da(),

and we therefore have E (|| e(w,?)[]) =0 as ¢—> co. Since the proposition of the
appendix gives an explicit bound, we have rate of convergence information available

in this case.

A, are random is a bit too long
le property of the Ito integral
2nd) order moments of Ay,

Remark 1 : The proofs for the general case where 4;,
to be given bere. The basic problem is that the martinga
term in eqn. (3) is lost unless restrictions on higher (than :
4, are imposed. To avoid this a trunzated process a!'gume{‘t 1S “’:Cd,' i
of stopping times® and a related sequence of stopped processes is dfinied n terms o k xc
process e (w, t). Equations and inequalities concerning these are .develope d has : . r::
Proofs presented in this paper, and later limits are taken. In this aPow. . tgto s
(nonlinear) dependence of A4;, A, on the state x cal also be. included, - ]eil lated
usual restrictions on nonlin2arities in Ito equations. The details of all this and rela

Tesults are available in the author’s thesis®.

ions on the ot servation function A, as

Remark 2 : Tt should be noted that the condit le (E) can be replaced by

given by (D) or (E) can be relaxed somewhat. For examp

(4 = xT K@) [A (1, x) — h (L, xd] = d [ =%
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for some bounded matrix K(¢). Then, in the observer equation (ASE)

replaced by a(?) K (1). Similarly for (D). The modifications reCIui[:.da @f)hasmﬁ

are trivial. = 1 the Proog
Remark 3 : Tn the case where f and /it are toth linear, a variation of .

this paper car be used fo r:lax the conditions on the systzm which wou]d'

needed if the results of Theorems I or 2 are applied directly. The conditions

and H (1), where f(t,x) =F(t)x and h(t,x) = H(?)x, are then 0% on ()

(i) The state transition matrix corresponding to F (¢) : &, (s,
. 't 2 tu 2 0.
) (i) (F(t), H(t)) is a uniformly completely observable pair.

aPPmach of
Olhﬁl'v,]',ge be

tu) is b[}ullded for

The conditions on the noise rerrain essentially the same. The details of tpe abors
(too long to be given here) will be presented elsewhere and are also availayje in the
author’s thesis®.

5. Discussion

The restiictions on systems to which the results of this paper apply are of two typs:
conditions on the deterministic part, and conditions on the noise terms.

The most important restrictions for the deterministic part are those embodicd i
(C) and (D) ((E) is a special case of (D)). Condition (C) on the state eqn. means tha
the distance between two solutions of (NL), in the noise-less case, should remam io 4
boiinded region depending on their initial distance. Notice that (C) is considerabl
weaker than the condition (x, — x )7 [f (4, x,) —f (6, x)] < — k || %, — x: [, vtid
would imply that all the solutions of (NL) tend to the same solution as { - oo (@ &
noise free case). In fact in this case an observer which does not use the observatiost
easily be built ! Condition (D) (with the extensions of Remark 2) on the obsera
function can be interpreted as an observability condition. It implies that ina BOR
less situation the observations due to different states are uniformly distinguishable I
the absence of a reasonably well-developed observability theory for nonlinear SyStem™

this condition, which requires that the state and observation have the same dimensioh
seems unavoidable.

k The major restriction on the noise terms is condition (B) which implies that the 10
18 the state-equation dies out in mean square sufficiently rapidly. This can be also’

to imply that the part of the covariance of x (w, ¢) due to the noise, has bounded n
moment. For example if f=0, g =0, (NL) becomes : dx (w,?) = A; (W r)db (4

. » . . - 0£
which implies E {|x (w,t)[2} = |E E{| 4, (w,s) |t} ds. Thus the boundedncss“
0 jon 10
E{| x (w, ¢) “2} is just condition (B). This seems to be a reasonable assurll?:t?:n .
studying the infinite time behaviour of stochastic systems. The other restr
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the noise, given by condition (A), is a mild assumption and

: G i IS an extension of the us
jocal boundedness required when fiaite time behaviour is ual

examined.

The weighting funstion a (¢) in the observer equation (ASE) is of fice choice as fong

55 it satisfies the general conditions specified in section 3. For example K
_ (4+ 1)*°
£>0, 3< a1, will do. In the general case of theorem 1, information 3eg'ir)ding

the rate of convergence is not available and hen:e selection of ¢ (¢) with regard to this
is not possitle. In theorem 2, however, an estimate of the rate of convergenze of the
nd moment of the error is possible in terms of a (¢), as mentioned in the proof. Using
this information an optimum choice of k and a in k/(+ + 1)* is possitle. Even here
it is difficult to get a comparicon of all possible ¢ () one may vee. It <hould also be
noted that the rate information ot:tained is only of the 2nd moment of the

, error—the
rate of convergenze of the sample functions is not obtained. - .

In the non-linear case, finite dimensional realisations of the optimal (minimum mean
square-error) filter are very rare, and as such the optimal filter is unimplementable in
most cases. We have developed here an estimator which is implementable and which,
though not optimal in the minimum error-variance sense, has the nice property of
convergence to the true state as timz increases. Also the estimator does not require
the knowledge of the noise cocfficient matrices and hence will be useful in sitvations
where these are unknown. The optimal filter, even when realisatle, would require
such knowledge.

Further we emphasize that we have specified w.p. 1 or sample function behaviour
of our estimator—almost all sample functions converge 10 the true state. In‘the case
of the minimum error-varianze filter or of the observers ofm.-'“, s_ample function beha-
viour is not specified, and we point out that in any practical situation only sample func-
tions of the stochastic processes involved are available.

As a last point, the minimal amount of computation required by_ tl.le obscn:r ztt: t;:s
paper is obvious from eqn. (ASE). Thais is of course 2 charasterisiic prop:mi,; amsey
scheme originating from stochastic approximation theory whenze these results. :
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Appendix

in the proof of theorem 2 is presented here.
seem to be a convenient reference for

r needs though more general formu-

A result on integral equations, nzeded

ﬁlthough this result may be known there does not

L We develop it under conditions suitable to ot

lations are possible.

llSc-._s



Proposition : Let m(t), f(t) and h(¢) be non-n:gative locally boundeg ;
on [Ty,00), T; =0, satisfying |

m@)< m(s) + f f (W) du — f mYh@)du, t > 5 >T,.
Then
m (1) < m (T,) exp (-—Tf h (s) ds) + Tf S (s)exp (— f h (u) du) ds,

Moreover if ? f (s)ds < oo and Tj h(s)ds =oo, then m(t)— 0 25 ko
Ts 1 =

Proof : Tt can be verified directly that a solution of the equation (n(H>0 loca]
bounded) : o

A =n(@)+ [ f@ds— | n(s)h(s)ds
is
n()=n(T)exp(= [ h(s)ds) + | f (Dexp(— | h(u)du) ds.

The local boundedness or non-negativity hypotheses justify the invocation of Fubiis
theorem, which is required for this verification.

We take n(T}) =m(T;), then to prove the Ist part of the proposition we hav
show m(t)<<n (¢) for all t > T,. Define z(¢) = m(t) — n(¢). Then by the hypothss

t
zM<z@)— fzWh@Wdu,t=>s=>T,. (Al
Define 4 = {t>T, :z(1)<<0}. This is non-empty since T;€ A. For the ISt}
. of the proposition we then have to prove that 4 = [T}, o).

Define B = {t> T, : there is a sequence {s.}, s, € A such that s, 1 f}. Iti e
that

AU B C [T, o). (A
Let 1, € B, then by definition there is a sequence {s,} s,€ 4,5 T o Using thest -
(A.1) we obtain
z(t) < 2 (s,) — _}“ z (u) h () du < — .f"z () h () du — 0
as n - oco. Thus z(tn)"S 0, ie., " A

B C A.



STOCHASTIC OBSERVERS POR NONLINEAR SYSTEMS

Let if possible there be t, € (T}, 00) and t,¢€

237
=B. Then by definition there is t,¢ (T, 1,)

such that 41 (ts, 1;) = ¢ (null set). Define t, =sup (4N [0,]). Th :
sequence {r} & 40 0, 1,], r» 1 t3. Then from the definition 0}])3 W:n h;lirct 1:; ;

and USINE (A.3): I3€ A, ie,,

z(ts) S 0.

By definition of 1s, 5

(t3, H)N A=¢.

(A.4)

(A-3)

Now let 1€ (13, t,). By (A.1)

z(t) < z(13) — } z(s) h(s)ds.

Using (A.4) and (A.5) and the non-negativity of h therefore z ()< 0. But agam by
(A.5) since te€ (13, t;), z(t) > 0—a contradiction.
Hence t, cannot exist, and using T, € B,

[T],OO) C B.

(A.6)

From (A.2), (A.3), (A.6) we immediately have 4 = [T}, ©0), thus proving the 1st

part of the proposition.

For the convergence assertion we use the bound of the 1st part of the proposition.

The 1st term of the bound goes to zero as { — ©9, since [ h(1) =oo0. Smce f is inte-

T,

gratle, Lebesgue’s dominated convergence theorem can be applied to the 2nd term to.

yield its convergence to zero.
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