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Abstract 

kth's theory of finite deformation ha been rtitably applied here to work otat the deformation, 
tress components and the electric field within en inhomogeneous piezoelectric body stbjected to a 
tmperature distribution. The governing equations of elasticity, Maxwell's electromagnetic equations 
sod the equation of heat-flow along with the constitutive equations of the material are solved to f.chieve 
the solutions for the structure in the form of a uniform annular plate or a cylinder. 
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Introduction 

iatural crystals like quartz, Rochelle salt, tourmaline, etc., are widely used in the fabri- 
ition of electroacoustical devices, electronic devices and in the field of ultrasonic tech- 
ology as the basic material because of their piezoelectric properties. Generally these 
rystal-controlled devices operate satisfactorily when the ambient temperature is low. 
tut at the elevated temperature the performance and operational characteristics of the 
tvices change to a great extent due to the changes in the physical properties of the 
natter. 

Since the piezoelectric devices constructed from ordinary crystals like quartz, etc. fail 
operate at high temperature, ceramics of barium titanate are used as a common piezo- 

ectric material at high temperature region vide Pask and Copley', Quarrie and Bues- 

eal

2  

, 	Haskins and Walsh 3  in a statical problem derived the constitutive equations of 
!czoelectric substance in the absence of thermal field, while Mind tin' extended the 
zlotys's by considering the problem under thermal influence. But they fail to consider 
!I their problems that the piezoelectric body, in general, becomes inhomogeneous when 
ieetric field is applied upon it [Landau and Lifshitz51. Appropriate electric field in such 

body under elevated temperature influences its physical properties which are depen- 
tient upon the gradient of thermodynamic quantities which vary through the body 
•Landau and Lifshitz9. So, in order to have a rigorous understanding of the problem 

To whom all correspondence should be addressed. 	 55 
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one must take into consideration that the elastic and piezoelectric parameter, 
as the permittivity of the material are, of course, some functions of the 

spar aS Wel 
nates while the temperature of the body is so. 

In this paper, the displacement, the stress components and the electric field „ 
irihomogeneous piezoelectric body have been investigated in an annular pl ate amin ma 
cylinder under the simultaneous action of mechanical, electrical and therm al -6;6! 
Seth's° theory of finite deformations is found useful to tackle the problems. I n : 
first part of the problem a uniform annular plate of piezoelectric material has been co; 
dered, while the latter part deals with the case of a uniform annular cylind er.  
analysis may be of much interest to the designers handling with the aggregate ofk riat  
titanate cement mixture [Orchard] or with the stratified media of piezoelectric bodi 5, 

2. First problem 

2 . I. Fundamental equations 

The annular plate under consideration is of uniform thickness and its inner and ces 
radii are r1  and r2  respectively. The annular plate becomes polarised radially theal 
static voltage is impressed between its inner and outer boundaries which are kept 
temperatures Ti  and T2 respectively. 

Since the annular plate does not contain any volume distribution of charges, curtail 
and magnetic field, the Maxwell's equations become 

CuriE =0 
	

01 

Div D =0. 
	 f!) 

where E and D are the electric field intensity and the electric induction respectively. 

Polar co-ordinates (r, 0) are used as the co-ordinate of reference with the Gentled: 

the annular plate as origin. a, and C g  denote the radial and tangential components° 
stress at (r,0) the stress equation of equilibrium in elasticity is given by 

do- 	a 
eran79 =O. 

The Gaussian divergence equation (2) in polar co-
ordinates stands as 

OD, I OD° n  
Dr + ao 

The temperature at any point must satisfy the Laplace equation 

V2  T = 0 

where v 2  is the Laplacian operator in two dimensions. 
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The above set of equations constitutes the fundamental equations for the problem. 
It is required to solve them keeping in view the following thermopiezoelectric consti- 
tutive relations relevant to the present problem. 

S,= s330!, + snag + d33E, + p T 
(1) 

Se =-S1 3$1, + Silos 9 + dar 	2E  T (ii) 

S,9 	s 4 st or „A 4- d15E 9 	 (iii) 

D, = d33a, + dna° + essE, + Pis T 	 (iv) 

Do re (450'4 + ei lEo + T 	 (v) 
(6) 

where 5„ Se and S,8  are the strain components, so  are the elastic compliances, 4 are 
pEi  p2E  the piezoelectric strain parameters, a d  are the dielectric permittivities, 	are the  

thermopiezoelectric constants and pf, pf are the constant thermopiezoelectric 

permittivities. 

In the presence of an applied electric field and an elevated temperature the body 
behaves inhomogeneously [Landau and Lifshitzs]. The inhomogeneity of such a body 
is characterized by the variations of s o , do  and co  from point to point in a static prob- 
km [Bychawski and Piszczeki . p , p, pz and /4 are assumed to be constant in space 

because their changes with the co-ordinates of the point considered are negligible in 
relation to those of elastic compliances or piezoelectric strain parameters or dielectric 
permittivities. In particular, their variations, where radial symmetry is considered 
may be of the following form, [Greif and Chou'] 

	

= cii  f (r) 	 (i) 

	

= bii f (r) 	 (ii) 

	

vo  f (r) 	
(iii) 

(7) 
= 1, 2, - 3, 

dielectric 
co , /hi , 

ielectric 	
vo are the material constants in relation to its elastic piezoeltxtric and 

properties respectively. 
S. 

O ver and above, two types of boundary conditions are also to be taken into consi- 
deration. 

e 	
The mechanical boundary condition comes from the fact that the boun- 

daries are free from stresses so that 

ar 0 at r ne. r1  and r 	r.. 	
(8) 

Review ing the equation (1), one can write down the electrical boundary condition as 

(9 ) 
I E, dr nconstant). 
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2.2. Method of solution 

A solution of the heat equation (5) consistent with the boundary cond*. 
7 on r = ri  and T =-- T2  on r =r 2  may be readily set as 

T =T1  — ln 

where 

T, — T2 
To 

is  In r2r, • (101) 

For the radially symmetric case 8D 9 /30 = 0 and the divergence equation (4) ykith 
= Constant = Do (say). 

This relation and the equation 6 (iv) give 

D o  — pfT — d 33or, —d31c9  
=---% 

833 

Following Seth6  one can take the radial and tangential components of displacemz 
as 

u = r (1 — 4)) , v = 0 

where 0 (r) is to be determined later on. The radial and 	tangential strain comp 
nents may now be written as 

du 	, 	drk 	 (141 
dr 

and 

(19 
r- = I W • 

When these expressions of E„ S„ So  in equations (12), (14) and (15) 
those of sib  du  and eu  given by equations 7 0, 	iii) are incorporated in equations 6( 

and 6 (ii) one may have 	

along it,  

di) b33 	 E 	b83 
1 dr 	v 33 	 • 32  

and 

1 — cfr 	Do  — 	•-aps) T =f  (r) (2 3c + 13a9) V 33 	- 	v 33  

where 

b! 	 b, b 3 	 1); 
dir = C 3 3 — 	22 = C13 — 	 23 ---- Cii ' • 

Vag 	 v33 	 V33 
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Solving (16) and (17) for a, and a0  one gets 	 • 

	

40 (As — A2) — r)131.- 	C271/Aff (r) 
	

(18) 

and 

Go  = 	— 41) (2 2 — Ai) rol 2 	CT;. Do + C; I Mf (r) 
	

(19) 

where 
04%22 - b31A  2) s  bnA 2 	b332.3 	

C2 
..... I tE 2 ., 	IIE 1.  + 	M..  ... 	

P1 r 	 p t• 2 — 1'2 "2 	till 4  41 = 	 V33 V33 

bmAi — 113311 2 	rt — , iE ) . 0 A. + 0 32A2 — b314) 
Pice; =. ale 

'..- , '2 - r'"2 "1  1-1 4  
V33 	 1133 

and 

M = Ad.3  dit 

Substituting the expressions of a, and ao  as obtained in equations (18) and 
lively in the equation (3) one can have the following inhomogeneous 

equation in 0, 

d 

 (

„ dq5 d0 
r -d7) + (1 — 2m) r 7r- + + A 2 ln r, 

(19 a) 

(19) respec- 
differential 

(20) 

for 
(20 a) 

Here 

- -I 
A3 	 23 

)4A1 {(1 — 2m) Ci  + Ca Do  ± 	— 2m) C2 ÷ C;} (Ti + To  In ri) 

+ A3 — + 2m (22  A3) C2T0 = 23 (DA + 52) say, 

and 

.1. 3A2  =. {(1 — 2m) C2 4' C} T0. 

The form of suitable for the equation (20) may be set as 

nA, + 2 (rn — 1) A2 
(I)  (r) = A rat ± Bra2 	in r + 

"ere A
, B are arbitrary constants and 

(20 b) 

(21) 
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The full form to the radial displacement it can now be written with the  be  
equation (13), 	 IP of tit  

, 	A/ 	A2 	 2 (m 1) 
ti tr A ra,+1 Bra24- 	r — -

n r in r 	— A r n2 	2 • 
(22)  

fit 	- 
On substituting the expression of # (r); a„ c e  and E, may be expressed as  

of the radial distance r. 

Cr 	[ A (22 	 A3C41) ral 	B (22 A3 1310 rag + D o Ci  

nA l  + 2  On — l )  A2  — 	In 	
/3 + C/7111101 _ (22_ 23)1 1 	 n2 

o's = —[A (Ai — /2 — 12a1) ral  B (A2 — 12 — A20:2) ras + Dog 

{ 1  riti + 2 On —  1) A2 A2 	-2An  22 	71110 - 	n 	
n 

2 	 J 

(1'33 (A3 — 12) 	b31 (12 — 11) 	(13b33 ).b30} rsz 

+ B {b33(23 	12) 	b31 (12 — 21) 	Ci e2 (13b33 22b31)} ral 

+ D (Al — b 33C + b 31  CD — 33C 2  b 31 C; + MPDT 

+ 033 (23 — A 2) b 31  (22 Ain IL\13 in  r  + nAl  + 2(n:  — 1) Al , 

+ 03323 — b3 	
AZ

i22) 	v33Mr2m. 
■ 

With the aid of the boundary conditions (8) and (9) the set of above equalm" 
23 (i, 	iii) gives the following three equations containing unknowns A, B and BP  

lnA + 1128 + 112 A, = 
@ 

121 A + 122B + 	Do = K2 	I cáO 
131 A + 132 B + 133  Do  - K 	 (24) 

and give°  
where the values of the constants 	s r /4  ' (•, 	I , 2, 3) d K's are known an 
in Appendix I. 
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From the equations 24 (1, ii, iii) it is found that 

and Do =--- •
A 

(25) 

where  A is the nonsingular value of the determinant 

Ill  /1 2 113 

121 122 123 

131 132 133 
(26) 

••• 

and As ' s are obtained from A by replacing the ith column by K2 

1C3  

The radial and tangential stresses and the electric field for the above mentioned boun- 
dary conditions (8) and (9) can now be fully expressed by the equations 23 (1, ii

, iii) after 
inserting the known values of A, B and D o  from the equations (25). 

3. Second problem 

3.1. Fundamental equations 

In this section the analysis has been extended in the case of an annular cylinder having 
an internal and external radii of r 1  and r2  respectively. The cylinder is under the 
state of plane-strain which is maintained by a uniform longitudinal extension a. Like 
the first problem, it is assumed that the boundary surfaces of the cylinder are free from 
the radial component of stress as well as the cylinder is polarised radially under the 
influence of a static voltage between the inner and outer boundaries which are kept 
at temperatures T1  and T2 respectively. The object of this problem is to find out a solu- 
tion satisfying the equations (1), (2), (3), (5) keeping in view the following constitutive 
equations relevant to the present problem. 

Sr = Snar  + S13C9 + 5130's  ± d33Er 	T 

Se  =. sac, + si icro + suaz  + da, + 1.12E T 

Ss =. si3oer 	31 20'9 -I- suers  + A,E, + pE3  T 	 (iii) 

(iv) Sr„ 4=. S 4 nr ± 1115 Eff ) 
= snag; 4' (45E9 	 (vi) 

Se, re_ se saes  
i 

D, = ducr  + duce  + dna, + 833E, + T 	
(Va 

i 
Do = disco  ± E„E0  + p:T 	

(vii) 
 

(ix) 
= difian aliEs + nT 	 (27) 

Where the symbols carry their usual meaning. 
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3.2. Method of solution 

Since the electric field is assumed radial Eso  =E: =0. Because of the state of  strain S70 =Su, = 0. Now from the equations 27 (iv) and 27 (v) it is evident 
tha-t 

p
i
an. 

0- re = Co, 	0. 

Gaussian divergence equation in cylindrical co-ordinates can be written as 

a 
(r D 	

8D0 
7-9;* 	r) + _ 	

ape 

r 	er  ai =a-0 - 

Owing to the radial symmetry, the above equation becomes 

I 0 
-r  Fr  (rDr) =0. 

which indicates D, = Air, D 1  is any constant. The equation 27 (vii) now turns to  

E, 	u 33a r — dna 0 d sicr g 	/833. 
D  

In order to find out the deformations, Seth's€ theory of deformation is again folioed 
and the components of displacement are chosen as 

= T — 110 	V = 0, w = az 0)) 

where a is a constant. 

The three strain components in 27 (i, jI iii) now stand as 

S r  = I - - r 
dr 

41  
Ii) 

(30  

On using the relations 7 (i, 	iii), 27 (1,iii), 28 and 30 	the followingsd  

of equations may be formed, 

Ala, + 22cro + A20', = Ai 

.1. 2a, -I- 230'0 -1- 2417ir = A2 

22ar ± 240'9 + A sa, = A3 

(I) 

00 

where 

	

= c33  — —3. 	 b31b33 2  — 3  

	

V33 	 V33 
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b 2  4.1 A = c, — 

(31a) 13 	v33  2 	ni 	1 33  

diii b 33 DI 
At , — 	 pf 	p7) T1 if (r) 44, 	v33 r 	 V33 

r33 

bn 
As = ICC 	 - 

V33 r 

From the equations 31 (1, 

a,  

Di 
 — 

I s  
---- p) T} I f (r) T 	2 	V33 1  

-beM pSi) Tlif(r). 	 (31 b) V33 - 	 • 

iii) one can have 

- A 2 (2 2  + ).3TH 

= (11 2 (2123 	— A3 (2124 4.) — A11 2 (23 ;air 	 OD 

= [A3 (A1,13 	— A2 (4 	 F24 	AD A1A2 (23 )-4) H' 	 (iii) 
(32) 

where 

and H' (23  — 24) H. 	 (32a) 

By the use of equations 32 (i, ji iii) and (20 a) the equation (28) may be put in the 
form 

£ — A pr 	+ A b  [ 	
A 1  tb33 (233  3-1-1)b2  ....... 1  4) 	2b33 22) + A2 Om Al — b33(22 + 20} 

.........—.11 y33•  
Mar  — 	 H 

(33) 

The expressions of a, and a 0  of equations 32 (i, ii) along with (31 b) and (20 a) are 

inserted in du.. equation (3), which is still valid in this problem, to obtain the following 
mhomogereous differential equation 

d 	dtk 	 chfr 
r2 -  dr 	dr 

-) 	2m) r 	+ 	a + + a2 ln 
dr 

(34) 

The constants N, ao , a, and a2  are 

2oh2y 	(23 23 N (1 — 2m) + ± A
4 

s 
(1: — AD t3  

a. = 2m 1: 12 (1 +cc) 	± (21 23 -22  —22, +22) a (Ai se--r---4 -22as+ AtA4-272)  

---- (21—An  
..- • 	- 	 ba ns) k 	ar A4 

(pf 	— 1, 33  Pi bs3  Ao 	s --- Ps
) — 23 +24 ' p2  k i21 	V" 1 	3 
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(2122 A2).3 AzA4 —AD ( 
.■MUMPO mnsi.• 	 p 2  

(A3 -2,21) 
tut p0 	

A2A3 Atli -1) V33 

/1,2 	 2b31 x RE  1211 s ?I) 	 (pf + 
A3 + A4 	 V33 k 3 	1733 	u 

b33  
+ 	— p! )1 rt  	• 

Vss 

A.2. ) = [bal. (4MA2 Ai) b33 (2m 	 .1 

A3 + A4 ] V33 • 

Mug  ( n
2
E ± E 

. 

2b3i psH(2m — 1) — --It... 02 = [(2 3  ÷ 24) I- 	113 	V33 1 	- 	 A3 + 24} 	. ) 

c 	33 a) 1  (22A3 + 21A3 —  22A4 —  /22 ( ILE  b 31 ps) . ..... 

	

x (pr  - -1  
b
,3-3- p i  er 	 (A: — AD 	2 v 1 r 33 

.. 	(21 A4  _-. 222,3  1- AsA4 --2d.  GE - ...32. ps)] T . (34) (Ai — 4) 	‘, 3 	V33 1 	1  

The general form of lit (r) satisfying the equation (34) may be found to be 

(r) 	Crgl 	Drg: ± 	+ a; in /*I 	 (35) 

where 4 1  and ‘42 are the roots of the equation 

2  +20 —mnrie N =0 	 (35 a1 
t 

C and D are to be determined along with the unknowns a and A which are involved 
in a0  and al  in (34 a). Also do , al and c4 are given by 

2 (1 —  a2y N (53a (54 say, do  ={ a. 

	 = 55 D1  say, 
(2m N — 1) 

=914 d2 	• 

The radial displacement u can now be expressed as, 
(36) 

U = r Crern Dre2-1- 1  — do r— ci, -- a r In drp 

By, the use of the eci,ations (31 b) and (35) the stress-components in 	egg a  the 	rtiart  the 

32\6, ii, 	and the equation for electric field (33) can be expressed len • terns et P. 
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radial distance 	 . 

C (1T1 	r21.1) 1.41-21n 	D tr, 	1'2 	rtr" + Direr-ont+i) 

+ aC2r-21" rirt" (1 — 	 In 

r2r-2" (cA.  cf, 	fee" 	(— H) 	 (i) 

6, =[ c (rs  4- rgi) ril-20 4- D (r, + rga 74E4°  ' DJ' er-(21n+i )  

 

+ ctisr-2"1  — rea (I — d. — --I — a; In rjr,
) 

 . 
r 	4 	.4 	 . 

' d 
— r7r 2nt 	d2) — r 9r-2° 711 (— H') 	 (ii) 

= [ c (ri2 	rgir2m  D (r12 	rt2-2 " — Dire  ram÷1)  

— rio  r-21" — r'12 r2  (I — a — (Sr  ed2  in rfri) 

(f1; 	a;) 	Fn.  r-21" 	11) 	
(37) 

(iii)  

and 

Er = CU-3 f2 r4 1 	+ D (f3  + f2  G.) /42-2" + D i f. rean+ 1)  

+ aft  r-T" (1 2 a; + 	- .1) } rev' (f 3  — f 2) d, 
(38) 

— r-2" T f 3  d2  r-2" In rlr i  

where the 	s and t o
r s are constants. Their values are written in Appendix IL 

The constants c,,  A a and DI 
 can be evaluated from the above equations 37 (i, iii) 

an d (38) by using the two mechanical boundary conditions stated in (B) and the electrical 

boundary condition (9) along with the condition 

ra, rdr = 0. 	

(39) 

.1 

,... aA, 
i

PPliCation of the conditions 
(8)• in the equation 37 (1), (9) in the equation (38) and 

k-59) n the equation 37 (iii) yields the following set of equations, (i) 

mu. C + rn 12D + rt 13 D1  + mi. a Qi 	 (ii) 

maiC  + m22 D m23 Di + m24 1  "== Q2 
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in3iC + 171 32  D + 11133  D1  + i12 34  a 

111 41 C + m42 D + 172 43  D1  + m44  CC = Q4 

where ' ?nu ' and ' Qi  ' s are constants, 	values of which are 

From the equations 	40 (i, 	ii, 	iii, iv) 

(a) 
(40) 

given in Appendix it 

D1  

0 
D =-0 2

,  
0 

0 and a = 
0 (400 

where 

	

1 

	m11 

m2 

	

0 1 	i 
m 3i 

M41 

mi2 
/7222 

1/1 32 

M42 

17113 

m 23  

17233 

m 43  

in24 
m 34  

m44 

and 0, may be found from the determinant 0 by replacing its sth column by 

QI 

Q2 

Q3 

Q4 

The stress components a „ (co , a, and the electric field E, of equations 37 (i, ii, iii)ni 
(38) can now be expressed completely by substituting the values of CT, D, D1  and from 
the equations (40 a). The stresses thus obtained tally well with those found byRoy 8  

for purely elastic nonhomogeneous cylinder on making b ii  = 0, vii = 09 p = 0  ni 
Pf =o. 

This analysis would be helpful to design multilayer capacitors using nonlinear 

dielectric aggregates [Tareev", and Orchardl. 
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Api)endix I 

4t4  The following symbols are used in the first problem: 	 ,‘ 

/J i = riai {12  — 2.3 0 ± ai )}, 112  = r 1a1 {,1. 2 d-- A3 (1 +2)}' 
: It  

4 (A2 - 23)  oi 	 .. . 
3  = Cel  + 	 IN ) 

il 	 N 	 . I 

% 
... 
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121  ace- r211s [A2 — 23 (1 + GO), 1 22 ="" r242 {22 — A3 	+ 12)}) 123 113 

131  033 (2,3 AO a  b31 (A2 — 	(23 b33 As ha)} 
(1,-.27114.1) 

(al  -- 2m + I) 

{b33 (23 	b31 (A2 — Al) + Ce2 (23b33 A2b31)} 

X (r242-2"s+1 	riar2m+1)/(ces — 2m + I) 

/33  =--- [M b 33  C1  + b3i (C1 ' + 	ö4] (r'"' — 1 11-21 (1 — 2m) 

.n (5 2  + 2 on — I) A2}  Lk--2  23 — C 2-  21 
---= (22 23) { 1 — -& in ri 	 n2 fl 

A2 in r2 	n(5 2  + 2 (rn2  
{1 — 	 A 	24 2 

K3 =[(b33 C2 b31 	m ) (T + Toln ri) — 033 (23 — 23) — b31 (2 3 — 

x  In( 5 2  + 2 (m — 1) A2 

	

n2 	
11 -1-(12b3i 	333 b ) n (r 	1 —r 1-21")10-21n) 2  

[(b33C2 b 3  C; +MP) T0  + 033 (2 3 22) b31 (A2 —  Al)) "-Ad 

	

x {0•21-2" In r3 	in ri)i( 1 — 2m) — (41-1" ril-2m)/( 1  — 2/0 2} 

+ MVv33  

Appendix II 

The following symbols are used in the second problem: 

r, (As  4- 24 — 22), r. (23 + 24), r3 {(A3 2
4) bn  222b31}/1'23 

F4  = tA2 	+ 
 

V33 	
. 33 

ra (2123 — 22 23 13 Ad Al) 

re = {.(241 — 23) (21b31 — 23 b 33 }iv33 

r7 = (24 — 23), 	rs :=(Al 24 

lag  = A2 	— 24) 	(A).3 - 
AD + {(23 — A4)(431 — 22b30) PZivss 

4.) 14 + 	
— 24) (11b31 — L b30) 

P,33 rlo  = (1,A3  — 4) 

s= 12 (23 — 24) uf +(Al24 

= (2224 — 224 — Ad + AD 
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mu  .4= (r, + rgo rlti, 11112 ---= (F1  + r2 e2) r1 42, 

r3  + (r2  — Ft) as  
m13 -- 	 ' 'Ili,: = C2 — ri  63  ri  

111 2,. = (r, 	rgi) r2t1 , "1 22 	(r, 	r2 	r2g2 

r3  + (r2 	65  1/1 23  —. 	 m24 = 11114 r2  

m3i • (1f2 + 13) ( 1.2gr2n+1 	1'1 41-214+1)/(' 2m + 1) 

nt 32  --= (J2 +13) (,It3-20+4 	rig2-21741)/(e 2 — 2in ± 1) 

m 33  = 	+ (13 — f2) 65} 0 • 1 -2m — r 2-ennin 

m34 =(f: 4 f 3 63) (1.21-214  r11-21/(1 — 2m) 
m4i =

(F12 rgo {r2c+20.-m) 	r1ti+2(1-m» Iti  + 2 (1 — in) 

m42 = (r12 + r752) fr2t2+2(1 -'") 	r142+2(1"'" ))/t2  + 2 (I 	m) 
m43  = 	(r7  rn) (55 } (r21-2m r,1-2")/(2m — 1) 

in44 = (f10 	1T'] 2 53) {r22(1an ) 	rj 2(' -'112 (m — 1) 

Q, = (1 — 64) — raft; + r,T, 

Q2 = (1 — 84 — a; in r r j ) F 2 a: ± rat, 

Q3 = V33 V — {f2  a; + 	4  — 1)} (r21-2' — r112")/(1 .  — 2tn) 

+ A To  (r21-2  *1 — r1 1-2")/(1 — 2m) 

(A T1 + A art)  , 
2 0 	no Wu')  In r 21 to, { r 22(1-m) ri2u-non 

Q4 = {r12  (1 — 64) — r7d2 	cr22(1-0) r120.-09/2  0 

(InnT1 ± 1;2 ac)  (r22(1... 
2(1 — viz) ) In r 2 11.1 	{r 32(1-m ) 	r12hI-4112(1 - in)] 

fo 	.1_ 	b 	2F6  
H 33 	°31 

S r 
= P1 + 	rio 

H 33  "Mr b31 

b  A__ 2 
• - 	H 33 1-  7117  b31 

13 	6-4 b 	(r  "4-  F12)  b  
H 33 	HI 	31 

I4 = E2 (r8 Fla  
H 33 	HP 	b31 
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