Inhomogeneous thermopiezoelectric problem

dMarendra das and ANIMESH RAY*
Dept. of Physics and Electronics, Jalpaiguri Govt Engg. College, West Bengal 735 102, India
Received on March 22, 1978

Abstract

ieth's theory of finite deformation his been suitably applied here to work olt the deformation, tress components and the electric ficld witl:in an inhomogeneous piezoelectric body stbjected to a rmperature distribution. The governing equations of elasticity, Maxwell's electromagnetic cquations wid the equation of heat-flow along with the constitutive equations of the material are solved to chieve the solutions for the structure in the form of a uniform annular plate or a cylinder.

Cey words: Anisotropy, Annular pl:te, C_{r} yst:l, Cylinder, Electric field, Heterogeneity, Multiayer apacitor, Plane-strain, Thermal gradient, Thermopiezoelectricity.

Introduction

hatural crystals like quartz, Rochelle salt, tourmaline, etc., are widely used in the fabriution of electroacoustical devices, electronic devices and in the field of ultrasonic techology as the basic material because of their piezoelectric properties. Generally these rystal-controlled devices operate satisfactorily when the ambient temperature is low. hit at the elevated temperature the performance and operational characteristics of the evices change to a great extent due to the changes in the physical properties of the natter.

Since the piezoelectric devices constructed from ordinary crystals like quartz, etc. fail , operate at high temperature, ceramics of barium titanate are used as a common piezolectric material at high temperature region vide Pask and Copley ${ }^{1}$, Quarrie and Buescm^{2}. Haskins and Walsh ${ }^{3}$ in a statical problem derived the constitutive equations of nezoelectric substance in the absence of thermal field, while Mindlin ${ }^{4}$ extended the nalysis by considering the problem under thermal influence. But they fail to consider a their problems that the piezoelectric body, in general, becomes inhomogeneous when lectric field is applied upon it [Landau and Lifshitz ${ }^{5}$ 〕. Appropriate electric field in such t body under elevated temperature influences its physical properties which are depenlent upon the gradient of thermodynamic quantities which vary through the body Landau and Lifshitz ${ }^{5}$]. So, in order to have a rigorous understanding of the problem
one must take into consideration that the elastic and piezoelectric parameters as m as the permittivity of the material are, of course, some functions of the spatial count nates while the temperature of the body is so.

In this paper, the displacement, the stress components and the electric field in inhomogeneous piezoelectric body have been investigated in an annular plate and cylinder under the simultancous action of mechanical, electrical and thermal firld Seth's ${ }^{6}$ theory of finite deformations is found useful to tackle the problems. In first part of the problem a uniform annular plate of piezoelectric material has beenconas. dered, while the latter part deals with the case of a uniform annular cylinder. his analysis may be of much interest to the designers handling with the aggregate of hamie titanate cement mixture [Orchard ${ }^{7}$] or with the stratified media of piezoelectric bodis.

2. First problem

2.1. Fundamental equations

The annular plate under consideration is of uniform thickness and its inner and oure radii are r_{1} and r_{2} respectively. The annular plate becomes polarised radially mhen static voltage is impressed between its inner and outer boundaries which are keprit temperatures T_{1} and T_{2} respectively.

Since the annular plate does not contain any volume distribution of charges, annei and magnetic field, the Maxwell's equations become

$$
\begin{align*}
& \operatorname{Curl} \vec{E}=0 \\
& \operatorname{Div} \vec{D}=0 \tag{A}
\end{align*}
$$

where \vec{E} and \vec{D} are the electric field intensity and the electric induction respectirely.
Polar co-ordinates (r, θ) are used as the co-ordinate of reference with the centre ${ }^{i}$ the annular plate as origin. σ_{r} and σ_{θ} denote the radial and tangential componentsid stress at (r, θ) the stress equation of equilibrium in elasticity is given by

$$
\begin{equation*}
\frac{d \sigma_{r}}{d r}+\frac{\sigma_{r}-\sigma_{\theta}}{r}=0 . \tag{3}
\end{equation*}
$$

The Gaussian divergence equation (2) in polar co-ordinates stands as

$$
\frac{\partial D_{r}}{\partial r}+\frac{1}{r} \frac{\partial D_{\theta}}{\partial \theta}=0 .
$$

The temperature at any point must satisfy the Laplace equation

$$
\nabla^{2} T=0
$$

where $\nabla^{\mathbf{2}}$ is the Laplacian operator in two dimensions.

The above set of equations constitutes the fundamental equations for the problem. It is required to solve them keeping in view the following thermopiezoelectric constitutive relations relevant to the present problem.

$$
\begin{align*}
& S_{r}=s_{33} \sigma_{r}+s_{13} \sigma_{\theta}+d_{33} E_{r}+\mu_{1}^{\dot{E}} T \tag{i}\\
& S_{\theta}=s_{13} \sigma_{r}+s_{11} \sigma_{\theta}+d_{31} E_{r}+\mu_{2}^{E} T \tag{ii}\\
& S_{r \theta}=s_{44} \sigma_{r \theta}+d_{15} E_{\theta} \tag{iii}\\
& D_{r}=d_{33} \sigma_{r}+d_{31} \sigma_{\theta}+\varepsilon_{33} E_{r}+p_{1}^{s} T \tag{iv}\\
& D_{\theta}=d_{15} \sigma_{r \theta}+\varepsilon_{11} E_{\theta}+p_{2}^{s} T \tag{v}
\end{align*}
$$

where S_{r}, S_{θ} and $S_{r \theta}$ are the strain components, $s_{i j}$ are the elastic compliances, d_{i} are the piezoelectric strain parameters, $\varepsilon_{1 j}$ are the dielectric permittivities, μ_{1}^{E}, μ_{2}^{E} are the thermopiezoelectric constants and p_{1}^{s}, p_{2}^{s} are the constant thermopiezoelectric permittivities.

In the presence of an applied electric field and an elevated temperature the body behaves inhomogeneously [Landau and Lifshitz ${ }^{5}$]. The inhomogeneity of such a body is characterized by the variations of $s_{i j}, d_{i j}$ and $\varepsilon_{i j}$ from point to point in a static problem [Bychawski and Piszczek ${ }^{8}$]. $\mu_{1}^{E}, \mu_{2}^{\boldsymbol{E}}, p_{1}^{S}$ and p_{2}^{S} are assumed to be constant in space because their changes with the co-ordinates of the point considered are negligible in relation to those of elastic compliances or piezoelectric strain parameters or dielectric permittivities. In particular, their variations, where radial symmetry is considered may be of the following form, [Greif and Chou]

$$
\begin{align*}
& s_{i j}=c_{i j} f(r) \tag{i}\\
& d_{i j}=b_{i j} f(r) \tag{ii}\\
& \varepsilon_{i j}=v_{i j} f(r) \tag{iii}\\
& \tag{7}\\
& i, j=1,2,3,
\end{align*}
$$

where $c_{i j}, b_{i j}, v_{i t}$ are the material constants in relation to its elastic piezoeltctric and dielectric properties respectively.
Over and above, two types of boundary conditions are also to be taken into consideration. The mechanical boundary condition comes from the fact that the boundaries are free from stresses so that

$$
\begin{equation*}
\sigma_{r}=0 \quad \text { at } \quad r=r_{1} \quad \text { and } \quad r=r_{2} . \tag{8}
\end{equation*}
$$

Reviewing the equation (1), one can write down the electrical boundary condition as

$$
\begin{equation*}
\int_{r_{i}}^{r_{2}} E_{r} d r=V(\text { constant }) \tag{9}
\end{equation*}
$$

2.2. Method of solution

A solution of the heat equation (5) consistent with the boundary conditions, $T_{=I_{1}}$
on $r=r_{1}$ and $T=T_{2}$ on $r=r_{2}$ may be readily set as

$$
T=T_{1}-T_{0} \ln r / r_{1}
$$

where

$$
T_{0}=\frac{T_{1}-T_{2}}{\ln r_{2} r_{1}} .
$$

For the radially symmetric case $\partial D_{\theta} / \partial \theta=0$ and the divergence equation (4) yin it

$$
\begin{equation*}
D_{r}=\text { Constant }=D_{0}(\text { say }) . \tag{II}
\end{equation*}
$$

This relation and the equation 6 (iv) give

$$
\begin{equation*}
E_{r}=\frac{D_{0}-p_{1}^{s} T-d_{33} \sigma_{r}-}{\varepsilon_{33}} \underline{d_{31} \sigma_{\theta}} . \tag{14}
\end{equation*}
$$

Following Seth ${ }^{6}$ one can take the radial and tangential components of displacera as

$$
\begin{equation*}
u=r(1-\phi), \quad v=0 \tag{II}
\end{equation*}
$$

where $\phi(r)$ is to be determined later on. The radial and tangential strain comp. nents may now be written as

$$
\begin{equation*}
S_{r}=\frac{d u}{d r}=1-\phi-r \frac{d \phi}{d r} \tag{it}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\theta}=\frac{u}{r}=1-\phi \tag{18}
\end{equation*}
$$

When these expressions of E_{r}, S_{r}, S_{θ} in equations (12), (14) and (15) along wt those of $s_{i j}, d_{i j}$ and $\varepsilon_{i j}$ given by equations 7 (i, ii, iii) are incorporated in equations $6 i$ and 6 (ii) one may have

$$
1-\phi-r \frac{d \phi}{d r}-\frac{b_{33}}{v_{33}} D_{0}-\left(\mu_{1}^{E}-\frac{b_{33}}{v_{33}} p_{1}^{s}\right) T=f(r)\left(\lambda_{1} \sigma_{p}+\lambda_{2} \sigma_{\theta}\right)
$$

and

$$
1-\phi-\frac{b_{31}}{v_{33}} D_{0}-\left(\mu_{2}^{E}-\frac{b_{31}}{v_{33}} p_{1}^{s}\right) T=f(r)\left(\lambda_{3} \sigma_{r}+\lambda_{3} \sigma_{\theta}\right)
$$

where

$$
\lambda_{1}=c_{33}-\frac{b_{33}^{2}}{v_{33}}, \quad \lambda_{2}=c_{13}-\frac{b_{31} b_{33}}{v_{33}}, \quad \lambda_{3}=c_{11}-\frac{b_{31}^{2}}{v_{33}} .
$$

Solving (16) and (17) for σ_{r} and σ_{θ} one gets

$$
\begin{equation*}
\sigma_{\mathrm{r}}=\left\{(1-\phi)\left(\lambda_{3}-\lambda_{2}\right)-r \lambda_{3} \frac{d \phi}{d r}+C_{1} D_{0}+C_{2} T\right\} / M f(r) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{\theta}=-\left\{(1-\phi)\left(\lambda_{2}-\lambda_{1}\right)-r \lambda_{2} \frac{d \phi}{d r}+C_{1}^{\prime} D_{0}+C_{2}^{\prime} T\right\} / M f(r) \tag{19}
\end{equation*}
$$

where

$$
\begin{array}{ll}
C_{1}=\frac{b_{31} \lambda_{2}-b_{33} \lambda_{3}}{v_{33}}, & C_{2}=\mu_{2}^{E} \lambda_{2}-\mu_{1}^{E} \lambda_{3}+\frac{\left(b_{33} \lambda_{3}-b_{31} \lambda_{2}\right)}{v_{33}} p_{1}^{s} \\
C_{1}^{\prime}=\frac{b_{31} \lambda_{1}-b_{33} \lambda_{2}}{v_{33}}, & C_{2}^{\prime}=\mu_{2}^{E} \lambda_{1}-\mu_{1}^{E} \lambda_{2}+\frac{\left(b_{38} \lambda_{2}-b_{31} \lambda_{1}\right)}{v_{33}} p_{1}^{s}
\end{array}
$$

and

$$
\begin{equation*}
M=\lambda_{1} \lambda_{3}-\lambda_{2}^{2} \tag{19a}
\end{equation*}
$$

Substituting the expressions of σ_{τ} and σ_{θ} as obtained in equations (18) and (19) respectively in the equation (3) one can have the following inhomogeneous differential equation in ϕ,

$$
\begin{equation*}
\frac{d}{d r}\left(r^{2} \frac{d \phi}{d r}\right)+(1-2 m) r \frac{d \phi}{d r}+n \phi=\Lambda_{1}+\Lambda_{2} \ln r \tag{20}
\end{equation*}
$$

for

$$
\begin{equation*}
f(r)=r^{2^{m}} \tag{20a}
\end{equation*}
$$

Here

$$
\begin{aligned}
& n=\left(1-\frac{\lambda_{1}}{\lambda_{3}}\right)-2 m\left(1-\frac{\lambda_{2}}{\lambda_{3}}\right) \\
& \lambda_{3} \Lambda_{1}=\left\{(1-2 m) C_{1}+C_{1}^{\prime}\right\} D_{0}+\left\{(1-2 m) C_{2}+C_{2}^{\prime}\right\}\left(T_{1}+T_{0} \ln r_{1}\right) \\
& \quad+\lambda_{3}-\lambda_{1}+2 m\left(\lambda_{2}-\lambda_{3}\right)-C_{2} T_{0}=\lambda_{3}\left(D_{0} \delta_{1}+\delta_{2}\right) \text { say }
\end{aligned}
$$

and

$$
\begin{equation*}
\lambda_{3} \Lambda_{2}=-\left\{(1-2 m) C_{2}+C_{2}^{\prime}\right\} T_{0} \tag{20b}
\end{equation*}
$$

The form of ϕ suitable for the equation (20) may be set as

$$
\begin{equation*}
\phi(r)=A r^{a_{1}}+B r^{a_{2}}+\frac{\Lambda_{2}}{n} \ln r+\frac{n \Lambda_{1}+2(m-1) \Lambda_{2}}{n^{2}} \tag{21}
\end{equation*}
$$

where A, B are arbitrary constants and

$$
\begin{equation*}
\alpha_{1}, \alpha_{2}=(m-1) \dddot{\sqrt{(m-1)^{2}-n}} \tag{a}
\end{equation*}
$$

The full form to the radial displacement u can now be written with the help of the equation (13),

$$
\begin{equation*}
u=r-A r^{a_{2}+1}-B r^{a_{2}+1}-\frac{\Lambda_{1}}{n} r-\frac{\Lambda_{2}}{n} r \ln r-\frac{2(m-1)}{n^{2}} \Lambda_{2} r \tag{2}
\end{equation*}
$$

On substituting the expression of $\phi(r) ; \sigma_{r}, \sigma_{\theta}$ and E_{r} may be expressed as functiont
of the radial distance r.

$$
\begin{aligned}
\sigma_{r}= & {\left[A\left(\lambda_{2}-\lambda_{3}-\lambda_{3} \alpha_{1}\right) r^{a_{2}}+B\left(\lambda_{2}-\lambda_{3}-\lambda_{3} \alpha_{2}\right) r^{a}+D_{0} C_{1}\right.} \\
& \left.-\left(\lambda_{2}-\lambda_{3}\right)\left\{1-\frac{n \Lambda_{1}+2(m-1) \Lambda_{2}}{n^{2}}-\frac{\Lambda_{2}}{n} \ln r\right\}-\frac{\Lambda_{2}}{n} \lambda_{3}+C_{2} T\right] / \operatorname{MB}^{3}
\end{aligned}
$$

$$
\begin{align*}
\sigma_{\theta}=- & {\left[A\left(\lambda_{1}-\lambda_{2}-\lambda_{2} \alpha_{1}\right) r^{a_{1}}+B\left(\lambda_{2}-\lambda_{2}-\lambda_{2} \alpha_{2}\right) r^{\alpha}+D_{0} C_{1}^{\prime}\right.} \tag{10}\\
& \left.-\left(\lambda_{i}-\lambda_{2}\right)\left\{1-\frac{n \Lambda_{i}+2(m-1) \Lambda_{2}}{n^{2}}-\frac{\Lambda_{2}}{n} \ln r\right\}-\frac{\Lambda_{2}}{n} \lambda_{2}+C_{2}^{\prime} T\right] M_{r}^{r}
\end{align*}
$$

(1)

$$
\begin{aligned}
E_{r}= & {\left[A\left\{b_{33}\left(\lambda_{3}-\lambda_{2}\right)-b_{31}\left(\lambda_{2}-\lambda_{1}\right)+\alpha_{1}\left(\lambda_{3} b_{33}-\lambda_{2} b_{31}\right)\right\} r^{a_{1}}\right.} \\
& +B\left\{b_{33}\left(\lambda_{3}-\lambda_{2}\right)-b_{31}\left(\lambda_{2}-\lambda_{1}\right)+\dot{\alpha_{2}}\left(\lambda_{3} b_{33}-\lambda_{2} b_{31}\right)\right\} r^{a_{2}} \\
& +D_{0}\left(M-b_{33} C_{1}+b_{31} C_{1}^{\prime}\right)-\left(b_{33} C_{2}-b_{31} C_{2}^{\prime}+M p_{1}^{S}\right) T \\
& +\left\{b_{33}\left(\lambda_{3}-\lambda_{2}\right)-b_{31}\left(\lambda_{2}-\lambda_{1}\right)\right\}\left\{\frac{\Lambda_{2}}{n} \ln r+\frac{n \Lambda_{1}+2(m-1) \Lambda_{2}}{n^{2}}-1\right\} \\
& \left.+\left(b_{33} \lambda_{3}-b_{31} \lambda_{2}\right) \frac{\Lambda_{2}}{n}\right] / v_{33} M r^{2 m}
\end{aligned}
$$

With the aid of the boundary conditions (8) and (9) the set of above equation 23 (i, ii, iii) gives the following three equations containing unknowns A, B and D_{n}

$$
\begin{align*}
& l_{11} A+l_{12} B+l_{18} D_{0}=K_{i} \tag{1}\\
& l_{21} A+l_{22} B+l_{23} D_{0}=K_{2} \tag{i}\\
& l_{31} A+l_{32} B+l_{33} D_{0}=K_{3} \tag{iii}
\end{align*}
$$

where the values of the constants ' $l_{i j}$'s $(i, j=1,2,3)$ and ' K 's are known and given in Appendix I.

From the equations 24 (i, ii, iii) it is found that

$$
\begin{equation*}
A=\frac{\Delta_{1}}{\Delta}, \quad B=\frac{\Delta_{2}}{\Delta} \quad \text { and } \quad D_{0}=\frac{\Delta_{3}}{\Delta} \tag{25}
\end{equation*}
$$

where Δ is the nonsingular value of the determinant

$$
\left|\begin{array}{lll}
l_{11} & l_{12} & l_{13} \tag{26}\\
l_{21} & l_{22} & l_{23} \\
l_{31} & l_{32} & l_{33}
\end{array}\right|
$$

and ' Δ_{i} 's are obtained from Δ by replacing the i th column by $\begin{aligned} & K_{1} \\ & K_{2} \\ & K_{3}\end{aligned}$ dary conditions (8) and (9) can now be fully expressed by the equations 23 (i , ii, iii) after inserting the known values of A, B and D_{0} from the equations (25).

3. Second problem

3.1. Fundamental equations

In this section the analysis has been extended in the case of an annular cylinder having an internal and external radii of r_{1} and r_{2} respectively. The cylinder is under the state of plane-strain which is maintained by a uniform longitudinal extension α. Like the first problem, it is assumed that the boundary surfaces of the cylinder are free from the radial component of stress as well as the cylinder is polarised radially under the influence of a static voltage between the inner and outer boundaries which are kept at temperatures T_{1} and T_{2} respectively. The object of this problem is to find out a solution satisfying the equations (1), (2), (3), (5) keeping in view the following constitutive equations relevant to the present problem.

$$
\begin{align*}
& S_{r}=s_{33} \sigma_{r}+s_{13} \sigma_{\theta}+s_{13} \sigma_{z}+d_{33} E_{r}+\mu_{z}^{E} T \tag{i}\\
& S_{\theta}=s_{13} \sigma_{r}+s_{i 1} \sigma_{\theta}+s_{12} \sigma_{z}+d_{31} E_{r}+\mu_{2}^{E} T \tag{ii}\\
& S_{s}=s_{i 3} \sigma_{r}+s_{12} \sigma_{\theta}+s_{i 1} \sigma_{z}+d_{31} E_{r}+\mu_{3}^{E} T \tag{iii}\\
& S_{r}=s_{44} \sigma_{r z}+d_{15} E_{z} \tag{iv}\\
& S_{r \theta}=s_{44} \sigma_{r \theta}+d_{15} E_{\theta} \tag{v}\\
& S_{\theta z}=s_{86} \sigma_{\theta z} \tag{vi}\\
& D_{r}=d_{33} \sigma_{r}+d_{31} \sigma_{\theta}+d_{31} \sigma_{z}+\varepsilon_{33} E_{r}+p_{2}^{s} T \tag{vii}\\
& D_{\theta}=d_{15} \sigma_{r \theta}+\varepsilon_{11} E_{\theta}+p_{z}^{s} T \tag{viii}\\
& D_{1}=d_{15} \sigma_{r z}+\varepsilon_{11} E_{z}+p_{3}^{s} T \tag{ix}
\end{align*}
$$

where the symbols carry their usual meaning.

3.2. Method of solution

Since the electric field is assumed radial $E_{\theta}=E_{s}=0$. Because of the state of plape
strain $S_{r \theta}=S_{r s}=0$. Now from the cquations 27 (iv) and 27 (v) it is evident that

$$
\sigma_{r \theta}=\sigma_{\theta_{s}}=0
$$

Gaussian divergence equation in cylindrical co-ordinates can be written as

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r D_{r}\right)+\frac{1}{r} \frac{\partial D_{\theta}}{\partial \bar{\theta}}+\frac{\partial D_{z}}{\partial z}=0
$$

Owing to the radial symmetry, the above equation becomes

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r D_{r}\right)=0
$$

which indicates $D_{r}=D_{1} / r, D_{1}$ is any constant. The equation 27 (vii) now turns un

$$
\begin{equation*}
E_{r}=\left(\frac{D_{1}}{r}-d_{33} \sigma_{r}-d_{31} \sigma_{\theta}-d_{31} \sigma_{z}-p_{1}^{s} T\right) / \varepsilon_{33} \tag{2}
\end{equation*}
$$

In order to find out the deformations, Seth's ${ }^{6}$ theory of deformation is again folloned and the components of displacement are chosen as

$$
\begin{equation*}
u=r(1-\psi), \quad v=0, \quad w=\alpha z \tag{8}
\end{equation*}
$$

where α is a constant.
The three strain components in 27 (i, ii, iii) now stand as

$$
\begin{align*}
& S_{r}=1-\psi-r \frac{d \psi}{d r} \tag{0}\\
& S_{\theta}=1-\psi \tag{回}\\
& S_{z}=\alpha
\end{align*}
$$

On using the relations 7 (i, ii, iii), 27 (i, ii, iii), 28 and 30 (i, ii, ii), the following of equations may be formed,

$$
\begin{align*}
& \lambda_{1} \sigma_{r}+\lambda_{2} \sigma_{\theta}+\lambda_{2} \sigma_{z}=A_{1} \tag{i}\\
& \lambda_{2} \sigma_{r}+\lambda_{3} \sigma_{\theta}+\lambda_{4} \sigma_{z}=A_{2} \tag{间}\\
& \lambda_{2} \sigma_{r}+\lambda_{4} \sigma_{\theta}+\lambda_{3} \sigma_{z}=A_{3} \tag{iii}
\end{align*}
$$

where

$$
\lambda_{1}=c_{33}-\frac{b_{33}^{2}}{v_{33}}, \quad \lambda_{2}=c_{13}-\frac{b_{31} b_{33}}{v_{33}}
$$

$$
\begin{align*}
& \lambda_{3}=c_{11}-\frac{b_{31}^{2}}{v_{33}}, \quad \lambda_{4}=c_{12}-\frac{b_{31}^{2}}{v_{33}}- \tag{31a}\\
& A_{1}=\left\{1-\psi-r \frac{d \psi}{d r}-\frac{b_{33}}{v_{33}} \frac{D_{1}}{r}-\left(\mu_{1}^{E}-\frac{b_{33}}{v_{33}} p_{1}^{s}\right) T\right\} / f(r) \\
& A_{2}=\left\{1-\psi-\frac{b_{31}}{v_{33}} \frac{D_{1}}{r}-\left(\mu_{2}^{E}-\frac{b_{31}}{v_{33}} p_{1}^{s}\right) T\right\} / f(r) \\
& A_{3}=\left\{\alpha-\frac{b_{31}}{v_{33}} \frac{D_{1}}{r}-\left(\mu_{3}^{E}-\frac{b_{31}}{v_{33}} p_{1}^{s}\right) T\right\} / f(r) . \tag{31b}
\end{align*}
$$

From the equations 31 (i, ii, iii) one can have

$$
\begin{align*}
\sigma_{r} & =\left[A_{1}\left(\lambda_{3}+\lambda_{4}\right)-A_{3}\left(\lambda_{2}+\lambda_{3}\right)\right] / H \tag{i}\\
\sigma_{\theta} & =\left[A_{3}\left(\lambda_{1} \lambda_{3}-\lambda_{2}^{2}\right)-A_{3}\left(\lambda_{1} \lambda_{4}-\lambda_{2}^{2}\right)-A_{1} \lambda_{2}\left(\lambda_{3}-\lambda_{4}\right)\right] / H^{\prime} \tag{ii}\\
\sigma_{z} & =\left[A_{3}\left(\lambda_{1} \lambda_{3}-\lambda_{2}^{2}\right)-A_{2}\left(\lambda_{2} \lambda_{4}-\lambda_{2}^{2}\right)-A_{1} \lambda_{2}\left(\lambda_{3}-\lambda_{4}\right)\right] / H^{\prime} \tag{iii}
\end{align*}
$$

where

$$
\begin{equation*}
H=\lambda_{1}\left(\lambda_{3}+\lambda_{4}\right)-2 \lambda_{2}^{2} \quad \text { and } \quad H^{\prime}=\left(\lambda_{3}-\lambda_{4}\right) H \tag{32a}
\end{equation*}
$$

By the use of equations 32 (i, ii, iii) and (20 a) the equation (28) may be put in the form
$E_{r}=\left[\frac{D_{1}}{r^{2 m+1}}-\frac{p_{1}^{s} T}{r^{2 m}}-\frac{\begin{array}{c}A_{1}\left\{b_{33}\left(\lambda_{3}+\lambda_{4}\right)-2 b_{31} \lambda_{2}\right\}+A_{2}\left\{b_{31} \lambda_{1}-b_{33}\left(\lambda_{2}+\lambda_{3}\right)\right\} \\ +A_{3} b_{31} \lambda_{1}\end{array}}{H}\right] /{ }_{\text {(33) }}^{v_{33} .}$
The expressions of σ_{r} and σ_{θ} of equations 32 (i, ii) along with (31 b) and (20 a) are inserted in the equation (3), which is still valid in this problem, to obtain the following inhomogereous differential equation

$$
\begin{equation*}
\frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)+(1-2 m) r \frac{d \psi}{d r}+N \psi=a,+\frac{a_{1}}{r}+a_{2} \ln r / r_{1} \tag{34}
\end{equation*}
$$

The constants N, a_{0}, a_{1} and a_{2} are

$$
\begin{aligned}
N= & (1-2 m)+\frac{2 m \lambda_{2}}{\lambda_{3}+\lambda_{4}}+\frac{\left(\lambda_{1} \lambda_{3}-\lambda_{2}^{2}\right)}{\left(\lambda_{4}^{2}-\lambda_{3}^{2}\right)} \\
a_{0}= & 2 m\left\{\frac{\lambda_{2}(1+\alpha)}{\lambda_{3}+\lambda_{4}}-1\right\}+\frac{\left(\lambda_{1} \lambda_{3}-\lambda_{2}^{2}-\lambda_{3}^{2}+\lambda_{4}^{2}\right)}{\left(\lambda_{4}^{2}-\lambda_{3}^{2}\right)}-\frac{\alpha\left(\lambda_{1} \lambda_{4}-\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}-\lambda_{2}^{2}\right)}{\left(\lambda_{4}^{2}-\lambda_{3}^{2}\right)} \\
& +\left[\left\{(2 m-1)-\frac{\lambda_{2}}{\lambda_{3}+\lambda_{4}}\right\}\left(\mu_{1}^{E}-\frac{b_{33}}{\nu_{33}} p_{1}^{s}\right)-\frac{2 m \lambda_{3}}{\lambda_{3}+\lambda_{4}}\left(\mu_{2}^{E}+\mu_{3}^{E}-2 \frac{b_{31}}{v_{33}} p_{1}^{s}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +\frac{\left(\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}-\lambda_{2} \lambda_{4}-\lambda_{2}^{2}\right)}{\left(\lambda_{3}^{2}-\lambda_{4}^{2}\right)}\left(\mu_{2}^{E}-\frac{b_{31}}{v_{33}} p_{1}^{s}\right)-\frac{\left(\lambda_{1} \lambda_{4}-\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}-\lambda_{2}^{2}\right)}{\left(\lambda_{3}^{2}-\lambda_{4}^{2}\right)} \\
& \left.\times\left(\mu_{3}^{E}-\frac{b_{31}}{v_{33}} p_{1}^{s}\right)\right] T_{0}^{\cdot}-\left\{\frac{\lambda_{2}}{\lambda_{3}+\lambda_{4}}\left(\mu_{3}^{E}+\mu_{3}^{E}-\frac{2 b_{31}}{v_{33}} p_{1}^{s}\right)\right. \\
& \left.+\left(\mu_{1}^{E}-\frac{b_{33}}{v_{33}} p_{1}^{s}\right)\right\} T_{1} \\
c_{1}= & {\left[b_{31}\left(4 m \lambda_{2}-\lambda_{1}\right)+b_{33}\left(2 m-\frac{\lambda_{2}}{\lambda_{3}+\lambda_{4}}\right)\right] \frac{D_{1}}{v_{33}} } \\
a_{2}= & {\left[\frac{2 m \lambda_{2}}{\left(\lambda_{3}+\lambda_{4}\right)}\left(\mu_{2}^{E}+\mu_{3}^{E}-\frac{2 b_{31}}{v_{33}} p_{1}^{s}\right)-\left\{(2 m-1)-\frac{\lambda_{2}}{\lambda_{3}+\lambda_{4}}\right\}\right.} \\
& \times\left(\mu_{1}^{E}-\frac{b_{33}}{v_{33}} f_{1}^{s}\right)+\frac{\left(\lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{3}-\lambda_{2} \lambda_{4}-\lambda_{2}^{2}\right)}{\left(\lambda_{4}^{2}-\lambda_{3}^{2}\right)}\left(\mu_{2}^{E}-\frac{b_{31}}{v_{33}} p_{1}^{s}\right) \\
& \left.-\frac{\left(\lambda_{1} \lambda_{4}-\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}-\lambda_{2}^{2}\right)}{\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)}\left(\mu_{3}^{E}-\frac{b_{31}}{v_{33}} p_{1}^{s}\right)\right] T_{1} . \tag{0}
\end{align*}
$$

The general form of $\psi(r)$ satisfying the equation (34) may be found to be

$$
\begin{equation*}
\psi(r) \doteq C r^{\xi_{1}}+D r \xi_{z}+a_{0}+\frac{a_{1}^{\prime}}{r}+a_{2}^{\prime} \ln r / r_{1} \tag{i3}
\end{equation*}
$$

where $\breve{\zeta}_{1}$ and $\check{\zeta}_{2}$ are the roots of the equation

$$
\begin{equation*}
\xi^{2}+2(1-m) \xi+N=0 \tag{35d}
\end{equation*}
$$

C and D are to be determined along with the unknowns α and D_{1} which are involvd in a_{0} and a_{1} in ($34 a$). Also $a_{0}^{\prime}, a_{1}^{\prime}$ and a_{2}^{\prime} are given by

$$
\begin{aligned}
& a_{0}^{\prime}=\left[a_{0}-\frac{2(1-m) a_{2}}{N}\right] / N=\delta_{3} \alpha+\delta_{4} \text { say }, \\
& a_{1}^{\prime}=\frac{a_{1}}{(2 m+N-1)}=\delta_{5} D_{1} \text { say }, \\
& a_{2}^{\prime}=\frac{a_{2}}{N} .
\end{aligned}
$$

(356)

The radial displacement u can now be expressed as,

$$
u=r-C r^{t_{1}+1}-D r^{t_{2}+1}-a_{0} r-a_{1}^{\prime}-a_{2}^{\prime} r \ln r / r_{1} .
$$

By the use of the equations (31 b) and (35) the stress-components in the equations $32^{(}$(i, ii, iii) and the equation for electric field (33) can be expressed in terms of the
radial distance

$$
\begin{align*}
\sigma_{\mathrm{r}}= & C\left(\Gamma_{1}+\Gamma_{2}^{\prime} \xi_{1}\right) r_{1}^{\xi_{1}-2 m}+D\left(\Gamma_{1}+\Gamma_{2} \xi_{2}\right) r_{2}^{\xi_{2}-2 m}+D_{1} \Gamma_{3} r^{-(2 m+1)} \\
& +\alpha C_{2} r^{-2 m}-\Gamma_{1} r^{-2 m}\left(1-a_{0}^{\prime}-\frac{a_{1}^{\prime}}{r}-a_{2}^{\left.\prime \ln r / r_{1}\right)}\right. \\
& \left.-\Gamma_{2} r^{-2 m}\left(\frac{a_{1}^{\prime}}{r}-a_{2}^{\prime}\right)-\Gamma_{4} r^{-2 m} T\right] /(-H) \tag{i}\\
\sigma_{\theta}= & {\left[C\left(\Gamma_{5}+\Gamma_{7} \xi_{1}\right) r^{\xi_{1}-2 m}+D\left(\Gamma_{5}+\Gamma_{7} \xi_{2}\right) r^{\xi_{2}-2 m}-D_{1} \Gamma_{6} r^{-(2 m+1)}\right.} \\
& +\alpha \Gamma_{8} r^{-2 m}-\Gamma_{5} r^{-2 m}\left(1-a_{0}^{\prime}-\frac{a_{1}^{\prime}}{r}-a_{2}^{\prime} \ln r / r_{1}\right) \\
& \left.-\Gamma_{7} r^{-2 m}\left(\frac{a_{1}^{\prime}}{r}-d_{2}^{\prime}\right)-\Gamma_{9} r^{-2 m} T\right] /\left(-H^{\prime}\right) \tag{ii}\\
\sigma_{z}= & C\left(\Gamma_{12}+\Gamma_{7} \xi_{1}\right) r^{\xi_{1}-2^{m}}+D\left(\Gamma_{12}+\Gamma_{7} \xi_{2}\right) r^{\xi_{2}-2 m}-D_{1} \Gamma_{6} r^{(2 m+1)} \\
& -\alpha \Gamma_{10} r^{-2 m}-\Gamma_{12} r^{-2 m}\left(1-a_{0}^{\prime}-\frac{a_{1}^{\prime}}{r}-a_{2}^{\prime} \ln r / r_{1}\right) \\
& \left.-\Gamma_{7} r^{-2 m}\left(\frac{a_{1}^{\prime}}{r}-a_{2}^{\prime}\right)-\Gamma_{i 1} r^{-2 m} T\right] /\left(-H^{\prime}\right) \tag{iii}
\end{align*}
$$

and

$$
\begin{aligned}
E_{r}= & C\left(f_{3}+f_{2} \xi_{i}\right) r^{\xi_{1}-2 m}+D\left(f_{3}+f_{2} \xi_{2}\right) r^{\xi_{2}-2^{m}}+D_{1} f_{0} r^{(2 m+1)} \\
& +\alpha f_{4} r^{-2 m}+\left\{f_{2} a_{2}^{\prime}+f_{3}\left(a_{0}^{\prime}-1\right)\right\} r^{-2 m}+\left(f_{3}-f_{2}\right) a_{2}^{\prime} r^{-(2 m+1)} \\
& -f_{1} r^{-2 m} T+f_{3} a_{2}^{\prime} r^{-2 m} \ln r / r_{1}
\end{aligned}
$$

where the ' Γ 's and ' f 's are constants. Their values are written in Appendix II. The constants C, D, α and D_{1} can be evaluated from the above equations 37 (i, ii, iii) and (38) by using the two mechanical boundary conditions stated in (8) and the electrical boundary condition (9) along with the condition

$$
\begin{equation*}
\int_{r_{1}}^{r_{2}} \sigma_{2} r d r=0 \tag{39}
\end{equation*}
$$

Application of the conditions (8) in the equation 37 (i), (9) in the equation (38) and (39) in the equation 37 (iii) yields the following set of equations,

$$
\begin{align*}
& m_{11} C+m_{12} D+m_{13} D_{1}+m_{14} \alpha=Q_{1} \tag{ii}\\
& m_{21} C+m_{22} D+m_{23} D_{1}+m_{24} \alpha=Q_{2}
\end{align*}
$$

$$
\begin{aligned}
& m_{31} C+m_{32} D+m_{33} D_{1}+m_{34} \alpha=Q_{3} \\
& m_{41} C+m_{42} D+m_{43} D_{1}+m_{44} \alpha=Q_{4}
\end{aligned}
$$

where ' $m_{i j}$ ' and ' Q_{i} 's are constants, values of which are given in Appendia [
From the equations 40 (i, ii, iii, iv)

$$
C=\frac{\square_{1}}{\square}, \quad D=\frac{\square_{2}}{\square}, \quad D_{1}=\frac{\square_{3}}{\square} \quad \text { and } \quad \alpha=\frac{\square_{4}}{\square}
$$

where

$$
\square=\left|\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{23} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right|
$$

and \square, may be found from the determinantby replacing its sth column by
Q_{1}
Q_{3}
Q_{3}
Q_{4}
The stress components $\sigma_{r}, \sigma_{\theta}, \sigma_{z}$ and the electric field E_{r} of equations $37(\mathrm{i}, \mathrm{ii}, i i)$ ad (38) can now be expressed completely by substituting the values of C, D, D_{1} and afon the equations $(40 a$). The stresses thus obtained tally well with those found by Rop for purely elastic nonhomogeneous cylinder on making $b_{i j}=0, v_{i j}=0, \mu_{i}^{\varepsilon}=0$ add $p_{i}^{s}=0$.

This analysis would be helpful to design multilayer capacitors using nonlinerar dielectric aggregates [Tareev ${ }^{11}$, and Orchard].

4. Acknowledgement

The second author is grateful to Dr. Amalendu Choudhury, Professor and Head of ite Department of Physics, Jadavpur University, Calcutta 700 032, for his keen interto and to the first author for his active guidance in preparing the present work.

Appendix I

\therefore The following symbols are used in the first problem:

$$
\begin{array}{ll}
l_{1 i}=r_{1}{ }^{a_{1}}\left\{\lambda_{2}-\lambda_{3}\left(1+\alpha_{1}\right)\right\}, & l_{12}=r_{1}^{a_{2}}\left\{\lambda_{2}-\lambda_{3}\left(1+\alpha_{2}\right)\right\}, \\
l_{13}=C_{1}+\frac{\left(\lambda_{2}-\lambda_{3}\right)}{n} \delta_{1}
\end{array}
$$

$$
\begin{aligned}
l_{21}= & r_{2}^{a_{1}}\left\{\lambda_{2}-\lambda_{3}\left(1+\alpha_{1}\right)\right\}, \quad l_{22}=r_{2}^{a_{2}}\left\{\lambda_{2}-\lambda_{3}\left(1+\alpha_{2}\right)\right\}, \quad l_{23}=l_{13} \\
l_{31}= & \left\{b_{33}\left(\lambda_{3}-\lambda_{2}\right)-b_{31}\left(\lambda_{2}-\lambda_{1}\right)+\alpha_{1}\left(\lambda_{3} b_{33}-\lambda_{2} b_{31}\right)\right\} \\
& \times \frac{\left(r_{2}{ }^{a_{1}-2 m+1}-r_{1} a_{1}-2 m+1\right.}{\left(\alpha_{1}-2 m+1\right)} \\
l_{32}= & \left\{b_{33}\left(\lambda_{3}-\lambda_{2}\right)-b_{31}\left(\lambda_{2}-\lambda_{1}\right)+\alpha_{2}\left(\lambda_{3} b_{33}-\lambda_{2} b_{31}\right)\right\} \\
& \times\left(r_{2}^{a_{2}-2 m+1}-r_{1}^{a_{2}-2 m+1}\right) /\left(\alpha_{3}-2 m+1\right) \\
l_{33}= & {\left[M-b_{33} C_{1}+b_{31}\left\{C_{1}^{\prime}+\frac{\left(\lambda_{2}-\lambda_{1}\right)}{n} \delta_{1}\right\}\right]\left(r_{2}{ }^{1-2 m}-r_{1}^{1-2 m}\right) /(1-2 m) } \\
K_{1}= & \left(\lambda_{2}-\lambda_{3}\right)\left\{1-\frac{\Lambda_{2}}{n} \ln r_{1}-\frac{n \delta_{2}+2(m-1) \Lambda_{2}}{n^{2}}\right\}+\frac{\Lambda_{2}}{n} \lambda_{3}-C_{2} T_{1} \\
K_{2}= & \left(\lambda_{2}-\lambda_{3}\right)\left\{1-\frac{\Lambda_{2}}{n} \ln r_{2}-\frac{n \delta_{2}+2(m-1) \Lambda_{2}}{n^{2}}\right\}+\frac{\Lambda_{2}}{n} \lambda_{3}-C_{2} T_{2} \\
K_{3}= & {\left[\left(b_{33} C_{2}-b_{31} C_{2}^{\prime}+M p_{1}^{s}\right)\left(T_{1}+T_{0} \ln r_{1}\right)-\left\{b_{33}\left(\lambda_{3}-\lambda_{2}\right)-b_{31}\left(\lambda_{2}-\lambda_{1}\right)\right\}\right.} \\
& \times\left\{\frac{\left.\left.n \delta_{2}+2(m-1) \Lambda_{2}-1\right\}+\left(\lambda_{2} b_{31}-\lambda_{3} b_{33}\right) \frac{\Lambda_{2}}{n}\right]\left(r_{2}^{1-2 m}-r_{1}^{1-2 m}\right) /(1-2 m)}{n^{2}}\right. \\
& -\left[\left(b_{33} C_{2}-b_{31} C_{2}^{\prime}+M p_{1}^{s}\right) T_{0}+\left\{b_{33}\left(\lambda_{3}-\lambda_{2}\right)-b_{31}\left(\lambda_{2}-\lambda_{1}\right)\right\} \frac{\Lambda_{2}}{n}\right] \\
& \times\left\{\left(r_{2}^{1-2 m} \ln r_{2}-r_{1}^{1-2 m} \ln r_{1}\right) /(1-2 m)-\left(r_{2}^{1-2 m}-r_{1}^{1-2 m}\right) /(1-2 m)^{2}\right\} \\
& +M V v_{33}
\end{aligned}
$$

Appendix II

$$
\begin{aligned}
& \text { The following symbols are used in the second problem: } \\
& \qquad \begin{aligned}
& \Gamma_{1}=\left(\lambda_{3}+\lambda_{4}-\lambda_{2}\right), \quad \Gamma_{2}=\left(\lambda_{3}+\lambda_{4}\right), \quad \Gamma_{3}=\left\{\left(\lambda_{3}+\lambda_{4}\right) b_{33}-2 \lambda_{3} b_{31}\right\} / v_{33} \\
& \Gamma_{4}=\left\{\lambda_{2}\left(\mu_{2}^{E}+\mu_{3}^{E}-\frac{2 b_{31}}{v_{33}} p_{1}^{s}\right)-\left(\lambda_{3}+\lambda_{3}\right)\left(\mu_{1}^{E}-\frac{b_{33}}{v_{33}} p_{1}^{s}\right)\right\} \\
& \Gamma_{5}=\left(\lambda_{1} \lambda_{3}-\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}-\lambda_{2}^{E}\right) \\
& \Gamma_{6}=\left\{\left(\lambda_{4}-\lambda_{3}\right)\left(\lambda_{1} b_{31}-\lambda_{3} b_{33}\right)\right\} / v_{33} \\
& \Gamma_{7}=\lambda_{2}\left(\lambda_{4}-\lambda_{3}\right), \quad \Gamma_{8}=\left(\lambda_{1} \lambda_{4}-\lambda_{2}^{E}\right) \\
& \Gamma_{9}=\lambda_{2}\left(\lambda_{3}-\lambda_{4}\right) \mu_{1}^{E}-\left(\lambda_{1} \lambda_{3}-\lambda_{2}^{2}\right) \mu_{2}^{E}+\left\{\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{1} b_{31}-\lambda_{3} b_{33}\right)\right\} p_{1}^{s} j v_{33} \\
& \Gamma_{10}=\left(\lambda_{1} \lambda_{3}-\lambda_{2}^{2}\right) \\
& \Gamma_{11}=\lambda_{2}\left(\lambda_{3}-\lambda_{4}\right) \mu_{2}^{E}+\left(\lambda_{1} \lambda_{4}-\lambda_{2}^{2}\right) \mu_{2}^{E}+\left\{\left(\lambda_{3}-\lambda_{4}\right)\left(\lambda_{1} b_{31}-\lambda_{2} b_{33}\right)\right\} P_{1}^{S} / v_{33} \\
& \Gamma_{i_{2}}=\left(\lambda_{2} \lambda_{4}-\lambda_{2} \lambda_{3}-\lambda_{1} \lambda_{4}+\lambda_{2}^{z}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& m_{11}=\left(\Gamma_{1}+\Gamma_{2} \xi_{1}\right) r_{1}^{\xi_{1}}, \quad m_{12}=\left(\Gamma_{1}+\Gamma_{2} \xi_{2}\right) r_{1} \xi_{2}, \\
& m_{13}=\frac{\Gamma_{3}+\left(\Gamma_{2}-\Gamma_{1}\right) \delta_{5}}{r_{1}}, \quad m_{14}=C_{2}-\Gamma_{i} \delta_{3} \\
& m_{2 i}=\left(\Gamma_{1}+\Gamma_{2} \xi_{1}\right) r_{2}{ }^{\xi_{1}}, \quad m_{22}=\left(\Gamma_{1}+\Gamma_{2} \xi_{2}\right) r_{2}{ }^{\xi_{2}}, \\
& m_{23}=\frac{\Gamma_{3}+\left(\Gamma_{2}-\Gamma_{1}\right) \delta_{5}}{r_{2}}, \quad m_{24}=m_{14} \\
& m_{3 i}=\left(\xi_{1} f_{2}+f_{3}\right)\left(r_{2}^{\xi_{1}-2 m+1}-r_{1}{ }^{\xi_{1}-2 m+1}\right) /\left(\xi_{i}-2 m+1\right) \\
& m_{32}=\left(\xi_{2} f_{2}+f_{3}\right)\left(r_{2}^{\xi_{2}-2 m+1}-r_{1}^{\xi_{2}-2 m+1}\right) /\left(\xi_{2}-2 m+1\right) \\
& m_{33}=\left\{f_{0}+\left(f_{3}-f_{2}\right) \delta_{5}\right\}\left(r_{1}^{-2 m}-r_{2}^{-2 m}\right) / 2 m \\
& m_{34}=\left(f_{4}+f_{3} \delta_{3}\right)\left(r_{2}^{1-2 m}-r_{1}{ }^{1-2 m}\right) /(1-2 m) \\
& m_{4 i}=\left(\Gamma_{12}+\Gamma_{7} \xi_{1}\right)\left\{r_{2}{ }^{\xi_{1}+2(1-m)}-r_{1}^{\xi_{1}+2(1-m)}\right\} / \xi_{1}+2(1-m) \\
& m_{42}=\left(\Gamma_{12}+\Gamma_{7} \xi_{2}\right)\left\{r_{2}^{\xi_{2}+2(1-m)}-r_{1}^{\xi_{2}+2(1-m)}\right\} / \xi_{2}+2(1-m) \\
& m_{43}=\left\{\Gamma_{6}+\left(\Gamma_{7}-\Gamma_{12}\right) \delta_{5}\right\}\left(r_{2}{ }^{1-\mathrm{g} m}-r_{1}{ }^{1-2 m}\right) /(2 m-1) \\
& m_{44}=\left(\Gamma_{10}-\Gamma_{12} \delta_{3}\right)\left\{r_{2}{ }^{2(1-m)}-r_{1}{ }^{2(1-m)}\right\} / 2(m-1) \\
& Q_{1}=\Gamma_{1}\left(1-\delta_{4}\right)-\Gamma_{2} a_{2}^{\prime}+\Gamma_{4} T_{1} \\
& Q_{2}=\Gamma_{1}\left(1-\delta_{4}-a_{2}^{\prime} \ln r_{3} / r_{1}\right)-\Gamma_{2} a_{2}^{\prime}+\Gamma_{4} T_{2} \\
& Q_{3}=v_{33} V-\left\{f_{2} a_{2}^{\prime}+f_{3}\left(\delta_{4}-1\right)\right\}\left(r_{2}^{1-2 m}-r_{1}^{1-q m}\right) /(1-2 m) \\
& +f_{1} T_{0}\left(r_{2}{ }^{1-2 m}-r_{1}{ }^{1-2 m}\right) /(1-2 m) \\
& -\frac{\left(f_{1} T_{1}+f_{3} a_{2}^{\prime}\right)}{2(1-m)}\left[r_{2}{ }^{2(1-m)} \ln r_{2} / r_{1}-\left\{r_{2}{ }^{2(1-m)}-r_{1}{ }^{2(1-m)}\right\}\right] \\
& Q_{4}=\left\{\Gamma_{12}\left(1-\delta_{4}\right)-\Gamma_{7} a_{2}^{\prime}+\Gamma_{11} T_{0}\right\}\left\{r_{2}{ }^{2(1-m)}-r_{1}{ }^{2(1-m)}\right\} / 2(1-m) \\
& -\frac{\left(\Gamma_{11} T_{1}+\Gamma_{12} a_{2}^{\prime}\right)}{2(1-m)}\left[r_{2}^{2(1-m)} \ln r_{2} / r_{1}-\left\{r_{2}^{2(1-m)}-r_{1}^{2(1-m)}\right\} / 2(1-m)\right] \\
& f_{0}=1+\frac{\Gamma_{3}}{H} b_{33}-\frac{2 \Gamma_{6}}{H^{\prime}} b_{31} \\
& f_{1}=p_{1}^{s}+\frac{\Gamma_{4}}{H} b_{33}+\frac{\left(\Gamma_{9}+\Gamma_{11}\right)}{H^{\prime}} b_{31} \\
& f_{2}=\frac{\Gamma_{2}}{H} b_{33}+\frac{2 \Gamma_{2}}{H^{\prime}} b_{31} \\
& f_{3}=\frac{\Gamma_{1}}{H} b_{33}+\frac{\left(\Gamma_{5}+\Gamma_{12}\right)}{H^{\prime}} b_{31} \\
& f_{4}=\frac{c_{2}}{H} b_{33}+\frac{\left(\Gamma_{8}-\Gamma_{10}\right)}{H^{\prime}} b_{31}
\end{aligned}
$$

References

1. PASK, J. AND Copleys, S .

Thermo-mechanical behaviour of ceramics-High temperature structures and materials, Proc. III Symp. Naval Struct. Mech., 1960, p. 56.

Piezoelectric behaviour of high temperature ceramics, Jour. Amer. Cer Soc., 1955, 34, 402.

Statical and dynamical problems of piezoelectric crystals, Jour. Acous. Soc. Amer., 1957, 29, 729.

Problems of continuum mechanics, Soc. of Indl. and Appl. Maths., Pennsylvania, 1961, 282.

Electrodynamics of continuous media, Pergamon Press, 1960, 38, 48.

Finite deformations of elastic bodies and their applications, Phil. Trans. Roy. Soc., 1935, 234, 231.

Concrete Technology, Asia Publishing House, 1961, 1, 136, 137,
Non-homogeneity in elasticity and plasticity (Int. Union of Theo. and Appld. Mech.) edited by Olszak, W., Pergamon Press, 1959. 339-351.

The propagation of radially symmetric stress waves in anisotropic, nonhomogeneous elastic media, Jour. Appl. Mech. (ASME), 1971 38, 51-59.

Stress in nonhomogeneous cylindrically anisotropic elastic cylinder, Jour. Appl. Mech. (ASME), 1977, 44, 774-776.

Physics of dielectric materials, Mir Publishers, 1975, 128, 206.

