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Abstract

eth’s theory of finite deformation hcs been stitsbly applied here to work oit the def. i

tress components and the clectric field witkin 2n inhomogeneous piezoelectric bod ; ;Ormanon,
emperature distribution. The governing equations of elasticity, Maxwell’s electmmay ;;—I_Jemed to a
id the equation of heat-flow along with the constitutive equations of the Material a1e sglveclicthfa ;:_ons
e solutions for the structure in the form of a uniform annular Slate o5 4 cyliﬁder 0 :chieve

Key fords : Anisotfopy, Annular plite, Crystzl, Cylinder, Electric field, Heterogeneity, Muitilayer
ppacitor, Plane-strain, Thermal gradient, Thermopiezoelectricity.

Introduction

tura] crystals like quartz, Rochelle salt, tourmaline, etc., are widely used in the fabri-
ition of electroacoustical devices, electronic devices and in the field of ultrasonic tech-
ology as the basic material because of their piezoelectric properties. Generally these
nystal-controlled devices operate satisfactorily when the ambient temperature is low,
it at the elevated temperature the performance and operational characteristics of the
evices change to a great extent due to the changes in the physical properties of the

natter.

Since the piezoelectric devices constructed from ordinary crystals like quartz, etc. fail
) operate at high temperature, ceramics of barium titanate are used as a common piezo-
lectric materiaj at high temperature region vide Pask and Copley’, Quarrie and Bues-
Emz- Haskins and Walsh? in a statical problem derived the constitutive equations of
ezoelectric substance in the absence of thermal field, while Mindlin® extended the
Balysis by considering the problem under thermal infiuence. But they fail to consider
R their problems that the piezoelectric body, in general, becomes inhomo_geneou§ when
fectric field is applied upon it [Landau and Lifshitz’]. Appropriate electric field in such
} body under elevated temperature influences its physical properties which are depen-
%0t upon the gradient of thermodynamic quantities which vary fhfﬂugh the body
.Landau and Lifshitz*”"]. So, in order to have a rigorous understanding of the prob]em

2
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one must take into consideration that the elastic and piezoelectric
as the permittivity of the material are, of course, some functions of
nates while the temperature of the body is so.

Pal'ametm a
the Spatia) %‘E

In this paper, the displacement, the stress components and the electric
inhomogencous piezoelectric body have been investigated in ap T o ll’:ieldi]“ll
cylinder under the simultancous action of mechanical, electrical apg thfrateaml
Seth’s® theory of finite deformations is found useful to tackle the prﬂblenmmal fielg
first part of the problem a uniform annular plate of piezoelectric materia has b;enh&
dered, while the latter part deals with the case of a uniform annujar cylinder .
analysis may be of much interest to the designers handling with the aggregae ﬂf'[q'
titanate cement mixture [Orchard’] or with the stratified media of piezoelectric h;:

2. First problem

2.1. Fundamental equations

The annular plate under consideration i1s of uniform thickness and its inner agg oy
radii are r, and r, respectively. The annular plate becomes polarised radially whe,
static voltage is impressed between its inner and outer boundaries which are kept a

temperatures 7; and T, respectively.

Since the annular plate does not contain any volume distribution of charges, comen
and magnetic field, the Maxwell’s equations become

-.)
Curl E=0 B ]
+
Div D =0. ' P
-> -> ) | ‘ . . I
where E and D are the electric field intensity and the electric induction respectively

. _ ' d
Polar co-ordinates (r, 0) are used as the co-ordinate of reference with the cen$
the annular plate as origin. ¢, and g4 denote the radial and tangential compot
stress at (r, 0) the stress equation of equilibrium in elasticity is given by

%qr+6r_59 -—-0. _ (Jj
r r
The Gaussian divergence equation (2) in polar co-ordinates stands as
or r o8
The temperature at any point must satisfy the Laplace equation 6
v:T =0

where g2 is the Laplacian operator in two dimensions.
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The above set of equations constitutes the fundamenta] equations for the probl
em,

It is required to solve them keeping in view the following thermopiezoelectric consti
cative relations relevant to the present problem. onsti-

S = 5330, + $1309 + daE, + UE T 2
Sy =530, + S1u0g t dyE, + ui> T )
S,g = S410r9 + disEqg Gl
D, =dy0, + d3 09 + E33E, + p3 T (iv)
Dy =d50,9 + &1E9g + P; T | )

(6)

where S,, Sp and S,y are the strain components, s, are the elastic compliances, d,, are
the piezoelectric strain parameters, &,; are the dielectric permittivities, u&, uf are the
1 s

thermopiezoelectric constants and pf, p‘: are the constant thermopiezoelectric
permittivities.

[n the presence of an applied electric field and an elevated temperature the body
i_)thavcs inhomogeneously [Landau and Lifshitz’]. The inhomogeneity of such a body
s characterized by the variations of sy;, d,; and &; from point to point in a static prob-
lem [Bychawski and Piszczek®). uF, uE, p$ and p; are assumed to be constant in space

because their changes with the co-ordinates of the point considered are negligible in
relation to those of elastic compliances or piezoelectric strain parameters or dielectric
permittivities. In particular, their variations, where radial symmetry is considered

may be of the following form, [Greif and Chou’]

Sy = ¢y f(r) (1)
dij — b;,f(r) (ii)
& = Vyu f(r) (i)

(7)

1] = Ly 2,‘3,

* : - ic pl jc.and
Where c,, by, v, are the material constants 1n relation to its elastic piezoelectri

dielectric properties respectively.

Over angd conditions are also 10 be taken into consi-
avove, two types of hemngy m the fact that the boun-

geréti"“' The mechanical boundary condition comes fro
s are free from stresses so that o

6, =0 at r=r, and r =r..
oundary condition as

(9)

Reviewing the equation (1), one can write dOWn the electrical b

,{ E,dr = V (constant).
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2.2. Method of solution

A solution of the heat equation (5) consistent with the boundary Condit;

on r=r, and T =T, on r =r, may be readily set as ons,
T=T,—T,lnrr

where (Iy

TI - T2
Tg = ; L
¢ Inrary

=,

(10g
For the radially symmetric case dDy/d0 =0 and the divergence €quation (4) yiyg
K

D, = Constant = D, (say).

(ul
This relation and the equation 6 (iv) give

E Dy "‘Pf T — dygy0, — dj,04

7+
[ ]

€33 (X

Following Seth® one can take the radial and tangential components of displacenm
as

u=r(l —¢), »v=0 | 0

where ¢ (r) is to be determined later on. The radial and tangential strain comp
nents may now be written as

il — ———— — ;_, (14]
and
Sﬂ = - =] é. | ([

W
When these expressions of E,, S,, Sy in equations (12), (14) and (15} all‘l_’“fs i
those of sy, d, and ¢, given by equations 7 (i, i, iii) are incorporated in equai®
and 6 (i) one may have

(6
1 —¢ -—rg-i’- —L””Dn e (pf —éﬁﬁpf)]’=f(r)(,115, 4 }.,ag)
r v33 V“
and |
|
s = bSI . E bﬂl s _ A ) (
1~ ¢ — 2Dy —(pf —ZpS) T =1 (r) (140, + a0
Va3 * Vga !
where |
b bah : (1%
Ay =Cgg — =, Ay = Cy3 — 333 ‘13:311'""_12'

V33 Vaa V33
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Solving (16) and (17) for o, and oy one gets
. d¢

J,‘—'—'{(l —'fi’)(ls"lz)——ma-a;.p ClDﬂ'l‘CgT}/Mf(r) -

and
dp | ,

g =— {0 DU =2 —rhe g + G Do+ C; T} [mre) (19)

where
b /1 - baals _ . _(b3313 _— bsllz)
€= = Vas ’ C2 T HE )"3 ﬂf )"3 + Vaa Pf
C’ =bsi).1 e b33{2 . C = #f Ty — ﬂf 4. (bggha — b’“?f-"}pf
1 Va3 Va3

and

M = }.1;.3 — Ag. (19 a)

Substituting the expressions of o, and o, as obtained in equations (18) and (19) respec-
tvely in the equation (3) one can have the following inhomogeneous differential

sqation in ¢,

d (% — £ = Aglnr | @0
p r-a—r—)+(l 2m)rdr + np =A; + NAgin v,
for
f(r)=r". (20 a)
Here
A A3
Ash; = {(1 —2m) C; + Ci} Do + {(1 —2m) C, + C}(Ty + Tolnr)
e — 2y + 2m(hy — Ag) — CaTo =42 (D01 0) says
N ' (20 5)
Ay = — {(1 —2m) C, + G2} T -
The form of ¢ suitable for the equation (20) may be set a5
A nA, + 2(m_— 1) Aq (21)
O() = Ars + Broa + Llnr + S
T*here 4, B are arbitrary constants and P - (2“1).

| ui:t—r;;:(fn - 1') i .\'/(m — 1) —n. |
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The full form to the radial displacement « can now be writtep With the
equation (13), h"lpbfﬁ!
A A 2(m — 1

1 2 )
— A%+l — Br%att — 2 — —“rinr i
u=r—A = ; =5 Bt

v
On substituting the expression of ¢ (r); o,, gg and E, may be expresseq
of the radial distance r. * Tunciy

-, = [,4 (A — Ag — Aa2y) 1% + B (Ag — A — A35) 1% + D,C,

_ nA1+2(m_l)A2 A2 A

i

U= [A (A — As — A903) 1" + B(Ay — Ay — Aytg) 1% + D,C:

nAj +2(m—1)A, A -
—(Ai—az){l-, f E:f 1) nzlnr}—%?lg+C;TVMf

®

E, =[ 4 {bss (s — 1) — by (2 — 1) + s (habss — Jaba)} 1

+ B {b33 (2-3 — /13) — b31 (2.2 — /11) -+ rx; (Aabﬂs - Azb:u)} 7
4+ Dy (M — by3Cy + by, C)) — (b3aCy — b, C; + MpS)T

A nA, + 2(m—1)As _
+{baa(ls-—az)—bal(ag—ai)}{fmw.._1____?_ il

C L
+ (b3313 e b31/12) %2]/ VaaMrﬂm. li1
| -t B

’ " ' ' o
With the aid of the boundary conditions (8) and (9) the set of above ;‘1;“
23 (i, ii, iii) gives the following three equations containing unknowns 4, 81¢%

IIIA e IJEB + IISDI:I — Kl

121 A+ lazB + !23 D, =K, | ([it']
131 A + 132 B + 13300 = KS | {2‘)
- qnd gives

:where the values of the constants /s (i, j =1, 2, 3) and ‘ K'’s are knt?
in Appendix I ~ N
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From the equations 24 (i, 11, 1) it is found that
AI Az A
=== B= - and — 3
where A is the monsinguilar value of the determinant
i  hs s
lai [32 lss
26
Iy la s (0)
; K, "
and ‘A, s are obtained from A by replacing the ith column by X,
Ks

The radial and tangential stresses and the electric field for the above mentioned boun-
dary conditions (8) and (9) can now be fully expressed by the equations 23 (j, ii, iii) after
inserting the known values of A, B and D, from the equations (25).

J. Second problem

3.1, Fundamental equations

In this section the analysis has been extended in the case of an annular cylinder having
a internal and external radii of r, and r, respectively. The cylinder is under the
state of plane-strain which is maintained by a uniform longitudinal extension «. Like
the first problem, it is assumed that the boundary surfaces of the cylinder are free from
the radjal component of stress as well as the cylinder is polarised radially under the
influence of a static voltage between the inner and outer boundaries which are kept
at temperatures 7, and T, respectively. The object of this problem is to find out a solu-
tion satisfying the equations (1), (2), (3), (5) keeping in view the following constitutive
fQuations relevant to the present problem.

Sf — '5'336: + 51360 + Slgff‘ + d33Er + ﬂIE T (i)
S¢ = 5130, + 51109 + 5720, + dnE, + ¥ T (1)
Se =5is0, + 51209 + 510 + du £y + us T (ii1)
S" = 5440,; + d15Er (IV)
Si0 =S40, + dysEq (v')
Sﬂl — S“O‘g, ((V:;
Vil
‘ Dr == daaar + d3163 + daial; + 833Er + pf T
viii
Dy = dis0,9 + £,,Ey + T ((- i
1X
D. = 0,50, + EliE. + pg T (2-”

W .
Rere the Symbols carry their usual meaning.
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3.2. Method of solution

Since the electric field is assumed radial Ey = E;, =0. Becayse of

. ; th
strain S, = S,, =0. Now from the cquations 27 (iv) and 27 (v) j; € State ¢ Of gy

IS evj dﬁ"ttha
Jrg — 0'9, = O-

Gaussian divergence equation in cylindrical co-ordinates can pe Written ac

| & 1aDG+aD.

AR e

Owing to the radial symmetry, the above equation becomes

10

ré‘r(rD) =il

which indicates D, = D,fr, D, is any constant. The equation 27 (vii) now.tum I

E, = (% — d330,— dn0g— dma,-—pf T)/833' L

In order to find out the deformations, Seth’s® theory of deformation is again follow
and the components of displacement are chosen as

=r(l — ), v =0, W = oz o)
where o 1S a constant.

The three strain components in 27 (i, ii, 11i) now stand as

S, =1 —y rj:{/ 0
Sg=1""'l!/ m
S, =t g

On using the relations 7 (i, ii, iii), 27 (i, ii, iii), 28 and 30 (i, 1, iii). the followit
of equations may be formed,

0
Ai0, + 250 + Ayo, = A o
Aol + A305 + 240, = A, (il
290, + A46y + A30, = A, el
where
2
Ay = Ca3 %‘?" Ay = €y b31b33
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b3, _ b, _
Aaﬁcli_?z! Aﬁ ""012_:,;; (BIa)
d'r{/ _ baa DI . 3
A,:::{l-—l!/—-rdr s (#f ;pf)T}/f(r)
bs, D, ( . b,
A ={l — et & He vy Pf) T}/f(r)
famtn D (g by
AS e Vaa r 3 "'3:'1 | 3 . (3] b)
From the equations 31 (i, ii, iii) one can have |
6, =[A; (As + 25) — A3 (A2 + A)I/H (i)
Gy = [As (A4 — A7) — As ('11’14 — A3 — Ay (A3 — Aq)]fH' (i1)
0r =[As (MAs — A2) — Ay (A — 12) — Aydy (A — 2)VH (i)
(32)
where
H=2,(As+ 4,) —22 and H' =(As— 1) H. (32a)

By the use of equations 32 (i, ii, iii) and (20 @) the equation (28) may be put in the
form |

[ Al {baa ()*3 = 24) - stalz} + A, {bm /11 - bss(la T )-3)}]
E, Vs

D, BT + Asbsi 4, T =~ e

kK
pEmel o T om H

S ——

(33)

i) along with (31 b) and €20 a) ae

- ations 32 (i,
e exprestions of o, Sud, vy of 20 his problem, to obtain the following

mserted in the equation (3), which is still valid In ¢
imhomogereous differential equation

( --)+(l —2m) r —— "”+N¢f._u +—“+azl“’!": (34)

The constants N, a,, a, and a, are

2mA (A, A5 — A2)
Ve=ll—20+ 1707+ (3-3—1)

a (A ).4—-11:1113"'"'{ 24 1‘ )

Remde { At dog I} (% —% )

bSI
+[{(2m—l) —"As_l_zi} (Juj. ;"-3+
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AyAg+ Aglra—AsA  — A7
( e )2 ) ( uE — 23 Pf) (s — 4,4, 4+ Ik
' = B <y~

‘ | A D,
. (;'1 =[b31 (41‘"A2 o /11) + b33 (2’?’:‘ ;{3 -: ,14)] l .\

2mi, ( - 5 2byy _ A
. ds “"[()3 F )-4) Auz + Hg Via Pf) _ {(zm —' 1) B 13"_"‘:14}

. (Hf" _ %:: !f) + (Aohy + A dz — 2,4, — ’2) (HE 31 )

(2 — 43)
B G o
’i‘h; general form of ¥ (r) satisfying the equation'(34) msy be found. to be
y(r) =Crt 4+ Drt: + @) + 2 > + d,Inrfr, | 3
where &, and ¢, are the roots of the equation |
F+20-mE+N=0 . ' . 35

C and D are to be determined along with the unknowns « and D, which are involvd
in @, and a, in (34a). Also a,, a;, and & are given by

d, =[ a, 2(1 —Nm) az]/ N = 53,3‘ + 64 say,
d = & - =0.D say
T @m+ N—1) T
(349
I o2 )
N 5
The radial displacement u# can now be expressed as, o

u=r— Critl — D+l — o r'—-t:t?l — d; rinrfr.

s
the cquat”
By the use of the equatlons (31 b) and (35) the stress-components I ms of the

-ter
32\(1 i, iii) and the equauon for electric field (33) can be expressed in
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radial distance

¢, = [C(r1 4 1—2‘_61) rfs?™ 4+ D (I'; + 5 &) bt 4 DT g (2m41)

i C‘!Cgr_zm - rlr—zm (1 s ﬂa—g;’. s a’z In rjrl)
- rar‘ﬂﬂ (% — afz ) — I‘4r—2m T]/ (__ H) (l)

Oy =[C'(I"5 3+ IE) s + DT + [,&,) rér ™ — D Tgr-t&+d)

+ algr—® — g™ (1 — @ ? —a,1n r/rl)

— k™ (% - “’=) — L™ T]/ (—H) | (ii)

G, = [C (I‘n e I‘, 61) ,-.tl.-zm 4 D (1-1-2 4 1“7 52) ré,—z'ﬂ —_ Dlrs r—-(zln-:-ll

ar
—arlur_a’" _I-‘Igr-.zm (1 "_'a(; ‘rl d’zlnr[rl)

~Tr (‘:-* = a;) —T;, r :r] /(-— H) . (iii)
and
r2™ + D 1fo y—(2m+1)

fﬂ) a; r"'[2m+1)

E, = C(fy + fo &) i + D{fa + f28D
+afyr®” 4 (et + f3 (a0 "‘1)}"_2'" + (fs—

38)
—fir®™ T+ faa, r™"Inrin (38
. Their values arc written in Appendix I1.

Where the ‘T'’s and “f’s are constants. | -
from the above equations 37 (i, ii, iil)

The constants C, D, « and D, can be evaluated -
s Ly e ‘ cal

boundary condition (9) along with the condition

" (39
I Oy rdr = 0. 9)
uation 37 (), (9) in the equation (38) and

~ Application of the conditions (8) in the €d ,
(39) in the equation 37 (iii) yields the following set of equations, 0
Al v 1
my, C+ my,D + mygD; + Ma &= O (i)

mmc+m220+ '?12301 +m240!=Q2
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mg;C + Mgg D + gy Dy + gy o0 = 0,

M C + HI” D -+ 44 Dl + M 6 = Q‘l (ii)
where ‘my, " and ¢ Q,’s are constants, values of which are given i, A w0y
Pendix
From the equations 40 (i, ii, iii, 1v)
| ]
C:gg, =-—f2, D, =— and o =-—4
where
My ;9 Myg "4
O = | myi Mgy Mg Mgy
| ’nal 11232 17133 HI:M
My My My3 My

and [J, may be found from the determinant O by replacing its sth column by

Q.
Q.
Qs
o

The stress components o,, 6, 6, and the electric field E, of equations 37 (i, ii, ii) a4
(38) can now be expressed completely by substituting the values of C, D, D, and afon
the equations (40 @). The stresses thus obtained tally well with those found byRoy*
for purely elastic nonhomogeneous cylinder on making by =0, v; =0, 4 =0 i

pS =0,

This analysis would be helpful to design multilayer capacitors using nonliaex
dielectric aggregates [Tareev!!, and Orchard?].
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Appendix I

. The following symbols are used in the first problem: W
hi=n% {2 —23(1 + &)}, Lz =r%{ds —4i5(l + dag)}s

hs =C;, + (% ; A) 0, h

WD

L] -
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? = 13
Iy = {baa (A3 — As) — by (A2 — Ay + oy (A3bas — 2, 631)}

(raﬂl-—i’.M+1 . r1d1—2m+1)

X (Hl — 2"1 e 1)
133 = {bss (/13 - 2-2) - bsi (Ag — ).1) + o, ()“abaa i Azbai)}

% (rfmt — rf T (e —2m + 1)

—= [M — b33 C, + b, {Cli + _(/13 ; )'l) ‘51}] (7 _'rll-f"m)/(l — 2m)

133__
A 7o —

k= a2 {1 =B, ~2 20 DA 4 Ay -,
A 0g + 2 (m —

Kf;:()uﬂ—-)uS){l '_'—nzlnr2 .'n 2+ (’:2 I)AE} +%A3—C2TQ

K, = [(baa C; — b G2 + Mp)) I, + Tolnry) — {bas (A3 — Ag) — bsy (23 — 71)}

X {nég -+ 2 (.‘H; _ 1) AE — 1} +()“2b3i_}'3b33) .115] (ral-zm__rll_.gm)/(l_zfn)
E n |
A
e [(bascz — bg; Co + Mp) T, + {bgs (43 — ) — b (Aa— A0} —r—f‘]

X {(rd=21n ry — 1" N r)(1 = 2m) — (™" =T 1)L — 2m)*%;

+ MV v33

Appendix 11
ond problem:

The following symbols are used in the sec
+ Ag) bss — 2)~ﬂb31}/ Vaa

Iy =4 + 4 — 42 T, =(4s T i), Ts= {(Aa

b
£, ={J.3(p§ T O 2w (H o }

V33
1"5 = ()._1),3 — 112 /13 + /13 )-g - Ii)
Ty = {4 — Ag) (ubss — 43 b} Vss

L=l =4, [s=(iks =% |
= A (o — A E — (ata — H5 + 107 1) (b — Aabsd} Pl e

Ty = (4,23 — A2)
S — Aabsg)} PS[Vss

Ty =24 — ) 16 + (hds — Byug t (s — 4 (s

Tig = (Aghy — Aghg — 4 Ae + 42
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my; =(I; + I'é) r1g‘: mye = (I + 'y &) ry5s,
I's + (I'; —T) 9

m13 = = -y iNyg = C?- - rl 53
1

my = (I; + To&) rb, myy = (T + Iy &) ryte,
r3 -+ (rz s rl) 55

Fo

Doy = UPTR ROV

msi = (&ufe + f3) (52" — B2 — 2m + 1)

Mgy = (Lafs + fo) (rgP™2™ — B ™ [(E, — 2m + 1)

mgs = {fo + (fs — f2) 05} (r;™ — ry"™)2m

mgy = (fy + f503) (rgd ™™ — r, 12" /(1 — 2m)

myi = (D + T56) {r2§,+2{1—-m1 — ,-1§1+2<1-m1}/51 +2(1 —m)

mg, = Iy + IHE,) {r2§,+2(1—m) " r1§,+2(1—m1}/§2 +2(1 —m)

myy = {lg + (T3 — Iyp) 65} (ra2" — r-2%)/(2m — 1)

myy = (Lyo — I3 63) {r24™ — r20-"N1) (1 — 1)

O,=I,(1—9,) — T, + I',T,

Q:=1,(0 -0, —a,lnry/r)) ~T,ad + [T,

Qs = vy V—{foay + f3(6; — 1)} (ry1-2" — r (L — 2m)
+ £ To (r=2" — 12" (1 — 2pm) |

(LT + faa)
2(1 — m)

Qs = {12 (l —8,) — T, + [y, T} {r2-m — p20-m113 (1 — m)
(rll T], + 1-‘12{1;)

[r?4=™ In ryfr, — {r21-™ — r 2™}

[r20-m) In rofr, — {r20-™ — r20-"}/2(1 — m)]

2(1 —m)
I
f0=1+‘ﬁsb33—%€b3]
r i+ T
fi=Pf+fb33+‘( QH, ll)bax
I' 2T
fz'—-“"ﬁbas‘l'"ﬁ:?bal
I Is+ T
.fa——-‘}—;baa‘l'( er 12,)b31

Co r _F
fo = 3ybas + e Tz ) 5,
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