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Abstract

An jon source di '
poror rlt:: ischarge is Modelled under the assumption that beam plasma instabilt;
nd classica o , : abilitie
and class culomb collisions are sufficiently frequent to provide bujk electron the ma]'s af ° stable
rMalization,
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The advances beij ' )

b l;z::g tmidf: today in thermonuclear experiments are due in large
ent of intense ion (neutral) beam s

A ources. Conversely, th

msing resu ' Mag-al. i

msing Its Serve to spur on the development of still more efficient so&rces hag'

mproved characteristics?, -

in;) i;i“?;pz:ilj:raﬁle eﬁbl‘}, -worldwide, tpere is still no theoretical basis for predict-
collisional, regime tﬁ aracteristics of such jon source devices. In the high pressure,
distributio:-; F o = dISC_ha'rge theory‘ ?f Schottky? can be used to model the axial
potential applieg a:nt];al within the positive column, but not in terms of the overall
T Sy ht e external electrodes. In the low pressure, collisionless, regime
o setiory 15 & charge t!:leory of Topks and Langmuir® 18 gsef}ll‘ but the proportion
kiown the _— econdary (i.e., thermalized plasma electrons) ionizing electrons is not
ically.

n components substantially
the gas ionization rate the
the well-known Langmuir

Th |
com Tf resence of both primary (beam) and plasma electro
plicates the theoretical problem. Besides influencing

coupl;
Parigzga of beam energy to the plasma is manifested in
x'. The detailed resolution of this “ Paradox " depends upon understanding the

ClCCtr : ‘
Paranf:[ !Jcam-p lasma instability® and is extremely complex®, involving effects due to
FIC coupling’®, plasma inhomogeneity’, and quasilinear development™®. A

Com . : ‘
|Dpegrehens“'e theory incorporating all of these important effects remains to be deve-

a general theory, rather we develop a
harge impedance 1o the complete absence

71

In t
CIassic:ft]fresent work we do mnot propound
eory for predicting the jon source disc
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of instabilities. This development is important for two Teaso
energy equilibration rate constitutes an irreducible minimum, ang hence o i
tion useful for any ion source, and second, the model may be experime 8ives L
over a limited parameter range since the beam-plasma ins tabilit entally e,

threshold® or be stabilized by various effects!, Y can hay, 2 f

W first, e

Some initial understanding of the ionization process can pe obtained py ;
Inves

the simplest form of the discharge particle balance equation. Specifical] ey
electron-gas jonization rate is set equal to the plasma loss rate - Y the vop,
n
{av, ) nan = -:rf

()
where it is assumed that surface recombination dominates, { ov,

: ani7ati : ; _ ) is the average g,
tron-gas ionization rate coefficient’?, n is the density of ionizing electrons vy
neutral gas density, »; is the ion plasma density and 7 is the plasma loss ,

repl
time. In the free-fall regime : PlaCermen)
e e
Ac, 0

where V 1s the discharge volume, 4 is the loss (electrode, wall) area, and ¢, is the in
acoustic speed :

¢t (Tofmi)t 0

where T, 1S the electron plasma temperature and ny is the ion mass. We justify te
use of equation (2)in that we wish to evaluate 1 in the limit where ionization is &
solely to plasma electrons. In that limit primary electrons are nonexistent and 20 &
malously strong tail of fast electrons exists to enhance the ambipolar plasm o
rate®. Combining 1-3 and setting n = n. = n; we obtain :

(0v,) n, = ’—:—,(T, [m)} ‘

C . , - o soing electron
(ov,) is given in various references'-4 for a Maxwellian distribution of lomﬂngﬂiic ot

The strong dependance of {ov,) on T, dominates equation (4), thf: chzliraCte
of which is identical for all gases and is shown, schematically, in Fig: L.

15 ﬂ]il ru
The principal result to be obtained from this simple parameter study 1§ i

e Y S e ustail &
some minimum fill gas pressure plasma electron ionization 15 unable to :ry i
charge. Such low pressure discharges can only be sustained DY prid :
. | o
; ’ : domlﬂ“"ﬁ
Typically, ion source discharges having Vp/4 <102 cm-Torr will be
primary electron ionization.



73
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Fic .
B 1. General dependance of discharge electron temperature on fill gas pressure zssuming secon-
r¥ 10nization only.

The model we will now construct will assume we are in this low pressure regime
Wherf" pPlasma electron-gas ionization can be neglected. We could use the work of
Demirkhanoy e; al® to correct the loss rate of equation (2) and thereby incorporate
the effect of non-Maxwellian fast primary electrons. However, the experimentally
?{:Terved ratio of primary to plasma electron densities is so low as 10 correct the free-

model by less than 10% and we will neglect it here. The stability of the beam-
fllaﬁma. Interaction® ajlso requires this limit. We will, however, rep.lace the proporuc;;
2ty in €quations (2) and (3) by the constants obtained numerically by Caruso’

and
Selfte $0 that the jon loss rate becomes :

= s
0. 34 = 13 n, QT fm} A "
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It is appropriate to employ the low n, assumption for common
well ionized plasmas and n. in the range of 10 cm=3, At these
typical electron plasma temperatures of ~ 5eV the classical Coy
free path length is of the order of a millimeter, the collision freqy

y=5-8 X 10-%n,A/T 3"

where the Coulomb logarithm is : - U
A=23—In(n2T,3?), T,L10eV
=24 —In(nt7,Y), T,=>10eV

i0 L SOUTCQsli
Plasmy densh-h“

163
Omb Cn"isi{mal and

ency being given ™

U

adequate
he effects

ary electroy

For the parameters of greatest interest, then, Coulomb collisjons are
thermalize the plasma electrons, consistent with our desire to ignore {
electron plasma oscillations. Equating (5) with the creation rate by prim

iIrl — e"“(VlA} (ll)u‘.[.]_[h']
Q[ 1 + Aids ]

1/3n,(2T,/m)t 4 = "

where A; and A, are the mean free paths for ionization and atomic excitation proces
(by primaries) and 7 is the (primary) current flowing in the source.

In the free-fall model* the average power required for gas ionization is:

IT1 — e~ VIA) (UA+1IA,) _
P=T,In[0-8 (m;[m,)}] - [ ] ; )

1 + XA,

This can be equated to the power supplied through electron Coulomb collisions”

P__I3l'nA me i, V - .3 (10
adn vi: n, A -

where v, is the primary velocity, and w,, is the electron plasma frequency.

For space charge limited thermionic cathodes (typical of many sources) ¥ ™
further require that :

1)
I'=qan, (Te[2mm 7, (eV/T.) (

. - jon gt

where ¢ is the electronic charge, a is the cathode area, and Jo 1S the functiof =

by Crawford®, having a value which typically falls between 1 and 2.

The simultaneous solution of equations (8) through (11)is compared haracters™
experimental results'® in Fig. 2, for hydrogen gas. The source impedance - A furth
are reproduced to within the accuracy of the experimentally available daucll;: in Fi&
con:lpariSOn with the observed ion saturation current available js md
again for hydrogen and using the additional equation : (2

j“; = 113 ny (2T,/mi)*. Vo
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- Solid line' experiment,

jed -discharge voltage.

\ ]
Fio. 2. Discharge ¢urrent, in' amperes, versis the app

Dashtd line: theo ry.

" = ]
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(0 4o

Fic. 3. Ion saturation current, in amperes, versus the applied discharge VOIt2E
experiment, Dashed line: theory.

Again the comparison-is quite g00d. - e

. 'on sollﬂﬂ
The present simple theory may prove useful in designing and optimizing !

for fusion experiments.
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