Bivariate Laplace transforms for some \boldsymbol{H}-functions

B. L. MATHUR
Defence Laboratory, Ratanada Palace, Jodhpur 342 001, India

Received on December 26, 1977

Abstract

The object of the present paper is to have computation of certain bivariate Laplace transforms for the H-functions. A general theorem is establisked, which gives the correspondences, involving Fox's iffunction, between the original and the image in two variables. A few particular cases of interest are also discussed.

Ley words : Computation, Laplace transform, Fox's H-function, image and original functions, opera;tional correspondences, integral equation.

1. Introduction

The Laplace Carson transform in two variables is defincd ard represented by the integral equation ${ }^{3}$ (p. 39)

$$
\begin{equation*}
F(p, q) \doteqdot p q \int_{0}^{\infty} \int_{0}^{\infty} e^{-p x-q y} f(x, y) d x d y ; \operatorname{Re}(p, q)>0 ; \tag{1}
\end{equation*}
$$

where $F(p, q)$ and $f(x, y)$ are said to be operationally related to each other. $F(p, q)$ is called the image and $f(x, y)$ the original.

Symboli ally we can write

$$
\begin{equation*}
F(p, q) \doteqdot f(x, y) \text { or vice versa, } \tag{2}
\end{equation*}
$$

where the symbol \fallingdotseq is termed as operational.
The H-function ${ }^{5}$ is defined and represented in the notation of Braaksma ${ }^{1}$ as follows :

$$
\begin{align*}
& H_{r, i}^{m, \prime}\left[\left.x\right|_{(b, B)} ^{(a, A)}\right]=H_{r, e^{n}}^{m, n}\left[\left.x\right|_{\left(a_{1}, A_{1}\right), \ldots,\left(a_{r}, A_{r}\right)} ^{\left(b_{1}, B_{1}\right), \ldots,\left(b_{e}, B_{s}\right)}\right] \\
& =(2 i \pi)^{-1} \int_{L} \frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-w B_{j}\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+w A_{j}\right)}{\prod_{j-m+1}^{\dot{m}} \Gamma\left(1-b_{j}+w B_{j}\right) \prod_{j=n+1}^{r} \Gamma\left(a_{j}-w A_{j}\right)} x^{w} d w, \tag{3}
\end{align*}
$$

AMS (MOS) Subject classification (1970) : Primary 65D20, 44AzO Secondery 14 10E, 44A10.
where x may be real or complex but is not equal to zero and an empty prodmet
interpreted as unity, m, n, r, s are integers satisfying the inequalities $0 \leq n \leq r, A_{j}(j=1, \ldots, r), B_{j}(j=1, \ldots, s)$ are positive numbers and $a_{j}\left(j=1, m_{S_{i}}\right.$ $b_{j}(j=1, \ldots, s)$ are complex numbers such that no pole of $\Gamma\left(b_{k}-w B_{k}\right)(h=1, \ldots, n)$ coincide with any pole of $\Gamma\left(1-a_{3}+w A_{j}\right)(j=1, \ldots, n)$; i.e.,

$$
\begin{align*}
& A_{j}\left(b_{h}+\varepsilon\right) \neq B_{h}\left(a_{j}-\eta-1\right) \\
& (\varepsilon, \eta=0,1,2, \ldots ; h=1, \ldots, m ; j=1, \ldots, n) . \tag{4}
\end{align*}
$$

The contour L runs from $\sigma-i \infty$ to $\sigma+i \infty\left(\sigma\right.$ real) such that the poles of $\Gamma\left(b_{1}-\cdots B_{d}\right.$ $(j=1, \ldots, m)$ lie on the right-hand side of L and those of $\Gamma\left(1-a_{i}+w_{1} i_{1}\right.$ ($j=1, \ldots, n$) lie on the left-hand side of L. Such a contour is possible on accoum of (4).

The integral in (3) converges for

$$
\begin{equation*}
|\arg x|<\frac{1}{2} \lambda \pi, \lambda>0, \tag{0}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\sum_{j=1}^{n} A_{j}-\sum_{j=n+1}^{\dot{n}} A_{j}+\sum_{j=1}^{m} B_{j}-\sum_{j=m+1}^{\dot{N}} B_{j} . \tag{0}
\end{equation*}
$$

These conditions are assumed to hold good throughout this paper.
In this paper we shall obtain correspondences, involving Fox's H-function, bermea the original and the image in two variables.

In what follows we shall denote the original variables by x and y and the taris formed variables by p and q. The notations employed are those of Dikiin add Prudnikov's Operational Calculus ${ }^{3}$. The results obtained here provide a generalizuma to the results given earlier by Dahiya ${ }^{2}$.

2. Theorem

If (i) $0 \leq n \leq r, 1 \leq m \leq s, \delta>0, \operatorname{Re}(p)>0$,
(ii) $|\arg u|<\frac{1}{2} \pi \lambda, \lambda>0$,
(iii) $\operatorname{Re}(v)>0, \operatorname{Re}\left[-\beta+\delta b_{j} / B_{j}\right]>-1(j=1, \ldots, m)$,

$$
\operatorname{Re}\left[\beta+v-\delta\left(a_{j}-1\right) / A_{j}\right]<3 / 4(j=1, \ldots, n),
$$

(iv) $A_{j}\left(b_{k}+\varepsilon\right) \neq B_{h}\left(a_{j}-\eta-1\right)$

$$
(\varepsilon, \eta=0,1,2, \ldots ; h=1, \ldots, m ; j=1, \ldots, n)
$$

$$
\begin{align*}
& \doteqdot(\pi y)^{-\frac{1}{2}}(4 x y)^{\sigma+\frac{1}{2} \beta-1} H_{r+2,2}^{m, n+1}\left[\left(u^{-2} 4 x y\right)^{-\frac{2}{2} \delta} \left\lvert\, \begin{array}{c}
(\beta, \delta),(a, A),(\beta+2 v-1, \delta) \\
(b, B)
\end{array}\right.\right] . \tag{7}
\end{align*}
$$

Proof: The Laplace transform of H-function is given by ${ }^{6}$ [p. 140, Eqn. (2.4)]

$$
\begin{align*}
& \int_{0}^{\infty} e^{-\tau t} t^{-\beta} H_{r, t}^{m, n}\left[(u t)^{\delta} \left\lvert\, \begin{array}{c}
(a, A) \\
(b, B)
\end{array}\right.\right] d t \\
& \quad=p^{\delta-1} H_{r+1, z}^{m, n+1}\left[\left(\frac{u}{p}\right)^{\delta} \left\lvert\, \begin{array}{c}
(\beta, \delta),(a, A) \\
(b, B),
\end{array}\right.\right], \tag{8}
\end{align*}
$$

valid for $\operatorname{Re}(p)>0, \delta>0, \lambda>0,|\arg u|<\lambda \pi / 2, \operatorname{Re}\left[-\beta+\delta\left(b_{j} \mid B_{j}\right)\right]>-1(j=$ $1,2, \ldots, m$).

On writing $(p q)^{-\frac{1}{2}}$ for p, multiplying both sides of (8) by $(p q)^{1^{-v}} p^{-\frac{1}{2}}$ and then imierpreting it with the help of the known result ${ }^{3}$ [p. 144 (3.26)], we get

$$
\begin{align*}
& (\pi y)^{-\frac{1}{2}}(4 x y)^{(20-1) / 4} \int_{v}^{\infty} t^{(1-2 \beta-2 v) / \Omega} J_{2 \sigma-1}\left[\left(64 x y t^{2}\right)^{\frac{1}{4}}\right] \\
& \quad \times H_{r, \delta}^{m, n}\left[(u t)^{\delta} \left\lvert\, \begin{array}{c}
(a, A) \\
(b, B)
\end{array}\right.\right] d t \\
& \doteqdot p^{-\frac{1}{2}}(p q)^{(3-\beta-\Sigma \delta) / 2} H_{r+1, \delta}^{m, n+1}\left[\left.\left(u^{2} p q\right)^{2^{\delta}}\right|_{\left(\begin{array}{c}
(\beta, \delta),(a, A) \\
(b, B)
\end{array}\right],}\right. \tag{9}
\end{align*}
$$

provided $\operatorname{Re}(v)>0$.
Now on evaluating the left hand side integral with the help of a known formula ${ }^{4}$ [p. 326 (2)], we obtain the desired result valid under the conditions (i)-(iv) stated with the theorem.

3. Particular cases

By taking proper choice of the parameters in (7) and on using the known results ${ }^{7}$ (p. 54-68), we obtain the following two class of results :
(A) The named image functions expressed in terms of the H-function

For the sake of brevity we shall use the following abbreviations in this section :

$$
X=(p q)^{\frac{1}{2}}, \quad Y=(4 x y)^{\frac{1}{2}} \text { and } \theta=\left(p \delta^{2}\right)^{-\frac{1}{2}}
$$

$$
\begin{aligned}
& \theta X^{6-4 v} I_{\mathrm{r}}(X) K_{\mu}(X) \\
& \because Y_{4 \pi y^{(4 v-3) 2}}^{4} H_{3,4}^{2,2}\left[Y^{-\delta} \left\lvert\, \begin{array}{c}
\left(\frac{1}{2}, \delta\right),(1, \delta),\left(2 v-\frac{1}{2}, \delta\right) \\
\left(\mp \frac{v+1}{2}, \delta\right),\left(\frac{1-\mu \mp v}{2}, \delta\right)
\end{array}\right.\right] . \\
& C X^{5-4 r} H_{0}^{(11)}(X) H_{r}^{(2)}(X) \\
& \doteqdot \frac{(\cos v \pi)}{2 \pi^{3} y^{\frac{1}{2}}} Y^{2 \cdot: 1} H_{2,3}^{3, \frac{1}{3}}\left[Y^{-\delta} \left\lvert\, \begin{array}{c}
(1, \delta),(2 v, \delta) \\
\left(\frac{1}{2} \pm v, \delta\right),\left(\frac{1}{2}, \delta\right)
\end{array}\right.\right] . \\
& \int X^{2 h-4-4 \mathrm{r}} M_{k, m}(2 X) W-k, m(2 X) \\
& \doteqdot \frac{\Gamma(1+2 m) Y^{\varepsilon v-k-\frac{1}{2}}}{\pi y^{\frac{1}{2}} \Gamma\left(m+k+\frac{1}{2}\right)} H_{3 ; 4}^{\mathrm{s} \cdot 1}\left[\begin{array}{r}
Y^{-\delta} \delta
\end{array} \begin{array}{c}
\left(\frac{\pi}{2} \pm k, \delta\right),\left(2 v-k+\frac{1}{2}, \delta\right) \\
(1 \pm m, \delta),\left(\frac{3}{2}, \delta\right),(1, \delta)
\end{array}\right] . \\
& \theta X^{4-\varepsilon^{k}-4 v} e^{\frac{1}{2} X^{2}} W_{k, m}\left(X^{2}\right) \\
& \doteqdot \frac{Y^{: \sigma_{0} k}(\pi y)^{-\frac{1}{2}}}{\Gamma\left(\frac{1}{2}-k \pm m\right)} H_{2 ; 2}^{2,1}\left[Y^{-\delta} \left\lvert\, \begin{array}{c}
(k+2, \delta),(k+2 v+1, \delta) \\
\left(\frac{3}{2} \pm m, \delta\right)
\end{array}\right.\right] \cdot\left(-\frac{3}{3}<m(i)\right. \\
& \text { (ii) } \\
& \left(X^{6-4 v}\left[I_{0}(X) I_{\mu}(X)-I_{-\mu}(X) I_{-v}(X)\right]\right. \\
& \doteqdot \frac{-\sin (\mu+v) \pi}{\pi^{-y^{2}}} Y^{(4 v-3):} \cdot H_{3,4}^{2,2}\left[\begin{array}{c}
\left.Y^{-\delta} \left\lvert\, \begin{array}{c}
\left(\frac{1}{2}, \delta\right),(1, \delta),\left(2 v-\frac{1}{2}, \delta\right) \\
\left(\frac{\mu \mp v}{2}+1, \delta\right.
\end{array}\right.\right),\left(\frac{1-\mu \mp v}{2}, \delta\right)
\end{array}\right] \text {. } \\
& \theta X^{5-40} e^{-\frac{1}{2} X^{2}} I_{v}\left(\frac{1}{2} X^{2}\right) \\
& \doteqdot \frac{Y^{(4 v-1)!2}}{\pi y^{\frac{1}{2}}} H_{2,2}^{1, \frac{1}{2}}\left[Y^{-\delta} \left\lvert\, \begin{array}{c}
\left(\frac{3}{2}, \delta\right),\left(2 v+\frac{1}{2}, \delta\right) \\
(v+1, \delta),(1-v, \delta)
\end{array}\right.\right] . \\
& \text { (15) } \\
& 0 X^{5-r}\left[I_{-v}(2 X)-L_{0}(2 X)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \theta X^{5-4 v} e^{\frac{1}{2} x^{2}} K_{v}\left(\frac{1}{2} X^{2}\right) \\
& \doteqdot \sec _{y^{\frac{1}{2}}}^{(v \pi)} Y^{(\varsigma v-1) / 2} H_{2 ; 2}^{2,2}\left[\begin{array}{l}
\left.Y^{-\delta} \left\lvert\, \begin{array}{c}
\left(\frac{8}{8}, \delta\right),\left(2 v+\frac{1}{2}, \delta\right) \\
(1 \pm v, \delta)
\end{array}\right.\right] . ~ . ~ . ~ . ~ . ~
\end{array}\right. \\
& \theta X^{4-4 e-2 k} W_{k, m}(2 i X) W_{k, m}(-2 i X) \\
& \doteqdot \frac{\left.Y^{(4 c} 2 k-1\right)^{\prime \prime}}{\doteqdot} \begin{array}{l}
\pi y^{\frac{1}{2}} \Gamma\left(\frac{1}{2}-k \pm m\right)
\end{array} H_{3,4}^{4,1}\left[Y^{-\delta}\left[\begin{array}{l}
\left(\frac{s}{8} \pm k, \delta\right),\left(2 v+k+\frac{1}{2}, \delta\right) \\
(1 \pm m, \delta),\left(\frac{3}{2}, \delta\right),(1, \delta)
\end{array}\right] .\right.
\end{aligned}
$$

${ }_{H} X^{j(1-r)}\left[H_{r}(2 X)-Y_{v}(2 X)\right]$

$$
\equiv \frac{\cos (v \pi)}{\pi^{5 / 2} y^{\frac{1}{2}}} Y^{(5 r-2) / 2} H_{2: 3}^{₹ \cdot \frac{1}{3}}\left[Y^{-\delta}\left[\begin{array}{c}
\left(\frac{v}{2}+1, \delta\right),\left(\frac{5}{2} v, \delta\right) \tag{19}\\
\left(\begin{array}{c}
v \\
2
\end{array}+1, \delta\right),\left(\frac{1}{2} \pm \frac{v}{2}, \delta\right)
\end{array}\right] .\right.
$$

$\theta X^{5-4-\mu} S_{\mu, \mathfrak{v}}(2 X)$

$$
=-\frac{Y^{(\alpha++\mu-2) \prime 2}(\pi j)^{-\frac{1}{2}}}{2^{-\mu+1} \Gamma\left(\frac{1}{2}-\frac{\mu}{2} \pm \frac{v}{2}\right)} H_{2 ; 1,3}^{3,3}\left[Y^{-\delta} \left\lvert\, \begin{array}{c}
\left(1+\frac{1}{2} \mu, \delta\right),\left(2 v+\frac{\mu}{2}, \delta\right) \tag{20}\\
\left(1+\frac{\mu}{2}, \delta\right),\left(\frac{1}{2} \pm \frac{v}{2}, \delta\right)
\end{array}\right.\right] .
$$

(B) The H-function expressed as a named original function

For the sake of brevity we shall use the following abbreviations in this secticn :

$$
\left.\begin{array}{l}
Z=(4 x y)^{-\frac{1}{2}}, U=(p q)^{\frac{1}{2},} \phi=\left(\frac{p}{\delta^{2}}\right)^{-\frac{1}{2}} . \\
\phi U^{(4-w) / 2} H_{1 ; 4}^{2} ;
\end{array}\right] \begin{gathered}
U^{\delta}\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{1}{2} w, \delta\right) \\
\left(\frac{w}{2}+\frac{\mu}{2}+\frac{v}{2}, \delta\right), \\
\left(\frac{w}{2}-\frac{\mu}{2}-\frac{v}{2}, \delta\right),\left(\frac{w}{2}-\frac{\mu}{2}+\frac{v}{2}, \delta\right), \\
\left(\frac{w}{2}+\frac{\mu}{2}-\frac{v}{2}, \delta\right)
\end{array}\right]
\end{gathered}
$$

$$
\begin{equation*}
\doteqdot Z^{2}\left[J_{\mu}(Z) J_{v}(Z)-J_{-v}(Z) J_{-\mu}(Z)\right] y^{-\frac{1}{2}} \frac{1}{2} \sec \left(\frac{\mu+v}{2}\right) \pi \tag{21}
\end{equation*}
$$

$\phi U^{\left(4-x_{0}\right) / 2} H_{1 ; 4}^{4}\left[U^{\delta}\left[\begin{array}{c}\left(\frac{1}{2}+\frac{1}{2} w, \delta\right) \\ \left(\frac{w}{2} \pm \frac{\mu}{2}+\frac{v}{2}, \delta\right),\left(\begin{array}{c}w \\ 2\end{array} \pm \frac{\mu}{2}-\frac{v}{2}, \delta\right)\end{array}\right]\right.$

$$
\begin{align*}
& \doteqdot \frac{(\pi Z)^{2} y^{-\frac{1}{2}}}{2}[(\cos \mu \pi+\cos v \pi)]^{-1} \\
& \quad \times\left[\rho^{\langle\pi(v-\mu))_{2}} H_{\mathrm{r}}^{(1)}(Z) H_{\nu}^{(2)}(Z)+e^{(\pi(\mu-v))!} H_{\mu}^{(1)}(Z) H_{v}^{(2)}(Z)\right] \tag{22}
\end{align*}
$$

$$
\begin{aligned}
& \phi U^{\left(\mathbf{n}^{2}+7\right) / 4} H_{1 ; 4}^{3,1}\left[U^{\delta} \left\lvert\, \begin{array}{c}
\left(\frac{1}{4}+k, \delta\right) \\
\left(m-\frac{1}{4}, \delta\right),\left(\pm \frac{1}{4}, \delta\right),\left(-m-\frac{1}{4}, \delta\right)
\end{array}\right.\right] \\
& \Gamma\left(m-k+\frac{1}{2}\right) Z^{2 k}[\Gamma(2 m+1)]^{-1} y^{-\frac{1}{2}} W_{k, m}(2 Z) M_{-k,}=(2 Z) .
\end{aligned}
$$

$\because \quad 12$

4. Acknowledgements

Thanks are due to Dr. Sampooran Singh, Director, Defence Latoratory. Jothpor for
Dr. S. Kishmat
 for improvement of the paper.

References

1. BraAksma, B.L.J.
2. Dahiya, R.S.
3. Ditkin, V. A. and

Prudnikov, A. P.
4. Erdélyi, A. et al.
5. Fox, C.
6. Gupta, K. C. AND Jain, U. C.
7. Mathai, A. M. and SAXENA, R. K.

Asymptotic expansions and analytic conereciatipes for a dayd Barnes integrals, Comp. Math., 1963, 15, 23-341.
Computation of two-dimensional Lartax inecerat for 6 functions, Jnanabha Sect. A, 1973, 3, 15-2.

Operational Calculus in two Variables an Apticera Peıgamon Press, New York, 1962.

Tables of Integral Transforms, McGraw-Erin, New Yak Vol. 1.

The G - and H-functions as symmetrical Fourier kerak I mat Amer. Math. Soc., 1961, 98, 395.429.

On the derivative of the H-function, Proc. Ner. Acel Sailum Part A, 1968, 38, 189-192.

Generalized Hypergeometric Functions mis Statistics and Physical Sciences, Springmiater 157.

