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Abstract

In this paper the a1thor studies some applicaticas of the transform theory developed in ref. 1 and based
on the solutions of the diffcrential system

(L—AN¢ =0,
where
L=(—'d’1dx=+ p (x) r{x)
r(x) — d¥ldx? + q (%)

$ 15 a two component column vector.

Transforms of some suitible vectors are first evaluated which in turn lead to some useful results
inder the conditions of uniquene.s of the Green’s matrix, Someé theorems concerning spectrum,
dﬂsfﬁl'ms and p‘lrtii‘.l dEI’iVH.tiVCS of the Grcen‘s matrix are then p]’OVBd which ultimately lead to the
llewing :

Theorem - If Tf(x) = F(f) and TLf (.I) - IF(I), then a necessary and sufficient conditicn that F(t),
IF(1)e £? is that f (x), L, (x)€ L*.

Some of the results obtained in this paper are generalisation. of thuse of Sears®”.

Key words - Transform, Reverse transform, Green's matrix, Parseval formula, Spectrum, L--solition.

L Introduction

:I'he object of this paper is to study some applications of the transform theory developed

M ref. 1 and based on the solutions of the differential system

(L= Ay =0 (1.1)
:Wherc

[ = (—- d*ldx® + p (x) r (x)
- r (x) — d¥dx? + q (%)

| ?=¢(x)= {ux),v (x)}

ES at )
| WO component column vector function of X. 85
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In order to avoid repetition of the preliminaries, we have Written (1
addendum to ref. | and consequently we make free wuse of Symbol this pap'fas;
results contained therein. 5 Motatio “5, '

We denote our transform as
Tf = Tf (x) = {Tl.f:Tﬂf} = F(¢),
where

Trf=(¢r(0|x$t)a f(x))n,m = F,(1)

and reverse transform as

gF=JFQ= £ ] $,0]|%0(F@)dp. )

={( U,F,dp),( VsF!dp)J - ] (x)’

where
U=U(x,t)={uy (0| x,2),u3(0] x, 1)}

V=Vx1)={v0]|x1), v,0]x,1)}
 is real; and f (x) = {/, (), fo ()} €L?, F(r)e £
(¢f. definition in ref 1. §4, §9)

2. Some transforms

(i) Let f (x)={1,0} (¢c<x<¢) and f (x) = {0,0} otherwise, then
F(t)=Tf= fU(x, t) dx.

(i) Let f (x) = {0,1} (c < x< &) and f(x) = {0,0} otherwise, then
F(t)=Tf= j V(x, 1) dx.

(i) Let f(x) =y, (x,4) (r=1,2), Im(1) #*0.
Then
F(t) =Ty, (x, 2) = {1/(A — 1), 0}

and
F(t)y=Ty,(x,2) = {0,1/(A — 1)},
t real. [cf. ref. 1 § 7 and Lemma (9.1)]
(iv) Let f(x)=G,(x,y,2), (r=1,2), Im() #0,
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where Gy (% > 4) is thc r-th column of the Green's matrix

Gy Gy War (%, 2) U (y, 4) Va1 (6, DV (p, 2
G340 =\g, Gm) (‘//*2(3‘5 DUGY Yualx, H V(. ;3) <%

. (UT(x,))l//T 4 UT (e, ) yT, (0, ))

VT DV 3, 2) VT )T, ) 0P
(x,Nel*mx and ,, 1S the r-th row of the matrix
'r(’ll (x! A) ‘/’21’ (x, )*)
(Vs (2) ‘(m (6, 2) Yag(x, D)
[¢f. Chakravarty3: 4]
Let
o0
®(x, 4, )= J GT(y, x, A)f () dy (2.5)
then it follows in the usual manner that @ (x, 4, /) satisfies the non-homogeneous system
L—-—)op=—f
and that
O(x, 2a, )=3 (S () + D (x, 41), (2.6)

Mere £ (x) = {f,,f2} € L? has continuous derivatives up to the second order in [0, co)
and satisfies the boundary conditions in the d-case;

f@®=Lys (x) € L2]0, o0),
®d 1 is not an eigenvalue. [c¢f. Chakravarty® ‘].
Putting £ (x) = ¢, (0| x, #), # real, in (2.6) we obtain
:f CT0nx, 2 6y (0| y, ) dy = ¢, (0] x, D}(2 — 1)
50 that

(d’l(oly’t)! Gl(.y#x: A))ﬂ,m =H1 (le’ t)/(A —'f)
and

(60003, 8), Gy (3, %, 1) Yo, = 01 (0] X, DI — 1),
Similarly
(6:0|3,0,6,(p,x,2) =u(O0xDA—1
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and

(03,0, G x. 1) =000 x0)@A —1).
Thus

TG, (x,», ) =U0. )2 —1)
and

TGy (x, », )=V, 0)](A—1)
(v) Let
f(x)=0x,41), Im (4) # 0.

Since
O, A f) = ? 6T (x, 3. LG dx

= { G, (X, 2,2, () )o, 00 (Ga2(X, 3, A 1 (X))o, w}
it follows by using (2.7) and (2.8) in the formula (4.5) of ref. 1 that

®(y, A, f)={U/A —1), F,dp), (VI(x —1),F, dp)}

=J (FOI(Z —1)
by (1.3). Hence
Ty, Af)=F@)/QA —1)

almost everywhere.

(vi) Let
F@=Lf ) = f X
From (2.6)
TO (x,,f) = 3 T/ (x) + 5 TO (x, 1,f)
whence
F(/(A—1) = %F(r) + TfJ(A — 1)
by (2.9). Therefore

Tf = tF (1)
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3, Some useful results

(n [HI,-. (Al) — n, (/12)]/()“2 - "'1) = _L dprl (t)/(ll — f) (;{2 — t)’ (f', § = l: 2).
(3.1)

Equatton (2.8) of ref. 1 with the relevant properties contajned in §6 of the said
paper, yields
[m,, (/11) — M,y ()2)]/()“2 o )“1) — ('n[’r (x, ;Ll)r 'nbl (x: 22))0, 0o (32)

Applying the formula (4.5) of rel. 1 1o the transforms given by (2.3) and (2 4), the
desired result follows. 4),

I (GO, & A&) — GO, & A) (A — 4e)

_ ((U 0, D[4 — D U D[Py — 1), dp) (U, 5[(2a— 1), V (S, )/ — 1), dp}

Vo, 00 — 0, UE DA — 1),dp)y (V(y, )2 — 1), V(& )[(2s — 1), dp)
(3.3

for any non-real 2, # 2.

It follows in usual manner under the conditions of uniqueness of the Green’s matrix
that for any non-real 2; %= 4,

2 :J? G, x, )-1) G (x, ¢, ;.2) Hox e (G (}’, & }1) — G, g, )2))/()1 _ ).2)_ (3.4)

[¢f. Tiwari and Jaiswal?®].

Making use of the Parseval formula (4.5) of ref. 1 for the transforms given by (2.7)

and (2.8) on the left-hand side of (3.4), the required result follows.
(IIT) Let

Tg =6 (1),
Where

g =g (x) = {g,, 8.} €L’

Then
(3.5)

(® (6, 24, £), B (1, Ay @Yo = (F (DI — 1, G (O[3 =1): 4P}

transform
Applying the Parseval formula #.5) of ref. 110 the transform of & and the 11

Bven by (2.9), we obtain 4
(®(x, 4, 1), g (o, w = (F ()] (1 = 1) G (0): PV

Putling 7 1. and g (x) = @ (x, 4, f) in (3.6), the desired resul Ll
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4, Spectrum

Following Titchmarsh® (pp. 66-67), we define the ‘spectrum’ as the comp|
set of points in the neighbourhood of which the matrix (p,, () is Constagtem:““mf
' ]'“p .

of discontinuity of (p,, (4)) clearly beclongs to the spectrum. The geq of such Y pomy
poi

the ©point spectrum”. The derived set of this set also belongs to pe . Mts g
rum,

Theorem (4.1) : Let A = u + jv. where pu is not in the spectrum, Then
(i) The resuits of §2 and §3 hold with A replaced by u :
(i) ¥, (x. De L? in x (r - 1. 2) and satisfies (1.1) with 7 = I,

(i) @ (x, u,f)eL? in x if f(x)eL*; and satisfies the non-homogeneoys SYste
with A = p at all points of continuity of f (x). e

Proor : The integrals with respect to p, (r) (r,s = 1, 2) over (—-oo,*éo) in this cage
are actually the integrals over (— oo, u — d). (g + 96, o0) for some § > 0.

_. Further, the arguments contained in §3 of ref. 1 yield

£ dp,, ()@ + 1)< k
- ' )

and
P W) k(1 + %)

Hence by (4.1) and (3.1)

m, (@)= lm m, () (r,s=1,2)
P=3>0
exists and

11,0 (Br) =ty (W1t — 22) = § dpo (D)](3 — 1) (u — 1), Tm (A) = 0.

—-C0

Let us now define
Y, (x, p) = lim ¥, (x, 4)

V=30

2
= 3 m, (W, O|xm+6,0]|xp (r=12)
- " 3 gile
Then, it follows, from (3.1) and (3.2) with 4, = 2 =A,, that ¥, (% uyeLs

in this case

mm, ()= ~v | don@I{— 1%+ ¥}

—C0

= 0(v) as v—0
by (4.1).
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by the parseval formula and the relations (4.1) with v, v > 0, we obtain

[, e+ i) =¥ G+ V) o,

cO
- 00

'-._—.0(‘ el 1?,|2).

Hence making v’ = 0, 1t follows easily by Fatou’s theorem that v, (x, 4) converges to
(x,p) as v— 0 and that W, (x. Wel? in x.

Also,

l l =
u+iv—1 p+iv—t ' dp,, (1)

The transforms of ¥ (x, p) and yp (x, p) are, therefore, given by
TG = {1 — 0,0
and

T, (x, w) = {0, 1/(u—1)}.

By similar arguments G (x, v, A) converges to G(x,y,p) as v— 0 and G, (x.y, p)
eltin x (or y) (r =1,2). The transforms of G,(x,y, ) and G.(x,y, ) are given
b .

TG, (x,y, ) = U, t)[(u — 1)
and

TG (x, y, )=V (y,0){(u — 1).
Finally, let |

(v &)
O m )= T xS d=1m [ GTOxD S0P
1] y->0
Then by (3.5) with f-=g and A=A, = A,, it follows that
¢(Jf,u,f)EL2. -

Hence, the theorem.

3. Transform theorems
Theorem (5.1): Let F(t), tF(t)e L* and let

JE@)=f (x), T (1F (1)) = h(x)€ 17
Let ‘

EW= ¥ [ ¢,0|x1)(F@),dp ") ”
e - s.
= (Ux1), F().dp (1)), (Va1 F 9P ()
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and

_qp(x) r(x)
MOD=Gw o)

Then g’ (x) is absolutely continuous over any finite internaj [0, 5] with

g_(x) = f (x) almost everywhere (x >0). Also, g(x) satisfies the boundar) 0; A
tions of our boundary value problem at x =0, and Y cong;
g" (x) = M (x) g (x) — h(x). 63
PROOF : We have
(U FOLdpy = (| UG, DIC =), | (=) F(@1)], dpy
<HUGniE=n].dp | || 2= F(@)|,dp |
< C(A)[Im Gy, (x, x, )]} 6

by (3.3), 3.4) and (3.5) with f =g and A= 2, =X, G(x,y,2) being contin
Similarly

(V0L F@©)].dp) < C(3) ImGeg (x, x, D1, 64 |

Hence g(x) is defined for all x > 0. Also

= 5 [ .0|x 1) (FQ),dp, (1)

= UG, 0. tF (1), dp (1)), (V (3, 1),tF (1), dp (1))}
and for any ¢ > 0, we obtain

o0

[ G=Nho)y= 2 | (FO,dp, ) [ =016, 0|n0dr 6

on changing the order of integration which is justified as follows:

¢, (0|, 1) (r =1,2) are continuous functions of y and ¢, and

| (F (o), I UG, 0 dy,doy | < L] F@),do | | | UGy e |}

$
< k[ [ dyli< o0

. £ (1] %
for, defining f (x) as in §2 (i) and making use of the Parseval formuld (3-4)° |

obtain
¢ :
| § U navdp | = |70 | ¢ = | ax.

Similarly, defining £ (x) as in §2 (ii), it follows that
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[(tF (1), f V(. ) dy, dp) | < k| f dx}t < oo,
From (5.5)
!' (x—y)h(»)dy
= 2 ] (FO.dp,®) f & =»Ls,0]5,0d
_ 3: _z (F@).dp, () J (x—3) M), 0|y, 1)dy
- 2§ (F0.dp, () [ =0 0] n0dy
= S i G=DMOd T 60]%0(FW,db.0)
~ T (F@).dp, (1) ([(x — ) 6 O] 2, )k + [, 0]y, 0]} (5.6)

on changing the order of integration in the first integral and intergrating by parts twice
the second. To justify the change in the order of integration we note that the integral
mvolved is, by (5.3) and (5.4), dominated by

(PO [rOI (Um G Gh AF Y o
c@ [ & ”(,r(y); |q(y)|) (umaga(y,y,mi) ’

which is finite, G,, (x, y, ) being continuous.

Finally from (5.6), we obtain

| = hG)dy

= P [ a—pMOYdy § 60]n0FEDd0)
% T (x--c)cb;(Olc,t)(F(r),dp,(l))—-_JD ¢.-(0|x,r)(F(r),dp,(r))
+ T 6,0]c0)(F@),dp, 0]

# f(x—y)M(y)g(y)dy-i- f‘ [ -j'; (x——C)d):(OIC,I)(F(r):dpr(t))

r=l

+ T 6,060 (F©.do )] —8
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Hence

@M= GE-DMMNeM) —h)d+ F [x—c) |

re1 B 7

¢: (0 | c’r)

X (F@),dp.0) + [ 6.©] 1) (F0).dp, ()} 5

The results stated in the theorem are now easy consequences of the integra equatiop

(5.)
Theorem (5.2): For given y and non-real A
0 ; : 0 :
T;J_V GJ (I, Vs )') B2 U (J': f)/(fl ors I) ’ Ta"j] GB (xr Vs ’1) — V ()’, t)l(’l e f).
ProoF : For any f (x)e L?, we get from §2 (v)
Q0
PG AL = 2 [ 60|30 (FOIG~0,dp, (1),
Also F(1)e.£? and F(t)/(+ —t) satisfies the conditions of Theorem (5.1).
Hence
2 0 5 8
O34 )= 3 [ (¢, O]y n0/G—1)(F@),.dp, () 64

r=1 =00

which implies that for every F(t)e £2

U O0[A—1)],| F(t)|,dp (1)) < o0

and
Ve, 00 =D .|F@)], de (1)) < oo.
Hence

U'y,)(A—1)eL?
and

V'(y, )[(A —t)e L2
Also,

5.9
0 (U DT D i AV DY g<n |
}?; G (x, yi )H) B 'f’n (I, ‘3') UF (y# A) 'J/#E (x& l) V’ (y ’1) )

’'T 10)
e UT(.X', )*) .’b:I (y: )*) UT(x, 11) ’7[’:2 (}’, ;-) (y>x) (5 |
T\t DRI D VT DI
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from the definition of the Green’s matrix,

Hence E!% G(x,y,A)el? in x for fixed y. Now

o &)

o A= [ Gy, AHf (x)

0

= S W0 D I ($,0]x 2,5 () dx

r=1

F b O[3 T (b (6D, £(x) dal.

‘Therefore
O (y,2,f) = % [, (3, 2) j (¢, (0] x, 2), f(x)) dx
+ 91070 T (0 &2, f () o]
= T 6T (x, 3, A) f (x) dx. (5.11)
Let
C(En (%)) u
& (%) = Gi12(x,y) Gae (x, J’))

where gl (x’ y) - {‘911 (x’ y):|h 512 (x, y)} and ‘9'2 (x, y) = {321 (x: J’)a 522 (x: J';)}
denote the reverse transforms of U’ (y, t)/(A — 1) an.d V' (3, 1)](2 —t) respectively.
Then the Parseval formula for these transforms yields

I 67 (60 f () dx

— {(191 (x: }'):f(x»o. o0y (gz (x: y): f (x))ﬂ, w} }
= {(U' 0, 0)[(h — 1), F (), dp (1)), (V' s D)4~ £) F (1), dp ().

Hence

Tt s was= 3 T (#0]y 0@ =0 EOdO) ,
0 pomy — O (5.1

= @’ (}'a ;':f)
by (5.8). Thus from (5.11) and (5.12) we obtaim

;f (Q (x,y)—%(?(xayal))r fx=90
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for every f(x)e L? which proves the theorcm.

Now, it follows that the relations (3.3) and (3.4) may be differentiated pye..
respect to y and ¢ so as to yield Paltially yo

o0

-r G‘:: (x! Vs ;"1) Gg (xi 61 )-2) dx

(G',g (.V: < -';-1) == Gyg &, }*2))/(;“1 — 32)
U (7, 0)[(2 — 1), U (& 1)[(Az — 1), dp (2))
(U, (44— 1), V' (&, )[(Aa— 1), dp (1))
V', )[4y — 1), U (&, )[(A — 1), dp (t))
(V' (3, )[(A4y— 1), V' (&, t)[(Ag—1), dp (1))

(y 5 &).

Il

Finally, combining the transforms (2.10) with Theorem (5. 1), we obtain the following

.Theorem (_5.3): If Tf(x) = F(t) and TLf(x) = tF(t), then a necessary and suft-
cient condition that F(t), tF(1)e.£? is that f(x) and Lf (x)e L

This theorem 1s a generalisation of theorem 68 § 3.14 of Titchmarsh” on Fourir
transforms.
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