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Abstract 

Using Blot's theory, the problem of forced torsional vibrations of .2n inhomogeneous poroelastic cone 
with spherical caps  twisted by Periodic terminal couples is studied. The inhomogeneity is considered 
only in shear modulus. The effect of imhomogeneity on the stress is displayed graphically. 
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1. In oduction 

The governing equations of a poroelastic medium taking solid-fluid aggregate was 
given by BiotL 2  under static loads. Based on this, a number of problems were solved 
by him and others. Later the theory was developed for the case of dynamic loads 3. 
In this theory, it is assumed that the mechanical behaviour of solid portion is governed 
by Hooke's law and flow of fluid produced by deformation is by Darcy's law. 	A more 
complete summary was given by Paria 4 . Recently Nowinski and Davis' have applied 
this theory to solve the problem of longitudinal waves in a cylindrical bone element. 

In recent years there has been considerable interest given to elasticity of inhomogeneous 
bodies because of the materials whose elastic coefficients are not same at all points 
within the body but vary from point to point. This type of work has been previously 
considered by Awojobi 6 17  in the case of torsional vibrations of a rigid circular body and 
for planestrain axially symmetric problems of an inhomogeneous elastic half space by 
Awojobi and Gibsons. In this paper, the problem of forced torsional vibrations of 
an inhomogeneous poroelastic cone with spherical caps applied by periodic terminal 
couples is solved. The inhomogeneity in shear modulus is assumed to follow some 
power of the distance from the vertex of the cone. On neglecting fluid effects, results 
of an elastic medium are obtained as a particular case considered by Mukherjees. The 
effect of inhomogeneity on the shear stress is presented graphically for three different 
materials discussed by Biot 3 , Nowinski and Davis'. The material proposed by Nowinski 
and Davis is a bone element. These results are compared with a body of homogeneous 
material. 
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2. Solution of the problem 

The torsional vibrations of an inhomogeneous poroelastic cone with sph erical  
twisted by periodic terminal couples is considered. We use spherical polar coordicna

aPst, system (r. 0, 40) with the vertex of the cone as origin of the coordinate sy ste  
torsional vibrations the non-zero displacement components are 

ud, = u(r) Sin 0 e ipt ,  ,
9 —  ti 	U (r) si n  0 ein 

where ue, 1.45 are the displacement components of solid and liquid media respecti vely  
The non-zero stress equation of motion of a poroelastic body in absence of boll; 
forces3  in this case will be 

auto I aigoo + 1  °it) ++ 17 00  cot 0) Or + r  ao 	rsind 	r 

a2 	 a 
(puud, + p i2 C10) + bet (ud.— (10) 

32 	 a 
grad (Qe + Re) = 2 (p i sto + p22 C4) — b (uo (4) 	 (2) at 	 at 

Where aro  is stress tensor p 's are the mass coefficients, b dissipative coefficient and Q 
and R elastic constants in Biot's theory. 

Because the considered vibrations are shear waves, so dilatations e and 6 ate zero 

making excess pore-pressure s to be identically zero. the only non-zero stress comp°. 
nent cr,4, in terms of displacement is 

a  
aro= Nr (us  

where Nis shear modulus assumed to be a function of r. 
dimensionless parameter x given by 

It is convenient to introduce /  

(4) 
x • 

. 	. 
o 

where a is some reference distance and throughout the work the 
inhornogeneitY co  

dered in shear modulus follo ws 	
(5) 

N= Noxn 

. acts 
where N. is the value of N in homogeneous case and exponent n is a rational 
Substituting Eqns. (I), (3) with (4) and (5) into Eq. (2) gives 

(6) 
dzu n + 2 du (n + 2 a2  p2  TuT22 —  2.2   ) 22  

SSOMM IO smma=  

dX2 	x dx 	x2 	x" 	N0T22 
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where 
Tit  = p it  iblp, T12 r  P12 4-  lb/p. T22 =P22 — iblp 	

(7) 

When there is no relative motion between solid and liquid media, the shear velocity 
co  is 

= Noifis 	 (8) 

Introducing the following non-dimensional variables 

Cu= PniP, 012 = 	a22 = P22/P, b 1  = abfpco, 1= api lco  
• 

with 

P 	2P12 + P221 Pi=lP 

into eqn. (6). it will be 

d'u n + 2 du ( n + 2 m2\ 
dX2  m  X dx —  k x2  (9) 

where 

m2 = f2 a  ° (all an 	012) 12  171 0112 + Cr (10) 

Substituting 

2 xz = 	12'm' (nk 2) 2 n 

U y (z) x-01+1 ),2 

&Ins (9) becomes. 

d'ydy 
 

Z2  dZ2  z dz 
Where 

(12) 

	

y 	.0.■,■■■••■•■ 

2 — n 

The solution of Eqn. (12) is 

	

Y 	(z) 	c2  YIP (Z) 

Where e 	 (2) 
are Bessel functions i and c2  are constants; 4(z) and yr 

41
n
a of order v with argument z. Thus we have 

of first and second 
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ud, = {c,J, (z) + C 2  Y, (z)) x -( "÷1)12  Sin 0 "Pe  

By virtue of eqns. (14) and (3), 	 04)1 

Nom 
& aro 	--- x a 	- 	ply  +1  (z) + c2 Y w + (z)] sin 0 e'"' 

(15) 

es  
The solutions are to be re-examined for n = 2. Putting n 2 9 eqn- (9) becom 

 

d2  u 4 du 	I , 
dx2 	— )72 k4  1772) u = 0 

The solution of eqn. (16) can be written as 

U = c3x(k-312)  x c4  x' 3 2  

where 

k2_ 
5 )2 

in2 

and c3  and c4  are constants. Thus, 

tio  = [c3x (c-312) 	c4r(k+312)} sin 0 e'Pe  

The strcss component art, in this case will te 

(fro = N°[(k 	
2 3  x

(k-u 2) —(k + —5 )c x -(k 1 112 1 sin 0 e"t  
2 a (20) 

3. Boundary conditions 

Consider the cane with semi-vertical angle a with two spherical caps bounded by radii 

x ---= 	and x = x 2  and let it be acted by equal and opposite twisting couples. The 

boundary conditions are 

	

a 	27 (21) At x 	xj , 	f cycp as xs sin2  0 dO c14) 	Mei'  
0-0 0=0 

	

a 	271 

	

At x = xo, f 	as x3  sin2  0 dO d4) = Me's" 
" 49-0 0.0 

The constants c 1 , c2, c 3, c4  are evaluated from boundary conditions (21) and ecIn s 115) 

and (20). 

Case (i) n 0 2. 

From eqns. (15) and (21), after necessary simplifications, the constants C
l  and C' 

are given by 

.6 



TORSIONAL VIBRATIONS OF A POROELASTIC CONE 	
103 

and 

Cs — a MK 	
(22) 

where 

Il 
= x7512 yr*,  ( n, 429-1012) + x4-2  512 yr  ÷i (nix124-1012) 	

(23) 

= xr" 4-F/ (72142')(2) + 4612  4+2 OniX (12.1" 12) 
• 

jp +1  ( n1x?- ,012) )7 Jr +1  (
nixie ti 12 ) 	iv+,  onrx(22)12) yp  (n1 xt32.min)12) 

and 
• 

6  
K 

711V0 na2  (9 cos a — cos 3a 8) 

2 
in 

= 

(24) 

Case (ii) n = 2. 

Proceeding on similar lines, the constants c s  and c4  in this case will be 

Mk i  
Cs =-- k  _ 	5/2 Ai 

mk i  
C4  = k 4_ 5/2 16 

(25) 

where 

14  = grk-1.212) 	sc( lc -512) 

xr1 12 4. 4+ 5,2 
	 (26) 

= k+1121  iek+5 12 	xla-1/ 2 x-2  lic.-51 2) 
A. 2 

and 

kitc ink 
	 (27) 

4. Particular cases 

Case 1: 

Homogeneous case : Putting n =-- 0 in eqns. (13), (14)/ 
resiths of a homogeneous poroelastic cone follows at 

(15), (22), (23) and (24) the 
once, 
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Case I!: 

Classical theory : On neglecting fluid effects, that is b 1 	0, a12 , a 
eqn. (10), 	 22 to  tiler] froz  

--* 	f2  0-11 

or • 
4. 

v- . 
• l e • • 1 	• 

2 
P 

in
2 	

g 	

• 
Pn 
 n  

Co 	V 

4 

and pn  =-- p, in classical theory when fluid effects are neglected, i.e., 

2 	
a2 p2 

Co 

Using this in all the calculations, the results of Mukherjeee are obtained. 

5. Numerical results and discussions 

Due to presence of dissipative nature of the medium, the vibrations - are attenuattt 
For simplicity, to have an idea of effect of inhomogeneity on the stress component cs, 
it is calculated for different materials discussed by Blots, Nowinski and Davis' far 

O. These are 	 • 

0'12 	 a22 

(0 	0-50 	0•00 	0.50 

00 0.65 --0.15 0•65 

0i0 0-92 0•00 0•08 

The third material corresponds to bone element. In the first two materials 
the nusgi 

of solid and liquid media are equal whereas in the first case mass coupling efr
i  

is absent and in the third one these vary considerably. 

;The shear stress a yce, is calculated at a given time t = T; x1 = 1, .x2 = 2, bi 	11.  

a = 45° and 0 = 300  for different cases of homogeneity, that is for (1) n 	(2) n  

(3) n = 2 taking different values of x in 1 <x <2 • n 	gives homogen 

The numerical values are exhibited graphically in Fig. 1 for the first maten al ' y art  
--= 0 	 esou: Lit is  

observed that the value of stress component for inhomogeneous case 
less than that of homogeneous case (n = 0) in 1 <x < I •8 and is greater in a  

<2•0. The values of stress component are calculated for other two materials el ffv. , 

it no considerable difference is noted with the case present& in 

n1.0,1 
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FIG.1. Shear stress as a function of radius in different cases. 
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