Forced torsional vibrations of inhomogeneous poroelastic cone

Md. THAJUDDIN
Department of Mathematics, Regional Engineering College, Warangal 506004

Received on January 21, 1978 ; Revised on March 11, 1978

Abstract

Using Biot's theory, the problem of forced torsional vibrations of a n inhomogeneous poroelastic cone with spherical caps twisted by periodic terminal couples is studied. The inhomogeneity is considered only in shear modulus. The effect of imhomogeneity on the stress is displayed graphically.

Key words: Inhomogeneous, poroelastic, Darcy's law, torsional vibrations.

1. In oduction

The governing equations of a poroelastic medium taking solid-fluid aggregate was given by Biot ${ }^{1,2}$ under static loads. Based on this, a number of problems were solved by him and others. Later the theory was developed for the case of dynamic loads ${ }^{3}$. In this theory, it is assumed that the mechanical behaviour of solid portion is governed by Hooke's law and flow of fluid produced by deformation is by Darcy's law. A more complete summary was given by Paria ${ }^{4}$. Recently Nowinski and Davis ${ }^{5}$ have applied this theory to solve the problem of longitudinal waves in a cylindrical bone element.

In recent years there has been considerable interest given to elasticity of inhomogeneous bodies because of the materials whose elastic coefficients are not same at all points within the body but vary from point to point. This type of work has been previously considered by Awojobi ${ }^{6,7}$ in the case of torsional vibrations of a rigid circular body and for planestrain axially symmetric problems of an inhomogeneous elastic half space by Awojobi and Gibson ${ }^{8}$. In this paper, the problem of forced torsional vibrations of an inhomogeneous poroelastic cone with spherical caps applied by periodic terminal couples is solved. The inhomogeneity in shear modulus is assumed to follow some power of the distance from the vertex of the cone. On neglecting fluid effects, results of an elastic medium are obtained as a particular case considered by Mukherjee e°. The effect of inhomogeneity on the shear stress is presented graphically for three different materials discussed by Biot ${ }^{3}$, Nowinski and Davis ${ }^{5}$. The material proposed by Nowinski and Davis is a bone element. These results are compared with a body of homogeneous material.

2. Solution of the problem

The torsional vibrations of an inhomogeneous poroelastic cone with spherical caps twisted by prriodic terminal couples is considered. We use spherical polar coordinale system $(r . \rho, \phi)$ with the vertex of the cone as origin of the coordinate system. For
torsional vibrations the non-zero displacement components are

$$
\begin{equation*}
u_{\phi}=u(r) \operatorname{Sin} \theta e^{i p t}, \quad U_{\phi}=U(r) \operatorname{Sin} \theta e^{i p t} \tag{i}
\end{equation*}
$$

where u_{ϕ}, U_{ϕ} are the displacement components of solid and liquid media respectively. Tine non-zero stress equation of motion of a poroelastic body in absence of body forces ${ }^{3}$ in this case will be

$$
\begin{gather*}
\frac{\partial \sigma_{t \phi}}{\partial r}+\frac{1}{r} \frac{\partial \sigma_{\theta \phi}}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial \sigma_{\phi \phi}}{\partial \phi}+\frac{1}{r}\left(3 \sigma_{r \phi}+2 \sigma_{\theta \phi} \cot \theta\right) \\
\quad=\frac{\partial^{2}}{\partial t^{2}}\left(\rho_{11} u_{\phi}+\rho_{12} U_{\phi}\right)+b \frac{\partial}{\partial t}\left(u_{\phi}-U_{\phi}\right) \\
\operatorname{grad}(Q e+R \varepsilon)=\frac{\partial^{2}}{\partial t^{2}}\left(\rho_{12} u_{\phi}+\rho_{22} U_{\phi}\right)-b \frac{\partial}{\partial t}\left(u_{\phi}-U_{\phi}\right) \tag{}
\end{gather*}
$$

Where $\sigma_{i j}$ is stress tensor ' ρ 's are the mass coefficients, b dissipative coefficient and ℓ and R elastic constants in Biot's theory.

Because the considered vibrations are shear waves, so dilatations e and ε are zro making excess pore-pressure s to be identically zero. The only non-zero stress compenent $\sigma_{r \phi}$ in terms of displacement is

$$
\begin{equation*}
\sigma_{r p}=N r \frac{\partial}{\partial r}\left(\frac{u_{\phi}}{r}\right) \tag{3}
\end{equation*}
$$

where N is shear modulus assumed to be a function of r. It is convenient to introduce ${ }^{2}$ dimensionless parameter x given by

$$
x=r / a
$$

where a is some reference distance and throughout the work the inhomogeneity cosit dered in shear modulus follows

$$
\begin{equation*}
N=N_{0} x^{n} \tag{9}
\end{equation*}
$$

where N_{0} is the value of N in homogeneous case and exponent n is a rational number. Substituting Eqns. (1), (3) with (4) and (5) into Eq. (2) gives

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}+\frac{n+2}{x} \frac{d u}{d x}-\left(\frac{n+2}{x^{2}}-\frac{a^{2} p^{2}}{x^{n}} \cdot \frac{\tau_{11} \tau_{22}-\tau_{12}^{2}}{N_{0} \tau_{22}}\right) u=0 \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{11}=\rho_{11}-i b / p, \tau_{12}=\rho_{12}+i b / p, \tau_{22}=\rho_{22}-i b / p \tag{7}
\end{equation*}
$$

When there is no relative motion between solid and liquid media, the shear velocity c_{θ} is

$$
\begin{equation*}
c_{0}^{2}=N_{0} / \rho \tag{8}
\end{equation*}
$$

Introducing the following non-dimensional variables

$$
\sigma_{11}=\rho_{11} / \rho, \sigma_{12}=\rho_{12} / \rho, \sigma_{23}=\rho_{22} / \rho, b_{1}=a b / \rho c_{0}, f=a p_{1} / c_{0}
$$

with

$$
\rho=\rho_{11}+2 \rho_{12}+\rho_{22}, \quad p_{1}=-i p
$$

into eqn. (6), it will be

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}+\frac{n+2}{x} \frac{d u}{d x}-\left(\frac{n+2}{x^{2}}-\frac{m^{2}}{x^{n}}\right) u=0 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
m^{2}=f^{2}\left\{\frac{\sigma_{22}\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right) f^{2}-b_{1}\left(\sigma_{12}+\sigma_{22}\right)^{2} f-b_{1}^{2}}{b_{1}^{2}-\sigma_{22}^{2} f^{2}}\right\} \tag{10}
\end{equation*}
$$

Sabstituting

$$
\begin{align*}
& z=\frac{2}{2-n} m x^{(2-n) / 2}(n \neq 2) \\
& u=y(z) x^{-(n+1)!} \tag{11}
\end{align*}
$$

Eqn. (9) becomes.

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+\frac{1}{z} \frac{d y}{d z}+\left(1-\frac{v^{2}}{z^{2}}\right) y=0 \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
v=\frac{3+n}{2-n} \tag{13}
\end{equation*}
$$

The solution of Eqn. (12) is

$$
y=c_{1} J_{\nu}(z)+c_{2} Y_{\nu}(z)
$$

where c_{1} and c_{2} are constants; $J_{\nu}(z)$ and $Y_{\nu}(z)$ are Bessel functions of first and second kind of order v with argument z. Thus we have

$$
u_{\phi}=\left\{c_{1} J_{\nu}(z)+c_{2} Y_{\nu}(z)\right\} x^{-\left(n_{+}+1\right) / 2} \operatorname{Sin} \theta e^{\delta_{p t} t}
$$

By virtue of eqns. (14) and (3),

$$
\sigma_{r \phi}=-\frac{N_{0} m}{a} x^{-1}\left[c_{1} J_{\nu+1}(z)+c_{2} Y_{\nu+1}(z)\right] \sin 0 e^{i \phi t}
$$

The solutions are to be re-examined for $n=2$. Putting $n=2$, eqn. (9) becomes

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}+\frac{4}{x} \frac{d u}{d x}-\frac{1}{x^{2}}\left(4-m^{2}\right) u=0 \tag{I0}
\end{equation*}
$$

The solution of eqn. (16) can be written as

$$
u=c_{3} x^{(k-3(2)} \times c_{4} x^{-\left(k^{2}+32\right)}
$$

where

$$
\begin{equation*}
k^{2}=\left(\frac{5}{2}\right)^{2}-m^{2} \tag{18}
\end{equation*}
$$

and c_{3} and c_{4} are constants. Thus,

$$
\begin{equation*}
u_{\phi}=\left[c_{3} x^{(k-312)}+c_{4} x^{-(k+312)}\right] \sin \theta e^{i p t} \tag{199}
\end{equation*}
$$

The stress component $\sigma_{r \phi}$, in this case will te

$$
\begin{equation*}
\sigma_{r \phi}=\frac{N_{0}}{a}\left[\left(k-\frac{5}{2}\right) c_{3} x^{(k-112)}-\left(k+\frac{5}{2}\right) c_{4} x^{-\left(k_{+}+12\right)}\right] \sin \theta e^{(p t} \tag{20}
\end{equation*}
$$

3. Boundary conditions

Consider the cane with semi-vertical angle α with two spherical caps bounded by radi $x=x_{1}$ and $x=x_{2}$ and let it be acted by equal and opposite twisting couples. The boundary conditions are

$$
\begin{align*}
& \text { At } x=x_{1}, \int_{\theta=0}^{a} \int_{\phi=0}^{2 \pi} \sigma_{r \phi} a^{3} x^{3} \sin ^{2} \theta d \theta d \phi=M e^{i p t} \tag{}\\
& \text { At } x=x_{2}, \int_{\theta=0}^{a} \int_{\phi=0}^{2 \pi} \sigma_{r \phi} a^{3} x^{3} \sin ^{2} \theta d \theta d \phi=-M e^{\langle\theta t}
\end{align*}
$$

The constants $c_{1}, c_{2}, c_{3}, c_{4}$ are evaluated from boundary conditions (21) and eqns. (19) and (20).

Case (i) $n \neq 2$.
From eqns. (15) and (21), after necessary simplifications, the constants c_{1} and a^{1} are given by

$$
c_{1}=\frac{I_{1}}{I_{3}} M K
$$

and

$$
\begin{equation*}
c_{2}=\frac{I_{2}}{I_{3}} M K \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{1}=x_{1}^{-5 / 2} Y_{\nu+1}\left(m_{1} x_{2}^{(2-n) / 2}\right)+x_{2}^{-5 / 2} Y_{\nu+1}\left(m_{1} x_{2}^{(2-n) / 2}\right) \tag{23}\\
& I_{2}=x_{1}^{-5,2} J_{y+1}\left(m_{1} x_{2}^{(2-n) / 2}\right)+x_{2}^{-1 / 2} J_{y+1}\left(m_{1} x_{1}^{(2-n) / 2}\right) \\
& I_{3}=J_{\nu+1}\left(m_{1} x_{1}^{(2-n) / 2}\right) Y_{\nu+1}\left(m_{1} x_{2}^{2-n / 2}\right)-J_{\nu+1}\left(m_{1} x_{2}^{(2-n) / 2}\right) Y_{\nu+1}\left(m_{1} x_{1}^{(2-n) / 2}\right)
\end{align*}
$$

and

$$
\begin{align*}
& K=\frac{6}{\pi N_{0} m a^{2}(9 \cos \alpha-\cos 3 \alpha-8)}-\frac{2}{2-n} m \tag{24}\\
& m_{1}=\frac{2}{2-n}
\end{align*}
$$

Case (ii) $n=2$.

Proceeding on similar lines, the constants c_{3} and c_{4} in this case will be

$$
\begin{align*}
& c_{3}=\frac{M k_{1}}{k-5 / 2} \cdot \frac{I_{4}}{I_{8}} \\
& c_{4}=\frac{M k_{1}}{k+5 / 2} \cdot \frac{I_{5}}{I_{6}} \tag{25}
\end{align*}
$$

Where

$$
\begin{align*}
& I_{4}=x_{1}^{-(k+1 / 2)}+x_{2}^{-(k-5 / 2)} \\
& I_{5}=x_{1}^{k-1 / 2}+x_{2}^{k+8 / 2} \tag{26}\\
& I_{8}=x_{1}^{-(k+1 / 2)} x_{2}^{k+5 / 2}-x_{1}^{k-1 / 2} x_{2}^{-(k-5 / 2)}
\end{align*}
$$

and

$$
\begin{equation*}
k_{1}=m k \tag{27}
\end{equation*}
$$

4. Particular cases

Case I:

Homogeneous case : Putting $n=0$ in eqns. (13), (14), (15), (22), (23) and (24) the results of a homogeneous poroelastic cone follows at once,

Case II :

Classical theory: On neglecting fluid effects, that is $b_{1} \rightarrow o, \sigma_{12}, \sigma_{22} \rightarrow 0$ then from eqn. (10),

$$
m^{2} \rightarrow-f^{2} \sigma_{11}
$$

or

$$
m^{2} \rightarrow \frac{a^{2} p^{2}}{c_{0}^{2}} \cdot \frac{\rho_{11}}{\rho}
$$

. . . ! en
and $\rho_{11}=\rho$, in classical theory when fluid effects are neglected, i.e.,

$$
m^{2} \rightarrow \frac{a^{2} p^{2}}{c_{0}^{2}} .
$$

Using this in all the calculations, the results of Mukherjee ${ }^{9}$ are obtained.

5. Numerical results and discussions

Due to presence of dissipative nature of the medium, the vibrations are attemumad For simplicity, to have an idea of effect of inhomogeneity on the stress component of: it is calculated for different materials discussed by Biot ${ }^{3}$, Nowinski and Davis in $b_{1}=0$. These are

	σ_{11}	σ_{12}	σ_{22}
(i)	0.50	0.00	0.50
(ii)	0.65	-0.15	0.65
(iii)	0.92	0.00	0.08

The third material corresponds to bone element. In the first two materials the mass of solid and liquid media are equal whereas in the first case mass coupling fifict is absent and in the third one these vary considerably.
-The shear stress $\sigma_{r \phi}$ is calculated at a given time $t=T ; x_{1}=1, x_{2}=2, b_{1}=0, f=1$. $\alpha=45^{\circ}$ and $\theta=30^{\circ}$ for different cases of homogeneity, that is for (1) $n=0,(2) n=1$. (3) $n=2$ taking different values of x in $1 \leqslant x \leqslant 2 \cdot n=0$ gives homogeneous The numerical values are exhibited graphically in Fig. 1 for the first material. It asi observed that the value of stress component for ixhomogeneous case $(n=1,2)^{24}$ less than that of homogeneous case $(n=0)$ in $1 \leqslant x \leqslant 1.8$ and is greater in $1.8<x$ $\leqslant 2 \cdot 0$. The values of stress component are calculated for other two materials and from it no considerable difference is noted with the case presented in Fig. 1 .

Fig. 1. Shear stress as a function of radius in different cases.

6. Acknowledgement

The author expresses gratitude to Dr. K. S. Sarma for valuable suggestions.

References

1. BIOT, M. A.

General theory of three-dimensional consolidation, J. Appl. Phys., 1941, 12, 155.
2. Biot, M. A
3. Biot, M. A.
4. Paria, G.
5. Nowinski, J. L. AND Davis, C. F.
6. Awojobi, A. O.
7. Awojobi, A. O.
8. Awojobi, A. O. and Gibson, R. E.
9. Mukherjee, S.

Theory of elasticity and consolidation for a porous anisotopix
solid, Ibid. 1955, 26, (2), 182 .
Theory of propagation of elastic waves in fluid solid, J. Appl. Phys., Acous. Soc. Am., 1956, 28 (2), 168, Flow of fluid through porous deformable solid, Appl. Mred
Surveys, Spartan Books, Washington, 1963, p. 421. Propagation of longitudinal waves in a circularly cribdina bone elements, Trans. ASME, Jnl. Appl. Mech., Ser. E, 1971, p. .1 Torsional vibrations of a rigid circular body on a non-homozecon elastic stratum, Q. Jl. Mech. Appl. Math., 1973, 26 (2), 235.

Vibrations of rigid bodies on non-homogeneous semi-infinite else media, Q. Jl. Mech. Appl. Math., 1973, 26 (4), 483.
Plane strain axially symmetric problems of a linealy x. homogeneous elastic half-space, Q. Jl, Mech. Appl. Math. 197 , 28, (3), 285.

Indian JnI. Theo. Physics, 1967, 15, 4.

