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Abstract

Using Biot’s theory, the problem of forced torsional vibrations of ¢n inhomogeneous poroelastic cone
with spherical caps twisted by perjodic terminal couples is studied. The inhomogeneityis considered
only in shear modulus, The effect of imhomogeneity on the stress is displayed graphijcally.
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1. In oduction

The governing equations of a poroelastic medium taking solid-fluid aggregate was
given by Biot!?2 under static loads. Based on this, a number of problems were Solved
by him and others. Later the theory was developed for the case of dynamic loads?®.
In this theory, it is assumed that the mechanical behaviour of solid portion is governed
by Hooke’s law and flow of fluid produced by deformation is by Darcy’s law. A more
complete summary was given by Paria®. Recently Nowinski and Davis® have applied
this theory to solve the problem of longitudinal waves in a cylindrical bone element.

In recent years there has been considerable interest given to elasticity of inhomogeneous
bodies because of the materials whose elastic coefficients are not same at all points
within the body but vary from point to point. This type of work has been previously
considered by Awojobi®” in the case of torsional vibrations of a rigid circular body and
for planestrain axially symmetric problems of an inhomogeneous elastic half space by
Awojobi and Gibson®. In this paper, the problem of forced torsional vibrations of
an inhomogeneous poroelastic cone with spherical caps applied by periodic terminal
couples is solved. The inhomogeneity in shear modulus is assumeq to follow some
power of the distance from the vertex of the cone. On neglecting fluid effects, results
of an elastic medium are obtained as a particular case considered by Mukherjee': The
effect of inhomogeneity on the shear stress is presented grap%lically for three different
materials discussed by Biot?, Nowinski and Davis®. The material proposed by Nowinski
and Davis is a bone element. These results are compared with a body of homogeneous
materjal.
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2. Solution of the problem

The torsional vibrations of an inhomogeneous poroelastic cone with |
twisted by periodic terminal couples is considered. We use spherica poslphencalt
system (r. ¢, ¢) with the vertex of the cone as origin of the coor diﬂatearcomdinau
torsional vibrations the non-zero displacement components are System, Fy

ue=u(r) Sin 8 ™, Us = U(r) Sin 0 "
(i
where ug, Ug are the displacement components of solid and liquid media respect;
Tae non-zero stress equation of motion of a poroelastic body in  — F:?I;fly.
forces® in this case will be ody

aa,¢ _1_50'9,35 ) ] ag@? ]
o Tr 20 T rsing 3¢ Ty 0t 200s coth)

o2 %,
= é-f-; (p11H¢ - P;qus) + b 'a-}(ufp T Uq))

0* %,
grad (Qe + Re) = 5}}(012&3& + p92Ug) — b 'é,‘t'(utfr — Up) @

Where ay; is stress tensor ¢ p’s are the mass coefficients, b dissipative coefficient and {
and R elastic constants in Biot’s theory.

Because the considered vibrations are shear waves, so dilatations e and & are X0
making excess pore-pressure s to be identically zero. The only non-zero Siress comp-
nent o,y in terms of displacement is

Orp = Nr 9 (EE?) 0
or\r

i : : introduce?
where N is shear modulus assumed to be a function of r. It is convenientio introd

dimensionless parameter x given by I

4

X=rla

i o o oy COBSF
where a is some reference distance and throughout the work the inhomogeneity

dered in shear modulus follows 0
N = Nx"

_ : , . nal bt
where N, is the value of N in homogeneous case and exponent 7 is 2 rationé!
Substituting Eqns. (1), (3) with (4) and (5) into Eq. (2) gives

®

gf_’.’.‘ i n+ 2du n4+2 a'p® TyTa — Tis 0
dx2 3- P . B U =
X dx X X NoTas
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where
Ty = P — iblp, Tia = p1a+ ibjp, 159 = P22 — iblp (7)

When there is no relative motion between solid and hiquid media, the shear velocity
Co 1S
2 = Nolp - (8)
Introducing the following non-dimensional varjables
611 = PulPs O1a = P1alp, Gas = pasfp, b, = ablpcy, f= ap,/c,
with
p=pPu T 20,3 + Pasy, P1 = —1Ip

into egn. (6), it will be

d*u n+ 2 du n+2 m?y
o T T x dx ( x? x’f)u_o | ©)
where .
2 2 {022 (011 Ogp — 05;) f2— by (019 + 020 [ — bf}_ (10)
=3 b} — 0%, f* o
Substituting
_ 2 (2-7m))2
2=y mx (n352)
. i1
U=y (z)x—["-*-lif.’: ( )
Eqn. (9) becomes.
ey ldy~ y2 (12)
where .
(13)
3 +n |
2~—n

_Th& solution of Eqn. (12) is

d
:ons of first and secon
“’_hE're “12nd ¢, are constants; J, (z) and Y, (2) are Bessel functs

- °f order v with argument z. Thus we have
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ue = {cJy (2) + €Y, (2)} x~"+112 Sin § %

By virtue of eqns. (14) and (3), (4 |
N
Gep = :ﬂ x-4 [01JP+1 (Z) + €y Yp+1 (Z)] sin 0 '
(15
The solutions are to be re-examined for n = 2. Putting n =2 eqn. (9) 4
’ 5 ECG

dxt ' xdx xﬂ( = 0§
The solution of eqn. (16) can be written as

3 = Csx{t—s’al X c‘l x"'{l-l-a‘z)
where "

k2 = (2)2 — m2
2 (1
and ¢y and ¢, are constants. Thus,
Uy = [Cax(k—slij 3 c4x—(l=+3l‘£)] sin £ e‘ipt (]9)

The stress component o,¢, In this case will ke

N 5 S
=g | (k= 3) eoxm—( & +3) cax 19 | sin 6 e "

3. Boundary conditions

Consider the cane with semi-vertical angle a with two spherical caps bounded by radn

x = x, and x = x, and let it be acted by equal and opposite twisting couples. The
boundary conditions are

a 2% ‘
At x = X, 6j'0 ¢£° 6,6 @® X3 sin? 0 di d = Mt (21
0 17" ipt
At x = X, G-Io ¢___[0 0,0 @ x® sin2 0 d0 dp = — Me”
The constants c,, cs, ¢4, ¢, are evaluated from boundary conditions (21) and €™ S
and (20).
Case (1) n 3+ 2.
rd &

2
From eqns. (15) and (21), after necessary simplifications, the constants &
are given by

I
cl=~I—1MK
3
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| al]d
¢y = 2 MK - -
Ig (22)
where
= 37" Yory xZ™%) + 2350 ¥y iy (212 @)
Iy =X0"% Jyty (i X577"%) + X302 T4 (myx2i2)
Is=Jy+ (mxy ™) Yoy (myx2~"% ) — Jy4y (M x5™™%) Y4, (my x52"12)
and
K — 6
~ aNgma® (9 cos @ — cos 3a — 8) (24)
m 2 m
' 2—n
Case (0) n = 2.
- Proceeding on similar lines, the constants ¢, and ¢, in this case will be
Mk, I,
Lo = TS _
> k F— 5/2 Iﬂ
oy 00 s (25)
k+52 I,
Where
Iy= xpiHu g xik=si2)
Iy = a2 x;"' 5i2 (26)
Iy = xt*+112 xkHs 1z _ yhef2 o —kesl®)
ang
27)
r kl = mk (

nd (24) the

S of 4 homogeneoys poroelastic cone follows at Once,
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Case II :

Classical theory : On neglecting fluid eflects, that is 5, - , .
eqn. (10), P20t oy
m* — —f? oy,

Or

2 agpg P11
__} T B —
Co £

and p,; = p, in classical theory when fluid effects are neglected, /¢

a2 PE

mt <> ~—
Co

Using this in all the calculations, the results of Mukherjee® are obtained,

5. Numerical results and discussions

Due to presence of dissipative nature of the medium, the vibrations are attenum
For simplicity, to have an idea of effect of inhomogeneity on the stress componen s,
it is calculated for different materials discussed by Biot3, Nowinski and Davi fi
b, = 0. These are

O11 G2 Coy
(i) 0-50 0-00 0-50 5
(i) 0-65 —0-15 0-65
(iif) 0-92 0-00 0-08 | *

|s the mas®

The third material corresponds to bone element. In the first two matera fing el
upling

of solid and liquid media are equal whereas in the first case mass c0
is absent and in the third one these vary considerably.

» _ o p =0 =
“The shear stress g,¢ is calculated at a giventime 1 =T7; % =1, %2~ 2, by /

o
— n=

& = 45° and 8 = 30° for different cases of homogeneity, that is for (1) »= o;w,(jus (a8t

(3) n = 2 taking different values of x in 1 <x<<2 +n=0 gives homog® It ¥

The numerical values are exhibited graphically in Fig. 1 for the first matzu;'z)aﬂ
observed that the value of stress component for inhomogeneous case {7 in | §<1
less than that of homogeneous case (# =0) in 1 <x<1 .8 and 15 greatefals and fr0?
<2-0. The values of stress component are calculated for other tWO materlﬂ "

it no considerable difference is noted with the case pfesented if Fig. 1.
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Shear stress as a function of radius in different cases.
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