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Abstract 

The sector Problem in plane-elastostatics with arbitrar} loads on the edges has been studied in this 
paper. 	The loads on each of the edges separately 	may not be self-equilibrating but all the loads 
together should keep the sector in equilibrium. 	By superimposition of suitable self equilibrating stress 
systems, the problem 	has been reduced to that of self-equilibrating loads on the circular arc of the 
sector. 	An auxiliary Problem of sectorial inclusion in a sectorial annulus has also been considered. 
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1. Introduction 

The sector problem in two-dimensional elasticity has been studied by several authors 
by taking various types of boundary conditions. A moderate bibliography of sector and 
related problems with comments on the methods of solutions can be found in refs. I and 2. 
We shall briefly mention the previous relevant works. In ref. 3, Horway and Hanson have 
studied the sector problem with loads on the edges and an approximate solution has 
been given by variational methods using self-equilibrating orthogonal polynomials 
By expressing the boundary tractions in terms of normalized clamped beam functions, 
Gopalacharyulut, has given the analytical solution of the sector problem with zero 
Loads on the radial edges and self-equilibrating system of loads on the circular edge. 
The final solution in ref. I depends on the solution of two coupled infinite systems of linear 
algebraic equations in two sets of infinite unknowns (two for symmetric and two for 
anti-symmetric loadings). Using the method of bi-orthogonality developed by Jhonson 
and Little for solving a semi-infinite strip problem, Rao, Kale and Shimpi 2  have solved 

the sector problem with self equilibrating loads on the circular edge and zero loads on 

the radial edges. The final solution in ref 2 depends on the solution of only one infinite 
system of linear algebraic equations in complex constants (one system each for sym- 
metric and anti-symmetric case). Recently some more papers have appearedis 
Using the method of bi-orthogonality developed in ref. 4. 

In 	physical h ' 
Problem 	

p 	cal problems of interest the sector problem occurs as an auxiliary n  
a 	 m  with loads on all the three edges. As loads in refs. 1 and 2 are restricted only 
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to the circular edge of the sector, they are of limited use but are importan
t from the solution point of view. 

quilibrating  
The main theme of the present paper is to superimpose suitable self-e 

stress systems which reduce the problem to that of self-equilibrating load 
circular edge of the sector for which the solution is known2. 	

s on the  

2. Analysis 

Consider a sector in a state of generalized plane stress with semi-vertex angle et, The  
origin is taken at the apex and the X-axis along the axis of angular symmetry. Th e  
circular arc is given by r = 1 where (r,0) are the polar coordinates in the plane ofthe  
sector. The boundary conditions have been taken as follows: 

On the circular edge of the sector 

00 

trr  = a o 	E (a,, cos n0 + b„ sin nO) 
tp-1 

00 

= co  + E (c„ cos nO d„ sin ne) 
1101 

where 

as  = di  and c, = — b1 . (2) 

This restriction in (2) on the coefficients will be discussed later. 

On the radial edges of the sector 

tee = (r), To =13(1) ; 0 	a, 0 Cr < 1 

Toe  = f2  (r), T, 0  = f4 (r); 0 = — a, 0 <r < 1. (4) 

If the sector is in equilibrium under the loads (1), (3) and (4), then the loads not 
satisfy certain conditions which can be easily obtaineds. 

The solution satisfying the boundary conditions (1)–(4) will be found by the suP ers  

imposition of three self-equilibrating stress systems. 

First stress system 

The first stress system is obtained to suit the boundary condition (1) ,  
the following analytic functions 4) (z) and çÜ (z) (in the notation ofs) 

We consider 

00 
.z (z) 	+ 	{(an 	d„) 	(c„ b„))

n 
 

PT mi. 
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C o { (e'a 	z) 	(eft — 	(eie + 

	

 g 	g l 	
ina lo 

b  2 it 	(e-  — z)
lo 

 (te-la 	z) 	(e--4a 

(Oa  r)  + 2C0 	e-21a — log 
(ie-ia 	 ( rift  — Z2  — eia z2 I 

cso 

	

{(a. 	d„)(b„ + c.)} 

ts=2 

tO 
0-1 	co 

log (e-la  { 
f  2 	7rz 	(e-44 — 

no'  

	

(ieft' 	z) 	(eat 	z) 	z)1 
— log _  — r) 

+ log 
(e-4a 	

— log 
(ieria + z)i 

0 Z 	e-2ia 	e21' 
	 S. 

It 	e-41a 	z4 	e4ia 	z4 
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(5) 

(6) 

The analytic functions (1)(z) and cit  (z) can be obtained by considering loads equal to 
the stresses given by (5) and (6) on the boundary (r = I, 0 <6 < 27) of a unit circular 
disc. Care should be taken to choose appropriate branches of logarithmic functions 
while calculating stresses (Fig. 1). This unit circular disc with such loads on the 
whole of the boundary will be in equilibrium only if condition (2) is satisfied. 

Stresses can be calculated from (1> (z) and cit (z) by using formulas in ref 8. If appropriate 
branches of logarithmic functions as given below and shown in Fig. 1 are taken, 
then it can be verified that on the circular edge of the sector (r -= 1, 	a < U < cf), 
(1)(z) and (z) give the normal and shearing stresses as given in (1). 

4, {

(ea z)  log 
(e-de 	z)} 

(iea 4, {log 	 =. 
—. 2) 	2  

'mI log Je22-±—zi = 
(ea  ± 2) 	3  

ilOg 

 

— 9 
Orig

4.  

(7) 

4 stands for the imaginary part of the complex quantity. 
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FIG. 1. 

On the radial edges 0 = + a, the following normal and shearing stresses are 
from (130(z) and V' (z). 	

obtained 

co 
2 {( -40)}0-±a = 2a0 + E (2 + n) r" ((as  + cl„) cos na 

ra-1  

00 
-T- (c„ 	bn) sin not} + f (1 — n) r" -2  ((as  + dr,) cos na 

fis2 

co 
(c„— b„) sin nal — 	rn -2  {(a„— dn) cos nc (b, + Sin $41)  

/1 3 
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co 
2c o 	(cos n — 1) (1 cos4nc4 r-2 

cc 
4c 

(r2  — ) 	{(3 + 2n) cos 4 (2n + 
taco 

1) 	} ri 

co 

,8c0 (r6 	r4 + r2 	) 	(1 + n) et" 
it 

11-0 
co 

8c 
+ 	(r° — 1.4 ) 	(1 + n) rtin  cos 4 (2n + 3)ix. 

n=e 

cc 
2 {(4) 1 }9.±. 	E (1 — n) rn -2  {(c„ — bn) cos mz ± (a + d,) sin na} 

11.2 

co 
rn -2  {(b, + 4) cos na + (d 	as) sin na) 

n a 2 

co 
nr" {(c,, — b„)cos na ± (a, + dm ) sin na) 

unit 
00 

8c 0  (r 2  —  1)  
(2 + n) tin sin 4 (2n + 1) a 

n=i) 

00 
8c 

± --Q (re --- r4)(1 + n) r" sin 4 (2n + 3) a. 

n—o 

(8) 

(9) 

It can be verified that the loads given by (1), (8) and (9) on the edges of the sector form 
!self-equilibrating system provided the condition (2) is satisfied. The subscript 1 has 
been added to the stresses as they correspond to the first stress system. 

SecOnd stress system 

The 
second stress system is O 

n the radial edges of the 
constructed to suit the following boundary 

sector 

conditions 

on 0 a, 0 < r < 1 
t oe *.= (r) 	{(180)i}ema ; 

	
trO 	f3 (r) 	{(Trehl ass 

	 (1 0) 

(11) 
too fa (r) 	re  0 11 • a  ; 	tro  f4  (r) 	Wadi} ors, 
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We extend the range of the variable r in (10) and (11) to 0 < r  ,„ 
(.1.99)0 	--= 0; 1 < r < oo and (49)0=±. = 0; 	ç , < 

	iesj  " takitis 

(III and thus consider an infinite wedge problem with the boundary eonditio 
and (12) on the radial edges. 	 " 

It may be noted that the loads given by (10) and (i I) on the radial edges Ofth
estitt  

form a self-equilibrating system. 

This wedge problem can be solved using Main transform method°. Stress ecan  s  
expressed in terms of a 1,1-harmonic function U as 	 tt 

u 182U 	82 U 	 a 	au\ = 	 / 	TOO = re.,2 ' 	 aar w) • r r 	r2  (39 

Using Mellin transform, the solution of V/4  U = 0 can be written as: 

{A sin (s —2) 0 + B cos (3 — 2) 0 

+ C sin sO + D cos se} ra-1-2  ds 041 

where the constants A, B, C and D are to be determined with the help of four bun* 

conditions given in (10), (11) and (12). Substituting these constants in (14), Uis knom. 
Stresses may then be determined from (13). 

Finally, 

1 
( .02 27ri  

[

(sl, co  {(s — 2) sin sa sin (s — 2)0 
P  

—(s + 2) sin sO sin (s — 2) a} — 	{s cos sa sin (s -- 2)0 
(s• 

- (s + 2) sin sO cos (s — 2) a} + 
P3 f(s — 2) cos sa cos (S 2) 11  

A2 (s, ce) 

—(s + 2) cos sO cos (s — 2) a} — 
p4 Is sin sa cos (s -- 2)0 

(s + 2) cos sO sin (s — 2) adr -• ds, 	Re (s) > I 

74-i co 

(Irre)2 = 
1 f 	1 

(s 
r  P  

1
, a) 

 {(s — 2) sin set cos (s 2)0 

7-.00 
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s cos sO sin (s — 2) a} —  Pas 
Ai (s, a) 

{cos sa cos (s — 2) 0 • 

P3  
— cos s0 cos (s — 2) a} + 	 {— (s — 2) cos sa sin (s —2)0 

+ s sin sO cos (s — 2) a}+  P4 
 s 

 (sin sa sin (s — 2)0 
A2 (5, a) 

— sirt sO sin (s — 2) a} ] ra ds, 	Re (s) > 1, 
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(1 6) 

1 
(T89)2  = firi [ Pi  
	 — 2) {sin sa sin (s — 2)0 

Pt 
—sin (s— 2) a sin s0} — A.—

1  (s, ) 
-- its cos sa sin (s — 2) 0 

a 

—(s — 2) cos (s — 2) a sin sO) + 	 

P4 
— COS SO COS (.5 — 2) a} 	1 

A2 (SI °:/ 
{s sin sa cos (s — 2) 0 

— (s — 2) cos sO sin (s — 2) ad rest ds, .Re (s) > 1, 

here 

I Ai  (s, a) = 2 {s sin 2a — 2 sin sa cos (s — 2) a} 

A2 (3) CO = — 2 {s sin 2a + 2 cos sa sin (s — 2) a} 

2 
1 cPc= f 

0 

co 

	

. 	2 (sc„ + nb)  
Z, -(s + n) (s + n — 2) 
n -2 

2 

p2= f rt-4 (fel  — fa dr + -0— 
3 
.T .7)  (c J. — b t ) sin a 

0 
00 

— 

	

4. 	2 {(2s + n — 2) c„ — (s — 2) b„} sin na ,  

-----Tr  et  ± n)(5.  + n — 2) 

(17) 
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1 

pa = f rtel (14  f3) dr + (sa—i-.75 (a, + dis) sin a 

9 

CO 

2 (nan  sd„)  
(s + n) (s + n 2)cos net 

fts 2 

co 
8c0 (r2  — 1) 

(2n + n) 0" sin 4 (2n + 1) a 
u=s 

co 
8c 0  — r4  (r 2  — 1) 	(1 + n) r4 ft sin 4 (2n + 3)a, 

new 0 

1 

P 4 = f fl .1.2) eel dr 240  ,  3   (a  + d 
S 	+ 1) I  

0 	
1, cos a 

(2s n  s 2) 
(s + n)(s + n — 2) 

Co 
! 0 0 (r2 —1) 	(1 + n) 0" cos 4 (2n + 3)a 

PI=0 

00 

+ 8c 
- 9  (0 --a 0 + r2  -- 1) 	(1 + n) ro 

ft ,m0 

00 

4c 
- --9 1) 	{(3 + 2n) cos 44:t (2n + 1) — I} r". 

it 
mw 0 

It May be noted that stresses in (15)417) can be easily written as the stun 
sPi  

tric and anti-symmetric stresses. 
lot 

The integrals in (15)417) are not Pffected by the particular choice of 7) 
V = Re (s) > I. The choice of y -= 2 which in turn implies 

s = 2 + it, — oo < t < 00, 
gest°  

is suggested by the fact that the integrals in(15)417) are spl 	
to a .40 1 

It may be noted that the integrals in (15)(17) considered as functions of £sF 

imified 
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18)  have  no singularities for — Co < t < co. This establishes the validity of the 
hoice of y. On putting y =a- 2 and s = 2 + it in (15)-(17), the integrals become real 

e integrals with complex integrands. Although these integrands can be easily sepa- 
ated out into real and imaginary parts but they are too lengthy to be reported here. 
doreover, 	tw the nu rical evaluation of real line integrals with complex iategrands pre- 
eats no diffi:ulty and they can be evaluated with the help of well-known methodslo. 

At r =19 normal and shearing stresses can be easily calculated from (15)(16). It 

buy be noted that these normal and shearing stresses at r = 1 form a self-equilibrating 
hystem of stresses by virtue of construction of the second stress system. 

The third stress system is obtained to suit the following bourtdary conditions on the 
edges of the sector 

Toe  = Tro == 0 	on 	= ± a, Tr, — — ertr)2 	r — 1 	 (19) 
Tro = — (TrO)2 

This third stress system can be determined 	by following either the approach in 
ref. 1 or in ref. 2. 	As pointed out earlier that only one infinite systein of linear 
algebraic 	equations 	is to 	be solved 	in ref. 2 	(one for symmetric 	and 	one for 
anti-symrietric stresses), 	we shall follow the approach given in ref. 2. 	To avoid repeti- 
tion, details in ref. 2 are not being given in the present paper. 	 - 

An auxiliary problem 

Consider a sectorial inclusion (refer ref. 11 for the definition of inclusion) in a sectorial 
annulus. The sectorial annulus is bounded by the circular arcs r =-- r' (r' < 1) and 
r =1 and the radii 0 = a and 0 = rx; 0 = 0 being the line of axial symmetry. The 

inclusion occupies the region bounded by the lines 0 a and the arc r = rt. The origin 
of coordinates is denoted by 0. Let the inclusion in the absence of matrix (sectorial 
annulus) uldergo a displacement (etx, *Say) with respect to the origin at O. The following 

lxindary conditions should hold 

14+ 	= SLX )  V+ — 	801 r=r 	 (20) 

Ttr 	td,7. ± it; 
•• 	- 

Ty, = Tro  -= 0, r = 1; tea  = r,0  = 0, 0 ± 	
(21) 

Where it and v are the displacement components in Cartesian coordinates, Cr, ;81 

are 	

etc. 

re the stresses in polar coordinates and + and — superscripts refer to the quantities 
belonging to inclusion and matrix respectively. 

The solution of this sectorial inclusion problem with boundary conditions (20) and 
(

_ 1  
) has been obtained by the superposition of three stress systems. 

11.sc„.8 
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Tit first system is obtained to suit the condition (20). We consider a circto , Sion in a circular annului by extending the range of 0 in the 
above seeto riaEr  

problem to 0 	0 < 21r. Tar; solution of this circular inclusion probieni llichion  
knowD. Tne fallowing normil and shtearing stresses are obtainpA . ' LS wihn 

{ec99) 1 }0.,±2 	— 281  (1 — r'2) 	2r2  — 4 + 1/r'2   

Or <r t 

(12) 
3. 

(4 — 12r1  + 12r1  r'2 	3r'2  3r12frihosk  

< r 	03)  

{(r ye)) } get, = ± Ai  (4 — 6r2 	1/i'2  + 6/4  r' 2  3r'D sir. Ix, 

0Sr<rs 	(y) 

{ (tto) L} e=±2 = ± A1  (4 — 6r1  + 2/r1  — 3r' 2/r4  + 6e r'2  3r'2) sir. 22 
< r 	1 	(2.5) 

where 

A1  --= pr' 2  (el  s2)/(1 + K), 	— au (si  + 22)/0 + K), 

is the shear modulus of elasticity and K = 3 — 4v for the plane strain and K = v)1 
(1 	v) for the generalized plane stress, v being Poisson ratio. These stresses in (22)- 
(25) form a self-equilibrating system on 0 = + a. 

The second stress system is 
can be easily calculated. 

given by (15)417) where P, = P2 = 0 and P3 and P, 
• 

•••• 

The third stress system is obtained by considering a sector problem with zero loath 
on the radial edges and stresses equal and opposite to those given in (15) and (16) 21  

r = 1. As pointed out earlier for finding the third stress system, the approach piu 
in ref. 2 may be followed. 

It may be noted that although in boundary condition (21), normal and sheal1
22. . 

stresses have been taken to be zero but even if they are non-zero the problem can be 
handled without difficulty. 
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