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Abstract

The sector problem in plane-elastostatics with arbitrary loads on the edges has been studied in th;
paper. The loads on each of the edges separately may not be self-equilibrating but aj] the madl:
together should keep the sector in equilibrium. By superimposition of suitable self equilibrating stress
systems, the problem has been reduced to that of self-equilibrating loads on the circular arc of the
sector.  An auxiliary problem of sectorial inclusion in a sectorial annulus has also been considered,
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1. Introduction

The sector problem in two-dimensional elasticity has been studied by several authors
by taking various types of boundary conditions. A moderate bibliography of sector and
related problems with comments on the methods of solutions can be found in refs. 1 and 2.
We shal] briefly mention the previous relevant works. Inref. 3, Horway and Hanson have
Studied the sector problem with loads on the edges and an approximate solution has
been given by variational methods using self-equilibrating orthogonal polynomials.
By expressing the boundary tractions in terms of normalized clamped beam fu_nctions,
Gopalacharyulu!, has given the analytical solution of the sector problem with zero
loads on the radja] edges and self-equilibrating system of loads on the circular edge.
The final solution in ref. | depends on the solution of two coupled infinite systems of linear
algebraic equations in two sets of infinite unknowns (two for symmetric and two for
anti-symmetric [oadings). Using the method of bi-orthogonality devel_OPE;l by Jhonson
and Little* for solving a semi-infinite strip problem, Rao, Kale and Shimpi? have solved
the sector problem with self-equilibrating loads on the circular ?dge and zero lo:adﬁs on
the radia edges. The final solution in ref. 2 depends on the Gilistion & BRi¥ 1(:“; msn;f
s}’ﬂe;n of linear algebraic equations in complex constants (one system €ac a(:;d Jn,?
WEIC and anti-symmetric case). Recently some mOTe papers e REpoRiaE
Sing the method of bi-orthogonality developed in ref. 4.

In many physical problems of interest the sector problem occurs "3 a?. ?:fgig
Problem with loads on all the three edges. As loads in refs. 1 and 2 are restric .
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to the circular edge of the sector, they are of limited use but are importy
solution point of view. M frog g,

The main theme of the present paper is to superimpose suitabje self-equi;
stress systems which reduce the problem to that of self-equilibrating loag““‘bfatiug
circular edge of the sector for which the solution is known2, Soon g

2. Analysis

Consider a sector in a state of generalized plane stress with Semi-vertex an
origin is taken at the apex and the X-axis along the axis of angular
circular arc is given by r = 1 where (r,8) are the polar coordinates
sector. The boundary conditions have been taken as follows:

gle o, T,
© Sylmetry, T,
In the plane of

On the circular edge of the sector
cQ

1,, = do + 2 (a,cosnl + b,sin n)

n-; = | (l]
1,9 = Co+ 2 (c,cosnl + d,sinnt)

=]

where

d1 _— d1 aﬂd Cl e bl' (1)

This restriction in (2) on the coefficients will be discussed later.

On the radial edges of the sector
99 = J1(r), 1,9 =f3(r); 0 =aq, 0<r< 1 0

tog =S2(r), T,9=/f4(r); 0= —0a O0<r<l. g
If the sector is in equilibrium under the loads (1), (3) and (4), then the loads B
satisfy certain conditions which can be easily obtained?.

The solution satisfying the boundary conditions (1)-(4) will be found by the ¥
imposition of three self-equilibrating stress systems.

First stress system

. conﬁidﬂ
The first stress system is obtained to suit the boundary condition (1). We

the following analytic functions @ (z) and ¥ (z) (in the notation of?®)

QO

® (2) =%£+ z Was + d,) + i(c:,,—-b,,)}-gj

n-
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2 e a, —d,) —i(b, o)l
i 2 2i—n
n=2
=0
— Z{(a + d,)) + i (e, —-b)}:i._ {]og(""_m_z)
19
(ie'® — 2) (% +2) (i
— 1o + 6 (i€ + 2)
g(lf’ = =) g(c’““ z) — log (ie““+z)}
2¢,2 g—2ia eia
T {e—-'l'lc g 24‘ edia Z‘l} .

109

&)

(6)

The analytic functions ® (z) and ¥ (z) can be obtained by considering loads equal to
the stresses given by (5) and (6) on the boundary (r =1, 0<6 < 2n) of 2 unit circular
disc. Care should be taken to choose appropriate branches of logarithmic functions
while calculating stresses (Fig. 1). This unit circular disc with such loads on the

whole of the boundary will be in equilibrium only if condition (2) 15 satisfied.

Stresses can be calculated from ® (z) and ¥ (2) by using formulas in ref 8. If appropriate

branches of logarithmic functions as given below and shown
then it can be verified that on the circular edge of the sector (r= 1,
®(z) and ¥ (2) give the normal and shearing stresses as given in (I).

L {log (em_z)}—m

(e—{a —_ z)

fn {log (:e::“:?)} = ks
n {] (E:ii?)} O
o 3}

I stands for the imaginary part of the compleX quantity.

in Fig. 1 are taken,
—ax< 0 < a),

(7)
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(1,0)

Fig. 1.

: biained
On the radial edges 6 = + @, the following normal and shearing stresses 212
from ®(z) and ¥ (2).

2 {(t99)1}g=4a = 24, + E’ (2 + n) r"{(a, + d,)cos nx

Neum]

¥ (¢, — b,)sin mx} = E (1 — n) -2 {(a” + d,)cos nx

) sin ")

Cn
F (ca— b,)sin na}— 3‘?‘ r*-2 {(a,— d,) cos not (b t

flem 2
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oD
£ 20> osnn—na — costng) (12 4.2
T L - -
=,
+ ¥ > G+2
- n)cos4(2n+1)a__l}r4..
n<o : )
QD
_ 8‘:0 8 __ 4 g __ n
O YT
flm=()
o0
8¢
+—7'r"°(r3—r“)2(1 + n)r’*cos 4 (2n + 3. (8)
n=9
oC
2{(t,0)1}g=1a = 2 (1 —n) r**{(c, — b,)cos mx + (a, + d,)sin na}
oD
+ X 2 {(b, + c,)cos na + (d, — a,) sin nat}
=2
oD
+ X nr*{(c, — b,)cos na + (a, + d,)sin na}
u=1
v @
2
* - (rn D z 2+ nr"sind(2n + 1)«
n=g0
Q0
+ %(ﬁ_ﬂ)Z(l + n)r"sind (2n + 3) . (9)
Nem{}

ltcan be verified that the loads given by (1), (8) and (9) on the edges of the sector form
t #lf-equilibrating system provided the condition (2) is satisfied. The subscript 1 has
" added to the stresses as they correspond to the first stress system.

:S’econd stress system

ﬂethsecond Stress  system is constructed to suit the following boundary conditions
© Tadial edges of the sector
WK~ {Coddoma s 1o =2 () — (o }oms
and _
Mi=—a, 0gr<

L =/ (r) o {(790)1}0"-1: s Trg = Ja (r) — {(Tra)l}ﬂ-“"

(10)

(11)
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We extend the range of the variable r in (10) and (11) to &y
< o0

by tar-
(tgg)gesa =0; 1 <r< oo and (7,4)gesqs =0; 1| o o Ytakmg
and thus consider an infinite wedge problem with the boyn i o (I}
and (12) on the radial edges. Pnditions (1
It may be noted that the loads given by (10) and (11) on the radial eg
form a self-equilibrating system. 8es Ormt%
This wedge problem can be solved using Mellin transform methogs St
expressed in terms of a bi-harmonic function U as P eSS e
11U, 1&U _0*U 3 718U
et led G =B we-3(Yy).
Using Mellin transform, the solution of y* U = 0 can be written as:
; V+io0
U=rm f {ASiH(S—2)9+BCOS(S‘-2)3
Y—tc0
4+ Csinsd + Dcos s} r*+2ds (1

where the constants 4, B, C and D are to be determined with the help of four boudn
conditions given in (10), (11) and (12). Substituting these constants in (14), U is knoww
Stresses may then be determined from (13).

Fmally,
Y4ic0
(7 - f [ 55 {(s — 2)sin sasin (s — 2) 6
WA P A, (s, )
Y—ico
— (s + 2)sinsf sin(s — 2) «} it {s cos sasim (s — )¢
Al (S: !Z)
- i — Py —2 nc:m:;a:::cos(5"zlﬂ
(s + 2)sins@cos (s —2)a} + A (s, %) {(s—2)
= — = Pl ‘nsacos(.i""z)a
(s + 2)cos s6 cos (s — 2) a} Eira) {ssi
(¢
~ (s + 2)cos 58 sin (s — 2) a:}] r+ds, Re(s)>]
Y4400 |
(T:0) i f [m-l:&-) {(s — 2)sin sz cOS (s —2)

T—40
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— scos sf sin (s — 2) a} Pas {cos swcos (s — 2)0
Al (S: d) = e )
2 Py .
—cossficos (s —2)a} + 2 G D) {— (s — 2)cos sz sin (s — 2) 8
. P, : ; -
+ ssinsf cos (s — 2) o} + A (;’ 2 {sin sa sin (s — 2) 8
— sin 58 sin (s — 2) a:}] r= ds, Re(s) > 1, (16)
V40
_ f [ Pi_ (s — 2) {sin susin (s — 2)0
(Tag)a o 27 Al (5: G’.)
Y—400
— sin(s—2) asin s} — - P {scos sxsin (s —2)8
A1 (S: D:)
_ Pa(s — 2
— (s —2)cos(s —2)asinsd} + - 1(2 G, a)) {cos sacos (s —2) 0
— cos s8 cos (s — 2) «} Fe {ssin saxcos (s —2)6
AE (S: a)
— (s — 2)cos 50 sin (s — 2)a}]f“d% Lot 2ida (17)

here

| Ay (s, @) = 2 {ssin 22 — 2sin sz cos (s — 2) a}

Ay (s,0) = — 2 {ssin 20 + 2 cos susin (s — 2)a}

1 l .
fm [ s i = gy — e
0

o0

2 (sc, + nb,)
—z GEmGTn—2) cos na ,

1

3 .
P, — f AL +S)(cl—-b1)sma

o0

2{(2s + n — 2) ¢y — (s _.2)..1"‘-}5'11 ne ,
+Z & S Gan—  °

=2
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1
1
o= [ P~ 1D dr + oy @ + d)sina
0

oo

Z(Mn _Sdn) {I:OS
- GImG+n—2" "

b4

oD
L 8o (’: —1) z (21 + n) ¥ sin 4 21 + 1)a
u=0
(= o]
+ ?_i_o iz —1) 2 (I +n)ri"sind (2n + 3)a,
Ne=()

1
2 .
Po= [ (it fardr =2 — (@ + dcos
0

o0

2{(s —2)a, + 25+ n—2)d,}
_2 +mE+n—2) R

v=2

- EE o : &

v &)
_,.8_"3,4(,.2_1)2 (1 + n)r*"cos4(2n + 3)o o
n=0

T

o0

o) S e

n=0

o0
— d'{':f (r2 —1) Z {(3 + 2n)cos 4a (2n + 1) — 1} "
n=0 :
P " sum Ofﬁw
It may be noted that stresses in (15)=(17) can be easily written & the
tric and anti-symmetric stresses.
fosé:
. 1cé Of b &
The integrals in (15)—(17) are not »ffected by the particular choic
y=Re(s) > 1. The choice of y=2 which in turn implies i
S=2+ita "'00(:{00, cﬁ“

8l
7) are simplified 1 ¢ v

is suggested by the fact that the integrals in (15)—~( ctions of 55

It may be noted that the integrals in (15)-(17) considered as fun
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{8) have no singular-ities for —oco < t < o0, _'I-‘his establishes
noice of y. On putting y = 2and s =2+ it in (15)-(17), the integrals become real
. o integrals with comp}cx n:ltcgrands. Although these integrands can be easily sepa-
ted out 11to real and 1m1g1nar§r parts but they are too lengthy to be reported here
oreover, the numerical evaluation of real line integrals with complex iategrands pre-:
ents no difficulty and they can be evaluated with the help of well-known metheds?e,

the validity of the

At r =1, normal and shearing stresses can be easily calculated from (15)(16). It

y be noted that thesc normal and shearing stresses at r = 1 form a self-equilibrating
Fy:tem of stresses by virtue of construction of the second stress system,

The third stress system is obtained to suit the following boundary conditions on the

edges of the sector
— (Trr)2
= I
- (r,e)z} ' (19)

Tgs — T = 0 on = i A, T,

Trﬂ

This third stress system can be determined by following either the approach in
ref. 1 or in ref, 2. As pointed out earlier that only one infinite system of. linear
algebraic equations is to be solved in ref. 2 (one for symmetric and one for
anti-symmiztric  stresses), we shall follow the approach given in ref. 2. To avoid repeti-
tion, details in ref. 2 are not bzing given in the present paper.

An auxiliary problem

Consider a sectorial inclusion (refer ref. 11 for the definition of inclusion) in a sectorial
annulus. The sectorial annulus is bounded by the circular arcs r=r'(r'< 1) and
r=1 and the radii § =« and 8 = — «; 8 = 0 being the line of axial symmetry. Tl}e
inclusion occu;)ies the region bounded by the lines § + « and the arcr = r'. ‘ The orlg_m
of coordinates is denoted by 0. Let the inclusion in the absence of matrix (SECIOI:IH]
annujus) uadergo a displacement (g x, €2y) With respect to the origin at 0. The following

boundary conditions should hold

u+-u-——'——81x, vt —uT = —“BzJ’}r: r | ‘(20)
T, + it} =15 + it

_ e ) (21)

Trr='r,-g=0, r = l; T93=Tr9=01 6 + «

in Cartesian coordinates, %, o, etc.,

Where u i onents "
and v are the displacement comp _ superscripts refer 0 the quantities

are the stresses in polar coordinates and + and
belonging to inclusion and matrix respectively.

roblem with boundary conditions (20) and

The solutio : 1 inclusion
ion of this sectorial incl P hrce Stress Systems.

(1) has been obtained by the superposition of 1

IS8
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Th= first system is obtained to suit the condition (20). We ¢4

. , ULY : |
sion in a circular annulus by cxtending the range of 0 in the abm::er 4 Cireyly, N
problem to 0<< 0 < 2m. Ta> solution of this circular jncjys Orfal inchl!im;

10N probe -
ned on § — ii‘!ﬂ

{(tg9)i}g=2a = — 2BL (1 —1?) — A, (12r° — 4 + 1/r'2 — 13,

known't., Tae following normil and shzaring stresses are obta;

W
UL rg fir !)tmu(ﬂ
(oddemsn =284+ U+ A= 128 4 2P g,
F<rg ‘;)
{(t,0)1}g-2a = T 4, (4 — 6r* — 1/r'2 + 6r* r' — 3r'%sin 21,

| 0<r<y o

{(te)i}g=tn = * Ay (4 —6r* + 2/r* — 3r2r' + 6r°r'2 — 3r2)5in 2,
F<rsi W

where

A= —urt(e —ed/(1 + K), By= —p(ei + e)/(l +K),

u is the shear modulus of elasticity and K = 3 — 4y for the plane strain and K = (3-1)

(1 + v) for the generalized plane stress, v being Poisson ratio. These stresses in (2
(25) form a self-equilibrating system on & = + a.

The second stress system is given by (15)—-(17) where P, = Py = 0 and P, and P,
can be easily calculated. - I

e

The third stress system is obtained by considering a sector problem with zero loa6s
on the radial edges and stresses equal and opposite to those given in (15) and (16) &

r=1. As pointed out earlicr for finding the third stress system, the approach g
in ref. 2 may be followed.

14
[t may be noted that although in boundary condition (21), normal and shes®

!
stresses have been taken to be z:ro but even if they arc non-zCro the problem ¢
handled without difficulty.
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