
Axisymmetric bending of uniformly stressed annular plates with variable 
rigidity 

A. DE AND S. BASULI* 
Depar tment of Mathematics, M.B.B. College, P.O. Wing, Agaitala, Tripura 

Received on August 26, 1977 ; Revised on Janua r y 16, 1978 ; Re-revised on February 18, 1978 

Abstract 

In this paper, the problem of axisymmetrie bending of uniformly staessed annular plates with tigiditY 
varying as the nth power of the radial co-ordinate is discussed. Exact solutions are obtained in terms 
of Bessel's and Lommel's functions for a general type of loading. The corresponding solutions are 
deduced for two cases of loading, namely (i) line loading at the inner edge and iii) uniformly distri- 
buted load over the entire annular plate. In the case of line loading a numerical example is given 
for annuals with a hole size equal to 	and rigidity varying as r4• 

Key words : Axisymmet r ic bending, variable rigidity, flexural rigidity, 13essel's function, Lornmers 
function. 

1. Introduction 

The problem of symmetrical bending of circular plates of variable thickness was first 
discussed by H. Holzer'. Since then many authors have investigated the problem, 
the outstanding of which are the investigation of 0. Pichler 2  and R. G. Olson3. Olson4  

also solved the problem of unsymmetrical bending of circular plates. H. D. Conwar 

has solved the axially symmetric plates with linearly varying thickness. Basuli 7  solved 

the bending of uniformly compressed circular plates of variable thickness. Ghoshs 
solved the problem of the bending of plates under compressive forces in the middle plane 
of the plate, assuming the flexural rigidity varying as the square of the distance from 
the centre. The governing differential equation is reduced to second order homogeneous 
equation of slopes. 

The object of this paper is to extend Ghosh's work s  for plates with rigidity varying as a  

ny Power of the distance from the centre. The solution is obtained in closed form. 

2. Theor y  

Fig. represents an element of the deflection surface bounded by two 
concentric 

cilindrical surfaces of radii r and r + dr 
and two radial planes including a small angle 

ttli at the centre of the plate. 
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Flo. I. An element of deflection surface bounded by two Concentric cylindrical surfaces and 

two radial plates. 

Considering equilibrium of the element and taking moments' [Timoshenko, 
Woinowsky—Krieger, 1959], we have, 

( 	BC, 
Mc + —it. • dr) (r + dr)d0 Al, • rdt4 Medrd0 + (Q, + TO)rdedr =0 

Neglecting higher order quantities, 

dM, 
M,+ —dr • r — Me + rQ, + rTO = 0 

Now using expressions for bending moments M„ Me given by, 

mr=D[rt +41 
r 

M0= Dly ±dr J 

• • 

(a) 

and taking into account the flexural rigidity 
reduces to 

the equatio0 (I)  
D is a variable quantitY, 

(3) 
D (2 ± 	fit/r  eir. ± a + TO = Qr 
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3, Problem and its solutions 

Let us consider an annular plate whose rigidity D varies as the nth power of the 
distance from the centre 

U., 

D= Dorn 	
(4) 

Substituting (4) in (3), we get after simplification 

d 2 	, 
r 2 	+ ( ii + dr 2 

ii 	.Qr 
tal-2  — (5) 

Let us assume, 

s Qr  Pm'', 	= a real constant) 
	 • 	

(6) 

Then equation (5) reduces to 

d2 	 di) 	 ,‘ 	T 	1 1 -Pe's  2  r 2 	+ 1) r d—r + 0[(na - 1 ) + dr2 	 Do 

Transforming the variable 4) to the new variable ck i  by the substitution 
(1)  = r-s 1 2 (kb  

then substituting 	= z in the transformed equation and lastly 
....•.. 

2 \i/y-,  _ - 
n _ 2 	yo  z — t, the equation transforms to 

,,d2  cp, 	di), ta. --z 4- t -_, ± (fr is [j 2 _ v2] — Rt1-2 On 4-1)101-2) 
dt 2 	dt 

where 

v2 = (n — 20) 2  ±  4 0 — an 
' (nk 2) 

(n - 2)2  

	

( 2 )2  (In 	12+1 	n+i)( +1)10-) ( T y11-2)-1 
R =_ - - - 	P  ._ 	..1.% 	 (n k 2)1 

D o  n- 2 	 ri i,) 

(7) 

(8) 

(9) 

The complementary function and the particular integral of the equation (8) are given 
by 

C.F. I= A Y (1) 	BY(t) 
RS-2(m+1)1( n -2), p 

Where 4, B are arbitrary constants, J, (t), 1', (t) are Bessers function of first and s  

ond kind of order v and S is the Lome] function*. 

* 
[equation (69) vide ref, 10, p. 40). 



122 A. DE AND S. BASULI 

Thus the complete solution of (7) is given by 
_ 

2 	T 1 ,112 	 2 # =_- r-. 12  [AJ,(--, -, V -- - r ) ± BY,(----- VI I  n — h 	Do 	 n  ___ 2 	-,„.__ 
Do 

RS-2(m+.1) In-7, — 2 	
r ( 2 	T i-nr2A 

U2 	D o  

CASE 1. Lateral load distributed uniformly round the radius of the hole, in ner  b 
clamped and outer boundary clamped and supported. 	 ozoidIty  

By outer boundary clamped and supported, we mean a.) = 0 and 	o aft.?  
and the inner boundary clamped means .  that the slope is zero there but not fi at  
deflection. This can be achieved by fixing 	inner boundary with the load so th at  
the inner boundary may have downward movement, along with load but the slope re m')  
ing zero there. This boundary condition was used by Conway (1948) and since then 
by other authors. 

Let the load P be distributed uniformly round the radius of the hole, 

a".  Qt

P 	P 
= 2.r = 2n r-

Substituting in = 	1, 	P-1  = 
2 it 

in the general solution (10) we get 

= r _nr2[ 	(a_2_ 	elle 14_11 12 ) B y  _ 	2 	TT r,....„,2) 

	

a — 2 	D o 	 n  2
\ 

Do  

•— 2 
2 vDo r

i-nr2)] (nk  2) RiSo, P (
n — 

where 

Do  
P  

— D 0 (n — 2) 
(nk 2) 

and where A 1, B1 are arbitrary constants. 

of sand  
For n = 2 the equation (7) reduces to homogeneous differential equation  

Orders. 
(14) 

Boundary conditions are 4 = 0 at y = a, and y = b 
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Equation (12) and (14) then give 

[ Y„ 	\IT on  
n-2 `— a -  n)SEt 

D 	 n — 2 V 2  i- b1-41 ) 

Do  

123 

111= 

_ yv 	0\/ T biant2) s  ( 2 2 
n — 2 	Do 	,__ 2 

_ 0 D 	I 
T at-11121 

1\11; b1a"2) 
D 0  

y 	 2 	as 	oio 	( 2 J 	 a-) - 	I y "•••• n-2 	
t

D o 	n-2 

2 —J, 
—2 

T mann) 
D Yr(

2  
n------4— 2 

T 
a -

412) •   Do 
('5) 

R1  [" 	 ai-n12) So, s• (7=
2 2 \go b1-419 

( 2 
kn  

( 2 	T bi_nt2) y  el_ 	T 
n — 2 Do  

Considering equation (12) and 

ckfr 	(1) D(— 
dr 	r 

we can find 

D. 	
2 lir' 1-J112 ) E"12-1 (a — n12) { A lt  4(n=2 170 r  

2 t\a/ se")} 
2 	/7 	

tn  — 2 Do   V Do 

T .,,a) 
+ B  ffol Aijv  kn=2 	ra- 

e‘i T 	, 	2 t y;  ( 2 	/7 
n-2 VD°  

( 2 Jr_ ri-31)1] R;  SO, v 	v Do  and 

 

(17) 

Ur - Dr a f_11)  4_01 
L. dr 

••• 
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= Do  [rn12-1  (i __. if) A i. I 	
2 

2 n 2 Nib; "12) 

2 ( 2 	T 	ni) 
--•.R1S40, P 

Bi  Yr 	Do 
ria 

 75;  eat: I VT  

A 	{ I 	.4 
v 1J0  0-" 12) + 13 1 y:(,2  

n 2 v ear) 

R1S;: t 	 r1an12)}] 
n — 2 	Do   

To get the deflection we know that 

do) 
= dr 

On integrating (12), we get 

2 	 T 
n 	2 r" 2  [At { (v 	.1) 	

2 	1.1_4,12) 
 Do  

( 2 	iT 1_1212\ 	
( 2 	112) x s_1, 

Pei  kn.---r2 	b:, r 	4P-1  kns--72.  'V  D0  r  ) 

2  x so,p( 	117 1,12 	 2 vy• n  -2 	zro  r 	)1 + 	t( v 1 ) Y, 	5 r 

( 2 	T r i_1112) X S-1, 	
Ni Do V 

fer 

Yr' (n---12. 	10  

x so, , (n—r22 	ra-n 12)}] ± K1  (constant) 	 (20) 

Using the boundary condition co = 0 at r = a we get K3  and so co is determined:, 

The deflection will be maximum at r == b and the maximum deflection can be °WO 
front the expression of co putting r =--- b. 

Numerical calculation 

The value of al at different radial distances is calculated gable 0 taking 

1 a-, a = 16. NTID. = ' 
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fable I 

Lateral deflection along a radius. 

4 	6 	8 	10 	12 	14 	16 

Pd 
106  °I Trio 

4.578 	2.931 	1'452 	•580 	.232 	.048 	•000 

CASE IL Uniformly distributed load. Inner boundary clamped and outer boundary 
damped and supported. 

Let the load be uniformly distributed with intensity q, then 

7.  

n 	1 	 qb 2  
qv, = 2-Er 	- 2 mrdr = 9-. — b2) = q-

2 
• r 	2  r =-- P„„r 1  Pm2 r-1  

2r 

(21) 
where 

b2  p
si 

ge. PM2 	
q 

= 2  2 
(22) 

In this case complementary function will be the same as in the previous case. The 
particular integral will have two components Corresponding to two components of Qr. 

The solution will be of the form 

0N/
1-W2)  

if?". 
( 2 I 2 	 1.12) + B2 Y 2 I` re-" [A24 kn—  47 2 V-15° 

	

'2 	Te 

	

+ xi So, P kn 
 — 	2 N/75; 

r1-012)] 

(23) 

i2 	T 
S-410s-2),A n  2 iv Do 

where 

R; 	qb 1 	i\1D0  Do  (n 
 

R= 	1 2 )(1$ 2)1(11-2)(D oraoms-2)  
2D. ire. 2 	Tr) 

The boundarY 
conditions are = 0 when r = a and r = b 

(24) 

(25) 
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Considering the equation (23) and using the boundary condition
s  Qs) and  

we get 

	

(2_ 	„ \ 
YP  lit ..---- '2  V 411; 	 al-  /2) — C;  	 Cl 	

/7 
ki— 2 V 75 C; 	 0  bl-M2 ) 42  — 	 -ea  

Jr 

 (

2 
— 

iNI T ai_ni2) yp ( 2 id T bi- .12) 
kn 2 	Do 	/ 	tz — 2 	Do 

 Yp fp (W12 Nril: 1"12) (n--; Viso  

C J, (n 2 2 NI—DT 0 bt_n12) e" / 
`' 2

j 
‘11  - 2 	Do  

2 	ar al_s,2)  
B2 — 	  

l 
kn — 2 V Do 

	2) yv 	 \if°. Ira) 

2 	T 	 1 	--T j _____. 	____ b' -'' 1) y i, (_11.." . 4 _... alai) 
' Th  .' ( 	

bl - 

	

ii — 2 VD O 	n — 2 De  
01  

where 

C;= SO)  (n-Li Nalo.  atent0 — R:: 45-0(n-2),v(7-2  2 	a112) 

I2 	T 
CI;= S' 	2 V

/ 
 :cc Mani') R; S- 4 ,0,- 2),„(r 2  — 2  V2-; ) 

Substituting the value of A2 and B2 from (26) and (27) in the equation (23) ani 

using (24), (28) and (29) we can find 0. Thus 4  is determined. 

To get the deflection co we know that 

dco 
= 37: • 

• 
Hence 

dco 	 / 
ra"  [A z4  knar--2 W. 

2 
+ R; SOP P kin 2 VDo 

2 j7.  r1-n12) B2 )!, UT:72 	Do 

2 ft 'Pa)] 
r1-1112)—,R; S-41(11-2),F (c 	D° 	00) 

Integrating the equation (30) we get theexpression for o.). The boundarY 0699 co , 

n..nn 	Substituti n g 
_ 	_ 	 Ow is co = u at r = a and this determines the constant o! miegi a, Lawn . 

value in the relevant equation, to is determined. 
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The maximum deflection is obtained by putting r = b. 
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5. Nomenclature 

a 	= radius of the plate 

= radius of the inner boundary 

= thickness of the plate at a distance y from the centre 

Eh3  
=-- flexural rigidity of the plate = 	 

12 (1— 6) = 

= Young's modulus 

a 	= Poisson's ratio 

M„ Aio  = bending moments per unit length of the section perpendicular to the radius 
and tangent. 

do) 0 = slope at a distance r =.- 
dr 

= shearing force per unit length acting normally to the middle surface. 

---- displacement at a distance r 

r- uniform pressure per unit length of the perimeter in the middle plane of 
the plate. 
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