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Abstract

In this paper, the prcblem of axisymmetric bending of uniformly stressed annular pletes with ) igidigy
varyiog s the nth power of the radial co-ordinate is discussed. Exact solutions are obtained in terms
of Bessel’s and Lommel’s functions for a general type of loading. The corresponding solutions are
deduced for two cases of loading, namely (i) line loading at the inner edge and (ii) uniformly distri-
buted load over the entire annular plzte. In the case of line loading a numerical example is given
for annuals with a hole size equal to 4+ and rigidity varying as rs.

?e" words : Axisymmetric bending, varioble rigidity, flexural rigidity, Bessel’s function, Lommel’s
unctjon.

I. Introduction

The problem of symmetrical bending of circular plates of variable thickness was first
discussed by H. Holzer!. Since then many authors have investigated the problem,
the outstanding of which are the investigation of O. Pichler? and R. G. Olsor®. Olson?
also solved the problem of unsymmetrical bending of circular plates. H. D. Cc_)nwa)'“
has solved the axially symmetric plates with linearly varying thickness. Basuli’ solved

the bending of uniformly compressed circular plates of variable thickness. Ghosh?®

Soived the problem of the bending of plates under compressive forces in the middle plane
f the distance from

of the plate, assuming the flexural rigidity varying as the square O us
the centre. The governing differential equation is reduced to second order homqgeneo

¢Quation of slope®.

s work® for plates with rigidity varying
obtained llﬂ closed form.

asThe object of this paper is to extend Ghosh’ or P
40 power of the distance from the centre. The solution is

2. Theory

. - tr.c
Flg.' | represents an element of the deflection surface bounded > twosnizll:cea?lgiﬂ
Cylindrica) surfaces of radii 7 and r + dr and two radial planes including 2

A the centre of the plate.
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Fig. 1. An element of deflection surface bounded by two Concentric cylindrical surfaces aad

Considering equilibrium of the element and taking moments” [Timoshenko,
Woinowsky-Krieger, 1959], we have,

(Mr + %r . d!') (r + dr)dﬂ _Mr . rd@ ""Mﬂdrd(l ¥ (Qr+ Tgb)l’df’df=0

Neglecting higher order quantities,

dM,

M, + dr 'r—Mg"l‘rQr‘l'rTq')mO “

Now using expressions for bending moments M,, My given by,
_ nldé ¢ | ' '
M, =p[% +o?] 0

M9=D[g-’- +a§?—]

and taking Into account the flexural rigidity D is a variablc quantity,
reduces to

24 (& +8)+ L& o) rrom 0

the n::fillﬁaﬁdI 0

t)
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3. Problem and its solutions

;Let ys consider an annular plate whose rigidity D

varies
:distance from the centre ° 8 the nth power of the

i.,
p="ov @
Substituting (4) in (3), we get after simplification
;AP dt;b [ T 1 — 0
1)r <= — : : _Xr
ot DrE o] (o —1)+ 5 r___g]_ 5 (5)

Let us assume,

= Qr == P..rm, (Pm = 4 real ConStant) . (6)

Then equation (5) reduces to

d? do Tr 1 —Pr™" 2
r2F+(H+I)!‘EF+¢[(na'—l)+at--"___.]=—-—Du (7)

Transforming the variable ¢ to the new variable ¢, by the substitution
¢ = r—"Z ¢19

then substituting r~"'2 = 7z in the transformed equation and las\ly

o gy Tl

2 T

"5 o/ — Z =1, the cquation transforms to
L1
2 ¢' d¢) ' r
1 ). -2 (m 1)) (P-2)
dﬂ + ¢y [t2 — v¥] = Re1-2m+DI (8)

where

_(n—=202+4(1 —
(n — 2)?

R~ _ {’2( 2 )2 (m +1)1{n—2)+1 (l)mrl"n_ﬁ-l(na; )
D n—2 Du

the particular integral of the equation (8) are given

o%)
(n3% 2) 9)

The ¢Omplementary function and

by
CF.=47, (t) + BY, (¢)
P = RS_y(mtsyiin~2), » (1)
Where A, B are arbitrar y constants, Jy (1) Y, (1) are Bessel’s function of first and

*econd kind of order v and S is the Lomel function®.

k >
[eauation (g9, vide tef, 10, p, 40].
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Thus the complete solution of (7) is given by

i 2 e 2 =
¢=I“ L[AJ’(?I—Z \/‘-[—)—;]rl U)"‘Byy(n""'_“_z BT__rl-llz)

0
) p—
+ RS-2(m+1)in-2, » (H = 2 \/’g_n rl"’”z)]

CASE 1. Lateral load distributed uniformly round the redius of the hole in
clamped and outer boundary clamped and supported. > Er bongy,

(1o

By outer boundary clamped and supported, we mean @ =0 ang o gt
and the inner boundary clamped means that the slope is zero there byt m:=n
deflection. This can be achieved by fixing the inner boundsry with the loadmﬁ
the inner boundary may have downward movement, along with load but the slope remap.
ing zero there. This boundary condition was used by Conway (1948) and sipce e

by other authors.

Let the load P be distributed uniformly round the radius of the hole,

: P
)

— -1

o Q= 2ar  2m
P

Substituting m= —1, P, = o in the general solution (10) we get
omroan(dy T rm) (s
— RS, , (n = ; '\/%: ,1_u;2)] (n 2) (1
TNhere
P /5 o
R, (nx2)

~ nD,(n—2)

and where A,, B; are arbitrary constants.

; . -n of $¢¢
For n =2 the equation (7) reduces to homogencous differential equitior

order®,
(4

Boundary conditions are ¢ =0 at y=ga,and y=10
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Equation (12) and (14) then give
o R1 \/_.., at—"? ) Sﬂ, v \/ I bl-“'z
_ \/__' bl-m) Sos » ( -Z..al—ﬂ!z)]
n — 2
= T ufz) Y, T al-wz)
Jl’ (n — 2 '\/ n — 2 Du
(15)
2 T l_m T 1-ﬂta
R 5 (2 b’ ) Sov» n-zx/ Y
; 2 _nsa) ( s
" (""_2 ——bl Sos » n—2 '\/ha
— ____..___________________
Bl J ( 2 J al-nfz) ( \/T b1_n;1
» — ——
J ( 2 J T bl—ﬂfz) Y ( 5 ;\/q al_nlg)
- —~ 2 D, n— D
" : ” (16)

Considering equation (12) and

M,=D d¢+a»—-)

W can find
2 T i )
Mr == D [ nfo_1 (O' nlz){ 2 Dn .
1-n/2 }
+B Y ( 2 \/_._. rl_m‘z) R]Su, \/ r
P
oy rl—"."!
: 7 e ar (2 o
(17
-——RaS" /\/_ Pl 8/ } r
et n—-2
and

Mv=-=n[ a ¢ §
o-df' +r
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= I [,.nfa—l(l -5 { ] ( ’\/z B

0 AJ — ) rl :2)

S~ rl-mi2} . 2 Iy .
M ( —~2 '\/ ' RySe, » n— 2 \/'bz ’I*‘lz)}

0

“—JJ'_ {A J;l d'—-" rl‘"'2)+B Yr( 2 T

H et 2 1 7 }] = 2 V[";)" rl-'u)
- — l-ﬂfz

RISO v n _ 2 J r }

To get the deflection we know that

(I

dw
¢ dr - "
On integrating (12), we get
W= " irl"‘"lz [ {(V - 1)J, ( '\/.._.. rl-ﬂlz .
n-— Ph
X S_lr ¥—1 H i D ,J'_' ri-n2 —J y-3 n = ’J'——- !’1_"!
X Sn'p J-——- rl-—"fl } + B {(v 2 J_ rl-’i!
S (-2 AT ) = 1 (2 \/_.. )
X So, » ,\/ il e } + K, (constant) @

Using the boundary condition w =0 at r = g we get K; and so @ is dctcrmlﬂ’d'

t
The deflection will be maximum at r = b and the maximum deflection can be ob
from the expression of w putting r = b.

Numerical calculation

The value of o at different radial distances is calculated (Table ) taking

1 T o1
ﬂ—-4,0'—§, J.B:_i’ a=16.
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rable 1
Lateral deflection along a radius.

e ——

I 4 6 g 0 1 N y

Pad* _ _ '
10‘&)/-—5—- 4578 2-931 1-452 580 272 R .

CASE IL. Uniformly distributed load. Inner boundary clamped and outer boundary
camped and supported.

Let the load be uniformly distributed with intensity g, then

1 2
Qr=2'—:a, f q - 2nrdr=g-;(r2 —l;u"i):g-2 ro— sz’_,,.- = Py, rt + P,
- (21)
where
gq b*
Pay =3, Puy= — - (22)
. 1,hi5 case complementary function will be the same as in the previous case. The
Rrticular integra]l will have two components corresponding to Iwo components of Q.
The solution will be of the form
2 T" .
02 _m e r1-n.2)
¢ = [ Ay, (" 'JD,, pl '3)+BqY,, —,
2 _]: 1..112)]
+ -Rl Sﬂ, *\)1 — ) «-—- !'1'”'") -—.R1 S—41in— 2]”(}1 _ 2 o\/Du 4
(23)
Where
R} =__95 D,
Di(n—2) N T (24)
R =_9 (v 2)Hn-z) 7 D \ (#-8)2{n—2)
2Dy \n — 2) (7 )
(25)

b gt
PUndary Conditions are ¢ = 0 when r =4 and r = b
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Considering the equation (23) and using the boundary conditiong
we get (25) and%l‘l

(:'2 Yr ;: \/-—. ar- "12) C Y (n > \/_]:_ bl-.nfz)
Az = -
(2 \/._ )1, (2, AL b :

H — \/_ bl-.nf.!) (n = 2 \/__, al-nu,

By = = SN, o N
2 ;i 2 T (I
B A -ng i il
J*'(n_z D, )Y"(n—z '\/Do a4 ;2)
2 T 2 T
N £ . bl‘"”) p( z 1_,,,)
n—2 \/Du ¥ n—2 Du 4
where

4 r 2 ? r 2 o
Cl = 'Rl SU, Y ( J—*-—' al-ﬂfﬂ) _'R:.! S‘_dl(ﬂ_z};p p— -—!'-.L al-'llz) lﬁl‘
- 3 2 Du

Ci =R Su,»(; J—— 5e2) = R: S-siwemo (5 Af2- )

Substituting the value of A, and B, from (26) and (27) in the equation (2} ué
using (24), (28) and (29) we can find ¢. Thus ¢ is determined.

To get the deflection w we know that

dw
=i o 4
Hence
d 2 z l—’f’)
d‘:?_ — A J _2 ,\/ rl-nfz + B,Y, (;z__—é ’\/Du r
rl...l’!)]
+ Ry 8y, 5 \/ — rl-"'2 —Rn S-mrzl,v(,, P ) 5
o0
undary €7
Integrating the equation (30) we get the expression for @. ™ Substit {uting

is @ =0 at r =g and this determines the constant of integration-
value in the relevant equation, o is determined.
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The mAXimum deflection is obtained by putting r = p,

4 Acknowledgements
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the paper.

improvement of

s, Nomenclature

a = radius of the plate
b = radius of the mner boundary
A = thickness of the plate at a distance y from the centre
D = flexural rigidity of the plate = i = D"
12 (1 — 6%)
E = Young’s modulus
¢ = Poisson’s ratio

M., My = bending moments per unit length of the section perpendicular to the radius
and tangent.

. dw
9 = slope at a distance r = —- o
0 = shearing force per unit length acting normally to the middls surface.
- = displacement at a distance 7
3 = uniform pressure per unit length of the perimeter in the middle plane of
the plate.
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