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ABSTRA.CT 

The effectiveness of hyperbolic trigonometric series in rectangular Cartesian 
co-ordinates for analysing problems with non-rectangular but rectilinear domains 
is brought out in the present work. Three typical examples simply supported 
triangular, rhombic and parallelograrnmic plates under uniform pressure are con- 
sidered and elegant solutions presented. Fourier expansion, simple collocation and 
least square collocation techniques are followed for the satisfaction of the boundary 
conditions. Numerical results for the three examples are obtained for a range of 
skew angles and side ratios. The convergence of important parameters like maximum 
deflection and maximam moments with increasing order of approximation is studied. 
The results show that the tnethod is capable of providing satisfactory results with 
limited effort in all the cases. 

Key words: Solid mechanics, statics, rectilinear domains, arbitrary plates, bending. 

1. INTRODUc14 1014 

Series solutions for the Laplace and the biharrnonic equations can be 
written down in various special coordinate systems. Hence there is a 
natural tendency to match the coordinate system to the geometry of a 
domain [1], [2], [3]. This is not always the most satisfactory procedure. 
The simple polar coordinates and rectangular Cartesian coordinates are 
often far superior in application to arbitrary shapes than coordinates spe- 
cialised to the shape. For example, the use of oblique coordinates for 
parallelogrammfc shapes appears natural. However, Silberstein [3] found 
that, applying oblique coordinates and ckveloping a series solution " • • • - 
was quite a lengthy process, yet the accuracy achieved was sufficient to estimate 
deflections only ; no significant results on bending moments could be obtained 
using the resulting solution." On the other hand the application of rect- 
angular Cartesian coordinates can often turn out to be effective and superior. 
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It is the purpose of this paper to demonstrate this useful fact with a few 
examples in the analysis of thin plate flexure. For simplicity, the analysis 
is presented for simple supports and uniform transverse pressure. Triangular, 
rhombic, and parallelogramrnic plate configurations are investigated. 
Depending on the ease of analysis and effeetiveness, Fourier expansion., 
simple collocation and least square collocation methods of satisfaction 
of boundary conditions are followed for the different shapes considered. 

2. METHOD OF SOLUTION* 

The solution for the governing differential equation for thin plate flexure 
v 4  w = qID, can be written in the form 

W = 1Vp ± We 
	 (1) 

where ivy  is the particular integral satisfying v 4  wp  = q/D 
complimentary function satisfying V 4  wc = 0. A suitable 
chosen, in rectangular Cartesian co-ordinates, as 

and wc  is the 
form for we  is 

we 	[A mi cosh mx Bmi x sin.h max] c9s  mY 
fTI 

 .sin  my / 

[Cod sinh rnx 	 .1 x cosh m(c9s my) 
n, 	 sin my 

[Erni cosh my + Fm iy sinh my] rs- s mx ) in mx in 

(cos mx\ 

	

E [Gmi sinh my ± Hm i y cosh my] 	mx) 

(1 = 1, 2—corresponding to cosine and sine terms respectively) 	(21) 

When the domain consists of straight edges, two of which are parallel, 
it is then possible to exactly satisfy the homogeneous boundary conditions 
along the two edges using a part of the solution chosen from Eqn. (2), with 
appropriate values for m . When the two parallel edges are simply supported, 
the m's are real and integral. For other than simple supports, the nis 
are generally complex. Further, when the domain has one or more axes 
of symmetry or skew symmetry, by a suitable choice of the terms of the series 
in Eqn. (2), it is poisible to satisfy at least some of the symmetry conditions 
identically. In the present study, only real and integral values of m are 
encountered since only simple support conditions, are considered. In addition, 
Erni = Fmi = Gmi = Hmi = 0 (i 1, 2) as the other set of constants is 
sufficient for our study. We shall now proceed to apply the resulting series 
to some typical examples. 
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In each example, the following steps are followed. Depending on 
the problem, the simple support conditions on one Or more of the edges and 
the symmetry or skew symmetry conditions present, are exactly satisfied by 
a proper choice of the terms in Eqn. (2). The deflection function 
w (= wp we) is obtained by adding a suitable particular solution wp  to we . 
The unknown parameters in the deflection function are determined by 
approximately satisfying the hitherto unsatisfied boundary conditions on 
the other edges by applying a suitable technique. The conditions on these 
edges may, in general, be arbitrary. Here we consider them also to be 
simply supported. 

3. ISOSCELES TRIANGULAR PLATES 

Locating the origin at the apex ' 0 ' of the triangle OAR with the y-axis 
normal to the edge AB (Fig. I), and with the distance OC taken as Tr, we  is 
chosen from Eqn. (2) with 

(a) m= 1, 2, 3, ... and A m, = Bm, = Cm, = Dm, = 0 

to exactly satisfy the simple support conditions on AB and (b) C m , 
= Dm, = 0 so as to satisfy the symmetry conditions on OC Thus 

wc  = 	[A  _ cosh  nix  + Bin  x sinh nix] 
in 	

. sm 	 (3a) 
cosh tve 	cosh ?nor 

omi t  2... 

wherein the second subscript in A nti , 13 7n, is conveniently dropped without 
causing ambiguity. 

A suitable wp, satisfying all the boundary conditions that w e  in Eqn. 
(3 a) does is 

wp= 21D — 27T .Y3  + n3.0 	 (3 b) 

so that 

w  = b O A  a 21T  Y 3  ± 7r3 Y) 

x sinh mx L-7  [A m ze--4-(lossh-11111-t-xn  ± Bra a-a-ski:Id sin my 

It is now necessary to satisfy the boundary conditions along only one 
of the edges, say OR the conditions being 

w = 0, v 2w = 0 on x = ty 	 (4) 
where t = tan a. 
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Substitution of the deflection function w into the boundary conditions, 
Eqns. (4), lead to the following pair of boundary error equations 

r 	cosh nity 
q OA — 2ny 3  IT3Y) + L i  Lin m cosh mtir 24b 

In 

13m 	 (5) 
t y sinh nifY s in my  0 
 cosh 'nor J 

and 

cosh mty (6) / /2 	/ 	2in Bm 	 - sm. my =-- 0. 
2.0 (-3' —1T-1)  + int 	cosh mtir 

vs 

In principle, the constants A m , Buz 
available methods. The functional 
suggests application of Fourier an. 

Thus 
I.  

I 27 rAm  cosh mty 
L 	cosh min 

in 

can be determined by any one of many 
form of the error equations (5) and (6) 

alysis iin the range y =--- 0 to 

Bin  ty sirth  mty]  sin my sin ny dy 
cosh min 

= 24D -9-- 	ry 4  27Ty 3  irsyl sin ny dy 	 (7) 

and 
I.  

LI
cosh nnY s in  my  sin nY dY 2m n 'n c osh nihr 

In 

2D.7 
l b  i v  ‘ar  2 — ny) sin ny dy (n 	1, 2, 3, ...) 	(8) 

0 

Carrying out the integrations of Eqns. (7) and (8) we arrive at the 
following sets of linear simultaneous equations in A m , Bm  

E Am  (— Din {Sum  Tnin}Oni/2) tanh mtrr + E Bm (— Unin (112) 
vs 

X [{S mn  — T7 j miff — tU, nnS 2mn  — inn  T2n } tanh min] 

=--- 	(2/n5) qjD 
	

if n is odd 

= 0 
	

if n is even 	 (9) 
=-- 1, 2, 3, . ..) 
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Bin  net {S.  Inn Tmn}tanhmtir 

= (2/n 3) qID 
	

if n is odd 

= 0 
	

if it is even 	 (10) 
= 1, 2, 3, ...) 

where 
smn — WO ' + On — nrri  ; Tmn = Km0 2  ± (m + 10 2 1-1  
Umn = (m 1) 2  — On — 10 2 ; Vmn = 0710 2  — (m + n) 2  

4. RHOMBIC PLATES 

In this case, the origin of coordinates is located at the corner A of the 
rhombus ABCD (Fig. 2) with the diagonal AC taken to be length 77. We is 

given by Eqn. (2) with m =-- 1, 3, 5, ... and we can put 

A m , = Bm, = Cm, = Ana = Cm, = Dm.= 0, Am, = Am, nm, = Bm  
so that the symmetry conditions on the diagonals AC and BD are exactly 
satisfied. wp  is chosen as 

wp  = qx4124D 	 (12) 

The parameters A m , Bin  are determined by satisfying the simple 
support conditions on one of the edges radiating from A, say AD. These are 
given by 

w = 0, V 2  w 0 on x = ty 
	 (13) 

where = tan a. 

Substitution of the deflection function into these equations leads to the 
two edge error equations, 

A 	sh na y:i  sin  my 
[ a 

in  co

cosh ml 

y  an. + B 
ty sinh mt 

in 	-Erni-  • COS 	ins 

in 

q1 4y4/24D 	 (14) 

Bm 2tn  cosh  mry  
cosh milt sin my = qi2y2/2D 	 ( 15) 

Again, Fourier analysing Eqns. (14) and (15) in the range y = 0 to 77/ 2 
we arrive at the following sets of simultaneous equations in A m, Bra . 

— 1 	 — 1 

E Am(— 1) i {Sinn  + Tin tj m tanh mtn E B m  (— i  

X [noir (sSmn  Tmn) {UmnS2,nn  + V nin  Minn} tank mod 



0 
0 7T 

17.  411■11.me 
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FIG.1. TRIANGULAR PLATE FIG 2 RHOMBIC PLATE 

C.“1 -1T 

 

1:ad ir  

FIG. 3. PARALLELOGRAMMIC PLATE 

COORDINATE SYSTEM FOR DIFFERENT CONFIGURATIONS 

-- [1-01279-3- 	12nnj 	(— 1 )" ; 1  Nj  gt3/12ns D 	(16) 

and 

E B (— 1) 	{Sinn T Inn} m 2  tanh mfr. 

— {nir (— 	-1  --21-6 	x qt12n 3  D 	 (17) 
In =--- 1, 3, 5, . 	) 

where Snin,•, mn  are as defined in Eqn. (1 1 ). 

5. PARA LLELOGRAMM I C PLA1 ES 

In this example, the origin is situated at the centre 0 of the plate ABCD 
(corner angles a and r — a) as in Fig. 3. w is chosen such that it exactly 
satisfies the simple support conditions along the two parallel edges AB, DC 

separated by a distance 7r and the skew symmetry condition 

w (x, = w (- x, - ,Y)• 
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Then in we , 

(a) In 	1, 3, 5,... with Cm, 	n 	0, Am, = A m, Bm 1  = Brn, 

and 

(b) m = 2, 4, 6,... witn A m, Bm. = 0, Cm, = Cm , Din , = Din  

wp  is properly chosen as 

I4J q 384 D (16)4 — 24 /7 2 y2  — 5 1T').
— 

	 (18) 

It row remains to satisfy the simple support conditions along only one edge, 
say BC, given by 

w =sr- 0. V 2  w=0 in x=c+ by 
	

(19) 

wherz a = side ratio = AB/BC = 2Cldn, 	b rot a, C = adir12 and 

d = cosec a. 

The boundary error equations are obtained as 

LT [
A  COSh (C  ± by) 

 ± 
Bin (c -F by) sinh  m (c  by)i cos 

nt 	 ifly  
a 	cosh !11C 	 cosh mc 

mrodd 

11  [Cm 
sinh m  -I- by) 

cosh mc 

± An  (CI  ± by) cosh nt (c by)]  • sin my 
cosh me 

q (160  — 24772  y2  + 5174) 384D x -  The 

Bm  2m cosh m  (c + by) cos my cosh Me 
mmodd 

of  Li Din  2m sinn m (c  + by)  sin my  
cosn »etc 

in=even 

q 2 - 
8D 

(4y —7r 2  ) 

(20) 

(21) 

For this problem, we have found the simple collocation and least square 
collocation methods, to be simpler than Fourier analysis for satisfying the 
boundary conditions. 

In the simple collocation method, we satisfy Eqns. 	(20) and (21) at 
certain discrete points along the edge BC. 	For any choice of p points, one 
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obtains the twin systems of simultaneous equations in A nh , B m1 , Crns , An, 
by replacing y by yi' i =1, 2, 3,. 	in Eqns. (20) and (21). The solution of 
these equations deLermines the unknown parameters and hence completes 
the analysis. For convenience, one chooses a suitabl [e number of equidis- 
tant points on the edge BC. 

In the least square collocation method, we satisfy the boundary condi- 
tions at a larger number of points than the number of unknown parameters 
employed in the deflection function in a least square sense. Suppose we 
write m boundary equations for a deflection function with n constants where 
in > ii. in matrix notation, this system of equations may be written as 

a(m x 	. X (n x 1) = b 	x 1). 
As X cannot be uniquely determined from this equation, we seek a solution 
A' --= c such that it minimizes the sum of the square of the residual 

e a . c - b. 

The square of the residual e is in fact the dot product e . e, so that 

e 2  = (ac b)T (ac b). 

The minimization process requires that 

which leads to the solution 

aT . a . 	aT b = 0 

or 

c (aT 	. (aT b) 

where the superscript T denotes the transpose of the relevant matrix. Thus 
we reduce the original redundant system of in equations to a determinate 
set of n simultaneous equations in, n unknowns. 

6. NUMERICAL RESULTS AND DISCUSSION 

Numerical studies are carried out for the first three examples and the 
results are presented in Tables I to III. 

Triangular Plates. Table I contains the results for the isosceles triangular 
plates. Convergence studies are carried out for four values of the apex 
angle 2 a from 30°  to 120°. The order of approximation Al is varied from 
2 to 10. In each case the maximum deflection value and its location and 
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TABLE 1 

Simply supported isosceles triangular plate under uniform pressure 
Effect of apex angle on convergence of deflection and moments at maximum 

deflection location values for various No. of terms (M) 

Hyperbolic Trigonometric Functions: Fourier Expansion Method 

=--- (10 1  Dka•) w ; 	 (102/qa2) M. ; 	Al f = (102/qa9 M y 	X = xia =-- 
Distance of wills,: from Apo( 
2a Apex Angle: v =-- 0.3 

2a 	 30° 
	

60° 

itt 	if, 	Sty x 	Asit 	x 

2 1-542 0.989 0-879 0.775 5.252 1-718 1.646 0•675 
3 1-472 1•100 0-727 0-743 5199 1.749 1•860 0-673 
4 1.436 1.067 0.708 0-751 5-772 1-798 1.819 0-666 
5 1-453 1-066 0•736 0.752 5.798 1-814 1-803 0.666 
6 1.448 1.071 0-726 0.750 5-773 1.808 1-797 0-666 
7 1-450 1-070 0-726 0•751 5-797 1-806 1.809 0.667 
8 1.449 1-068 0-728 0-751 5-775 1-805 1•801 0•666 
9 1-450 1.070 0-728 0.751 5-801 1-807 1.809 0-667 
10 1-449 1.069 0-727 0.751 5.769 1-805 1-799 0•666 

Likely value 1.449+ 1.069 0-727 0-751 5.785+ 1.806 1-806 0•667 
PUflr. 5 •• •• •• .. 5187 1-806 1-806 0.667 

90° 	 120°  

)77A . 	 x 17) 	Re 	 .111119-  sr 	X 

6-959 2-186 1-845 0.551 4.761 1.294 2.019 0-503 
6•496 1.823 1-979 0.601 3•889 1.297 1-711 0-510 
6.521 1.678 2.124 0-612 3.509 1-254 1-582 0-524 
6.560 1-639 2-185 0.613 3-328 1.198 1-542 0.538 
6.577 1.642 2.194 0.611 3.237 1.144 1-543 0.549 
6.581 1-655 2.185 0-610 3-190 1.098 1.560 0-556 
6-581 1.664 2-176 0.610 3-164 1-062 1-580 0.560 
6-580 1•668 2.171 0.610 3.149 1.035 1.599 0•563 
6-579 1.669 2.170 0•610 3.143 1-017 1.615 0.565 
6•579- 1.669+ 2.170-  0.610 3•140r 1.017-  1-615+ 0-567 
6-57 •• •• 0.60 2-95 •• .. 0-57 
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TABLE II 

Simply supported Rhombic plate under uniform pressure 
Effect of corner angle on convergence of deflection and moments at centre 

values for various orders of approximation (M) 

Hyperbolic Trigonometric Functions : Fourier Expansion Method 

IT•= (103D/qa4) w; 	/tins  = (102/qa2) Aimax 	Cfmjn = (102/qa2) Mmin 
2 a = Corner Angle : v=03 

2a 

M 
I; 

30° 

Atimat 1-171zaln ; 

45° 

Cimar Almin 7$) 

600  

Minas iimin 

2 	0.4985 2044. 	1.192 1.399 3-147 2.371 2.514 4•173 3•319 
3 0.4198 1•877 1.168 1.304 3.160 2•239 2•516 4•177 3•331 
4 0•4076 1.874 1•120 1.311 3-214 2•191 2.560 4.258 3•330 
5 0.4066 1.891 1•097 1•314 3•225 2.183 2.555 4•253 3•319 
6 0•4069 1•900 1.088 1•316 3.228 2.186 2-561 4.254 3-332 
7 0•4072 1.904 1.085 1.316 3.227 2.187 2-558 4-252 3-325 
8 0•4074 1.906 1•084 1.317 3-227 2•189 2-562 4-255 3-332 
9 0.4075 1.906 1•084 1•317 3.227 2.189 2.557 4.251 3-325 

10 0.4076 1.906 1•085 1-317 3.227 2•190 2-563 4-256 3•334 
Sampath [41 0-411 1.908 1.099 1.327 3-230 2-210 2-556 4.284 3-322 
Morley [2] 0.408 1-91 1.09 - 2-56 4.25 3.33 
Emai71 0.4075 1-905 1•086 1.317 3.226 	2.190 	2-560 4.253 3•329 

2a 	 750 90° 

limn 	Ruda 	 • 	Sims 	-471min 

2 3•716 5.150 3.950 4•715 5.653 4.409 3 3.532 4•734 4-183 3.934 4.955 4-487 
4 3-655 4.763 4-320 4.102 4.723 4.885 
5 3.619 4•800 4-234 4•020 4-767 4.768 
6 3-652 4•801 4-276 4.117 4•791 4-845 
7 3.618 4.791 4•238 3.984 4.792 4.697 
8 3.661 4•803 4.289 4.199 4.789 4.942 9 3-601 4-787 4-215 3-811 4-780 4-505 10 3.696 4-814 4-330 3-619 4.796 5-415 

Sampath [4] _ -- 4-06 4-79 4 ' 79  Morley [2] 
 Exact [7] 

. 
3.637 4.797 4.259 4.062 4-789 4.789 
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TABLE III 

Simply supported Rhombic plate under unifOrm pressure 
Effect of corner angle on convergence of deflection and moments at centre 

values for various orders of approximation (M) 

Hyperbolic Trigonometric Functions : Least Square Collocation Mcthcd 

;P. = ( 1030ka4) w; 	Rrnax = (1021qa2) Mmax ; 	iChnin = (102/qa2) Mmin  
2 a = Corner Angle: v = 0.3 

2 a 
	 30° 
	

45° 
	

60° 

M 	 km„ 	Ts; km„ km, 	ity ktna, Mmin  

1 
2 
4 

0.4852 
0.4778 
0.4188 

2.397 
2.109 
1•909 

0.836 
1•091 
1-124 

2045. 
1.442 
1•326 

4.614 
3•276 
3-222 

1-922 
2.318 
2•212 

4.859 
2.549 
2-559 

6.448 
4.197 
4.248 

1389 
3•337 
3•332 

8 0.4093 1906. 1.091 1.318 3.227 2.192 2-560 4.253 3.329 
16 0-4081 1906. 1.086 1.317 3.227 2•190 2.560 4-253 3-329 

Sampath 
(4) 0.411 1.908 1.099 1.327 3•230 2-210 2.256 4-284 3.322 

Morley(2) 0-408 1.91 1.09 .. .. .. 2.56 4-25 133 
Exact (7) 0.4075 1-905 1.086 1.317 3.226 2.190 2.560 4.253 1329 

75 ° 
	

80° 
	

90°  

km„ 	 it; 	AL fitra„ 	is; 	Rms. 

7•813 7.121 4.923 8.486 7-016 5.352 8.953 6.336 5-921 
3-636 5.088 3.947 3-986 5•334 4.096 4.584 5.602 4.363 
3-626 4-786 4-251 3.866 4-873 4•460 4.133 4-952 4•683 
3.635 4.794 4-258 3.867 4.855 4•486 4.073 481O4777 
3.636 4.796 4-259 3.867 4•857 4•485 4.044 4.807 4-779 
•• •• 3.877 4.858 4-497 4.06 4.79 	4.79 

3:637 4:797 4259 331769 1:g6 119 1: (012 1 77/939 1:g9 

the principal moment values at that point are presented in Table I for different 
a and M. 

The convergence of ittmalt  is, in general, rapid but oscillatory, 	it deterio- 
rates slightly with increasing comer angle particularly so beyond 90 0 . 	The 
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convergence for moments follows the same pattern. From the convergence 
trend, extrapolations are attempted for the actual values presented in the 
same table. It is noted that Conway's 5-term values 5 (with polar coordi- 
nates) agree with our 5-term results for 2a = 60° and 900, while for 2 a = 
1200, the results given by Conway differ from the authors by 6 per cent. 

Rhombic Plates. Convergence studies have been made for a range of 
corner angles 2 a varying from 30° to 90°. The order of approximation M 
is varied from 2 to 10. The central deflection and principal moment values 
are presented in Table II for different a and M wherein the exact values obtained 
in Ref. 7 are also given. 

The results exhibit oscillatory convergence for all angles. The con- 
vergence is rapid for smaller corner angles and deteriorates slowly as 2 a 
increases. For 2 a > 60°, the solutions with M =_-_ 6 are within 2% of the 
exact values for Mx, My  but the results deteriorate beyond M = 6. This 
is clearly a result of increasing computational errors due to progressive ill- 
conditioning of the equations. We observe that the 5-term values of Sampath 
[4] and the 6-term values of Morley [2] are also very accurate. As the Fourier 
expansion method gives rise to ill-conditioned matrices beyond M =-- 6 
and 2 a = 600, two other methods, the simple collocation and least square 
collocation, were tried. Preliminary calculations showed that the simple 
collocation method yielded highly oscillatory, unsatisfactory results even 
for small corner angles, while the least square collocation gave rapidly 
converging values. So computations were carried out by the least square 
method. Equidistant collocation points are chosen on AD with the number 
of points increased according to r =2s, s = 0, 1, 2, 3 and 4 (r = 1, 2, 4, 8 
and 16), and the number of boundary equations in is chosen as twice the 
number of unknown constants n. This ratio of two has been found to be 
about the optimum to obtain an accurate solution [61 The central deflec- 
tion and principal bending moments are determined for corner angles 2 a = 
30°, 45 0, 60°, 75°, 80° and 900  and presented in Table 111. 

The convergence of deflection values is rapid, monotonic upto 2 a =-- 60. 
and oscillatoiy beyond 2 a = 60°. Convergence of moment values is oscil- 
latory and rapid for all corner angles. The 8-term values compare very 
well with the exact values for corner angles upto 80°. 

Parallelogrammic Plates. From our experience with the earlier example, 
we choose the least square collocation method for satisfaction of the error 
equations. Convergence trends are studied for a range of skew angles 

1.I.Sc.-3 



0 4.036 4.063 
15 3.825 3-649 
30 3-126 2-654 
45 1-980 1.578 
60 0-697 0.620 
70 0.173 0.169 

1•0 
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(fl = 0°, 15°, 30°, 45 0, 60° and 70 0) and a few side ratios (a=---- 1-0, 1.5, 2.0, 
and 3.0). Equidistant collocation points are chosen on BC with the number 
of points increasing as p = 2s - 1, s = 2, 3, 4, 5 (i.e., p = 3, 7, 15 and 31). 
The central deflection and principal bending moments are determined for 
each combination of IS, a and M. 

The results in Table 1V show that the convergence of solution is mono- 
tonic and very rapid for larger side ratios and smaller skew angles and becomes 

TABLE IV 

Simply supported parallelogrwntnic plate under uniform pressure 
Effect of side ratio and skew angle on convergence of deflection and moments 

at centre values for various orders of approximation (M) 

Hyperbolic Trigonometric Functions: Least Square Collocation Method 

	

is; = (HP DIgct) w; 	CI max --= (102/QC2) Mmax ; 	Kt/min = (102/qc2)Mmin  
# = Skew Angle; 	a = Side Ratio; 	c = Length of Shorter Side 

(v = 0.3) 

_. 
a 	 w 	 Al-  wax 

Side Pm 	2 	4 	8 
Ratio 

4.062 
3.638 3-627 .. 	4.776 4.596 4-598 4.598 
2-578 2-566 2-56 	Ul 4.703 4.083 4.028 4.023 
1-411 1.378 1.33 	[4] 4-206 3-458 3.169 3.105 
0.544 0.436 0.408 m 2•771 2.508 2-250 1.802 
0-166 0-170 .. 	1.431 1-402 1.377 1.404 

16 Other 2 4 	8 16 
A.nalyes 

4.062 4-06* 4.773 4.798 	4-798 4.798 

1.5 

0 7.728 7-724 7.724 7-724 7.72* 8.118 8-116 8-116 8.116 
15 7-042 6-894 6.884 6.884 .. 7-879 7.733 7•726 7.725 
30 5.179 4.846 4.786 4.772 .. 7.070 6.671 6.602 6-589 
45 2.740 2-533 2-438 2-529 .. 5-446 5.091 4-929 5.103 
60 0-785 0-762 0-739 0.736 .. 3.040 2.966 2.892 2.880 
70 0.178 0.177 0.176 0.177 0.178* 1-459 1-455 1-452 1.452 

0 10.13 10.13 10-13 10.13 10-1* 	10-17 10.17 10-17 10.17 

2.0 

15 9-061 8.970 8-964 8.963 .. 9-710 9-624 9.619 9-618 
30 6.298 6.116 6.081 6.078 .. 8-297 8.090 8.051 8•047 
45 3-057 2.967 2.924 2.912 .. 5•945 5.798 5-729 5.709 
60 0-907 0-801 0-794 0-795 .. 3•105 3.086 3-066 3.066 
70 0-178 0-178 0-178 0.178 0.178* 1.462 1.461 1-461 1-461 

3.0 

0 
15 
30 
45 
60 
70 

12.23 
10.75 
7-107- 
3.227 
0.813 
0.178 

12-23 
10-72 
7.062 
3-213 
0.813 
0-178 

12.23 
10.72 
7-054 
3.206 
0.813 
0-178 

12.23 
10•72 
7•052 
3.204 
0.813 
0•178 

12.2* 
.. 
.. 
.. 
.. 

0.178* 

11-89 
11.18 
9-153 
6-208 
3-124 
1-462 

11•89 
11-15 
9.106 
6-186 
3.123 
1-462 

11.89 
11-15 
9.096 
6.176 
3.122 
1-462 

11.89 
11.15 
9.095 
6.173 
3.122 
1-462 



"Hyperbolic Trigonometric Series for Rectilinear Domains" 	141 

slower for smaller side ratios and larger skew angles. This is not surprising 
because, with increasing skew angle and decreasing side ratio, there is an 
increase in the ratio between the peripheral length on which the boundary 
conditions are approximately satisfied and that on which they are exactly 
satisfied. It is also observed that the convergence of moment values is 
somewhat slower than that of deflection. Comparison of the present ana- 
lysis and results with other solutions and procedu 
shows that, for the type of problems considered, 
Cartesian coordinates compares favourably with 

7. CONCLUDING REMARKS 

It has been demonstrated with examples that hyperbolic trigonometric 
functions in rectangular Cartesian coordinates can be effectively used for 
analysing problems when the domain is rectilinear but non-rectangular. 
It has been found that the use of such functions require a proper choice of 

Other 	2 	 4 
Analyes 	 . 

Mmin 
8 

. 

16 Other 
Analyes 

4.79* 	' 	4-804 	4.789 - 	4-789 4.789 4-79* 
•• 	4-640 	4-476 4-460 4.459 

4-25 m 	3.998 	2.682 3-587 2.567 3.33 [2] 
3.23 pq 	2.699 	2.577 2.473 3.419 2.21 [4] 
1.91 m 	1-159 	1205. 1-244 ' 1-044 1.08 m 
•• 	0.464 	0.476 - 	0.477 0.466 •• 

8.12* 	4.987 	4-984 4-984 4-984 4-92* 
•• 	4-662 	4.633 4.630 4-630 •• 
•• 	3-690 	3.677 3•669 3-668 •• 
.• 	2.277 	2-336 2.356 2-398 .. 

0•995 	1.024 1.052 1-053 
1-462* 	0.442 	0-444 0.446 0-445 0.439* 

10.17* 	4.635 	4.635 4.635 4.635 4.64* 
•• 	4.283 	4.290 4.290 4.290 •• 
.• 	3•313 	3•351 3.358 3.358 •• 
.. 	2•048 	2-097 2.118 2-125 •• 

0.952 	0-962 0.972 0.971 
1.462* 	0-439 	0-439 0.440 0-440 0.439* 

11-89* 	4.062 	4.063 4.063 4-063 4.06* 
•• 	3•755 	3.763 3.764 3-764 •• 
.• 	2.940 	2.960 2.964 2.964 •• 
•• 	1.902 	1.914 1-920 1.921 •• 

0.938 	0-939 0.940 0.940 
1.46 	0.439 	0.439 0•439 0.439 0.439* 

* Corresponds to Values from Ref. 1. 

res reported in literature 
the use of rectangular 
the other methods. 
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the method of satisfaction of boundary conditions in order to obtain satis- 
factory results with limited effort. With the Fourier expansion method for 
non-rectangular shapes, convergence is obtained up to a certain stage and 
then the solution deteriorates due to the ill-conditioning of the equations. 
On the other hand, the least square collocation procedure has invariably 
yielded good convergence whenever it has been applied. Comparison of 
the results by the present analysis with those by other solutions and proce- 
dures reported in literature, shows that for the type of problems considered 
they are highly satisfactory. Thus it may be concluded from the study that, 
in the direct method of analysis, it is not always necessary to go in for coordi- 
nate systems specialised to the shape of the domain. 

Further one may conclude that, for some skew domains such as the 
parallelogram, the rectangular Cartesian coordinates can be superior to 
oblique coordinates. It would be enlightening to compare the results with 
rectangular arid parallelogrammic elements for the finite element analysis 
of skew plates. 

Even though only simply supported edges and uniform transverse load- 
ing have been considered in the present study, other types of homogeneous 
edge supports and applied loadings can be analysed by choosing proper 
functional forms. 

Note.- Part of the work given in this paper was presented at the 23rd 
Annual General Meeting of the Aeronautical Society of India, held at 
Kanpur February 26-28, 1971. 
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