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ABSTRACT

The effectiveness of hyperbolic trigonometric series in rectangular Cartesian
co-ordinates for analysing problems with non-rectangular but rectilinear domains
is brought out in the present work. Three typical examples—simply supported
triangular, rhombic and parallelogrammic plates under uniform pressure-—are con-
sidered and elegant solutions presented. Fourier expansion, simple collocation and
least square collocation techniques are followed for the satisfaction of the boundary
conditions. Numerical results for the three examples are obtained for a range of
skew angles and side ratios. The convergence of important parameters like maximum
deflection and maximam moments with increasing order of approximation is studied.
The results show that the method is capable of providing satisfactory results with
limited effort in all the cases.
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|. INTRODUCTION

Series solutions for the Laplace and the biharmonic equations can be
written down in various special coordinate systems. Hence there is a
natural tendency to match the coordinate system to the geometry of a
domain [1], [2], [3]. This is not always the most satisfactory procedure.
The simple polar coordinates and rectangular cartesian coordinates are
often far superior in application to arbitrary shapes than coordinates spe-
cialised to the shape. For example, the use of oblique coordinates for
parallelogrammic shapes appears natural. However, Silberstein [3] found
that, applying oblique coordinates and duveloping a series solution ** ....
was quite a lengthy process, yet the accuracy achieved was sufficient to estimate
deflections only; no significant results on bending moments could be obtained
using the resuiting solution.” On the other hand the application of rect-
angular Cartesian coordinates can often turn out to be effective and superior.
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It is the purpose of this paper to demonstrate this useful fact with a few
examples in the analysis of thin plate flexure. For simplicity, the analysis
is presented for simple supports and uniform transverse pressure. Triangular,
rhombic, and parallelogrammic plate configurations are investigated.
Depending on the ease of analysis and cflectiveness, Fourier expansion,
simple collocation and least square collocation methods of satisfaction
of boundary conditions are followed for the different shapes considered.

2. METHOD OF SOLUTION

The solution for the governing differential equation for thin plate flexure
V4w = q/D, can be written in the form

W= Wwp + We¢ | (1)

where wyp is the particular integral satisfying % wp = g/D and w¢ is the
complimentary function satisfying V*4we = 0. A suitable form for w, is
chosen, in rectangular Cartesian co-ordinates, as

COS my

We = 27 [Ami cosh mx + Bm; X Slnh ITIx] (Sin my

COS my

+ 3 [Cpi sinh mx + Dmpyi x Cosh mx]( sin my

COS mx
Sin mx

CcOS mx)
Sin mx

+ 5 [Emi cosh my + Fp;y sinh my] (

+ 5 [ sinh my + Hnt y cosh my)(

(i = 1,2—corresponding to cosine and sine terms respectively) 21)

When the domain consists of straight edges, two of which are paraliel,
it is then possible to exactly satisfy the homogeneous boundary conditions
along the two edges using a part of the solution chosen from Eqgn. (2), with
appropriate values for m. When the two parallel edges are simply supported,
the m’s are real and integral. For other than simple supports, the m's
are generally complex. Further, when the domain has one or more axes
of symmetry or skew symmetry, by a suitable choice of the terms of the series
in Eqn. (2), it is possible to satisfy at least some of the symmetry conditions
identically. In the present study, only real and integral values of m are
encountered since only simple support conditions, are considered. In addition,
Emi=Fmi=Gmi=Hpni=0 (i=1, 2) as the other set of constants 1s
sufficient for our study. We shall now proceed to apply the resulting series
to some typical examples. | |
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In each example, the following steps are followed. Depending on
the problem, the simple support conditions on one or more of the edges ang
the symmetry or skew symmetry conditions present, are exactly satisfied by
a proper choice.of the terms in Eqn. (2). The deflection function
w (= wp + w,) is obtained by adding a suitable particular solution wy to w,.
The unknown parameters in the deflection function are determined by
approximately satisfying the hitherto unsatisfied boundary conditions on
the other edges by applying a suitable technique. The conditions on these
edges may, in general, be arbitrary. Here we consider them also to be

simply supported.

3. IsOSCELES TRIANGULAR PLATES

Locating the origin at the apex ‘0’ of the triangle OAB with the y-axis
normal to the edge AB (Fig. 1), and with the distance OC taken as =, w is
chosen from Eqn. (2) with

(a) m = 112531 .-.a-ndAml =Bml =le=Dml=0

to exactly satisfy the smunple support conditions on AB and (b)) Cnp,
= Dp, = 0 so as to satisfy the symmetry conditions on OC Thus

Vi E [ 4 Cosh mx 1B x sinh mx] sir (3a)

M cosh mitn M cosh min

-"-"1. 2---

wheremn the second subscript in Ap,, Bp, is conveniently dropped without
causing ambiguity.

A suitable wy, satisfying all the boundary conditions that w, in Eqn.
(3 a) does is

Wp =yt s (' — 2y + ) (3 6)
so that

W =ﬂ‘?_b(y4__2.,,ya+ﬂ.sy)

- cosh mx xsinhmx)] . _
+ 2 [Am S * B osts min) S G)

It is now necessary to salisfy the boundary conditions along only one
of the edges, say OB the conditions being

w=0,T%w=0 on x =¢y 4)
where ¢ = tan a.
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Substitution of the deflection function w into the boundary conditions,
Eqns. (4), lead to the following pair of boundary error equations

2f§ (r — 2my8 + =¥y) + E ' [Am cosh mity

cosh min
[ E0H iy - 5
+ Bm 55k mm_lsmmy 0 (5)
and
cosh mty _
D(yz —my) + E i sinmy = 0. (6)

In principle, the constants 4,,, B,, can be determined by any one of many
available methods. The funciional form of the error equations (5) and (6)
suggests application of Fourier analysis.in the range y =0 to =.

Thus

1r
cosh mty tysinh mty] |
J' Z' COSh it + Bm cosh mim Sin my sin ny d_}

= zf D f [yt — 27y3 + 7%y]sin ny dy (7)

and
' cosh L iy } J
f E 2m By, M Enh wiln sin my sin ny dy

—% J (2 =—my)sinnydy (n=1,2,3,...) (8)

|

Carrying out the integrations of Eqns. (7) and (8) we arrive at the
following sets of linear simultaneous equations in A, Bm

2 Am (— D)™ {Spn — Ty} (mt]2) tanh mtm + 5 Bm (— 1) (4/2)

X [{Smn — Tmn mimr — WUnmnS%mn — Ve T *mnj tanh mi=]
= — (2/n°) q/D if n is odd

=0 if nis even (9)
(H= 132: 3: '“)
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= (2/n®) q/D if n is odd
=:{) if n is even (10)
(n=l,2,3,...) \

where
Smn = [(m1)? + (m —n)*I; Tpyp= [(m1)* + (m + n)?J?

Unn=mnz—(m —n)2, Vpg = (mt)? — (m + n)? (ll)

| 4. RuoMmBic PLATES
In this case, the origin of coordinates is located at the corner 4 of the
rhombus ABCD (Fig. 2) with the diagonal AC taken to be length 7. w, is
given by Eqn. (2) with m=1,3,5, ... and we can put

Aml e Bml — le — Dml — sz -— Dm‘=0, Am‘ — ATH-! Bm: — Bm
so that the symmetry conditions on the diagomnals AC and BD are exactly
satisfied. wyp 18 chosen as

The parameters A4,,, B, are determined by satisfying the simple
support conditions on one of the edges radiating from A4, say AD. These are

given by
w=0, V2w=0on x=1y (13)
where ( = tan a.

Substitution of the deflection function into these equations leads to the
two edge error equations,

cosh mty ty smh mty] .
2 [ cosmate * B s s

m

= — gliy*/24D (14)
_cosh miy . . 5 :
E Bm 2m Cosh s SRy = — q*y*I12D (15)

Again, Fourier analysing Eqns. (14) and (15) in the range y = 0 to 7,2
we arrive at the following sets of simultaneous equations in Ay, Bm.

L | ™m-—]

F Ap(— 1) v {S;n + Tmaymtanhmin 4+ 5 Bp(— 1) 3
X [mtm {Smn + Tmn} — {UnnS*mn + VmnT?mn} tanh min]
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FIG. 3. PARALLELOGRAMMIC PLATE

COORDINATE SYSTEM FOR DIFFERENT CONFIGURATIONS

—_ [{(@f — 12} 4 (= 'F 24] q3/12n D (16)

and

2 Bn(— I)m_;l {Smn + Tinaj m® tanh mim

= —{m— (= )7 2} x q2n® D (17)
=13, 3....)
where Spp...., bmn are as defined in Eqn. (11).

5. PARALLELOGRAMMIC PLATES

In this example, the origin is situated at the centre 0 of the plate ABCD
(corner angles « and = — a) as in Fig. 3. w is chosan such that it exactly
satisfies the simple support conditions along the two parallel edges AB, DC
separated by a distance = and the skew symmetry condition

w (x, .V) = w(— X, "'.V)
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Then n we,

(@ m=1,3,5,... with Cpp, = Dp, =0, Ay, = Am;, Bm, = Bp,
and

(by m=2,4,6,... with Ap,, = Bp, = 0, Cm,= Cn, Dp, = D,

wp is properly chosen as

_ 4 _
Wp = 304 p (16" — 24722 — 5. (18)

It now remains to satisfy the simple support conditions along only one edge,
say BC, given by

w=0, V2w=0 (n x=c - by (19)
wherz  a = side ratio = AB/BC = 2C/dn, b=rcota, C=adn/2 and

d = cosec a.

The boundary error equations are obtained as

coshm (¢ + by) | (¢ + by) sinh m (¢ + by)
Z [Am ~ cosh mc FBm - cosh mc¢ o ] R

sinh m (¢ + by)
T Z' [Cm coshme

m=00sn

meodd

(¢ + by) cosh m (c + by)7 .. .
cosh mc ]sm o

+ Dn
= — sokr (164 — 24n2 y2 4 5t (20)

Z‘ B, 2m cosh m (¢ + by) -

cosh mc

+ Z szmSlE—nm{c—l-bJQsinmy

cosn mc

meodd

m=eoén

= — 8% (4y? — %) (21)

For this problem, we have found the simple collocation and least square
collocation methods, to be simpler than Fourier analysis for satisfying the
boundary conditions.

In the simple collocation method, we satisfy Eqns. (20) and (21) at
certam discrete points along the edge BC. For any choice of p points, one
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obtains the twin systems of simultaneous equations in Am,, B, Cm,, Dn,
by replacing y by y; i = 1,2, 3,... p) m Eqns. (20) and (21). The solution of
these equations deiermines the unknown parameters and hence completes
the analysis. For convenience, one chooses a suitable number of equidis-

tant points on the edge BC.

In the least square collocation method, we satisfy the boundary condi-
tions at a larger number of points than the number of unknown parameters
employed in the deflection function in a least square sense. Suppose we
write m boundary equations for a deflection function with » constants where
m > #. In matrix notation, this system of equations may be written as

almxn) . X(n X 1)=5b(m x ).

As X cannot be uniquely determined from this equation, we seek a solution
X = ¢ such that i1t minimizes the sum of the square of the residual

e=aq.c—b.

The square of the residual e is in fact the dot product e . ¢, so that
e? = (ac — b)T . (ac — b).

The minimization process requires that

oe? .
d¢

which leads to the solution

0

at .a.c—at.b=0
or
c={a*.ay*.(@®.b

where the superscript 7' denotes the transpose of the relevant matrix. Thus
we reduce the original redundant system of m equations to a determinate
set of n simultaneous equations in » unknowns.

6. NUMERICAL RESULTS AND DISCUSSION

Numerical studies are carried out for the first three examples and the
results are presented in Tables I to 1Ll

Triangular Plates.—Table 1 contains the results for the isosceles triangular
plates. Convergence studies are carried out for four values of the apex
angle 2 o from 30° to 120°. The order of approximation M is varied from
2 to 10. In each casc the maximum dcflection value and its location and
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TABLE 1

Simply supported Isosceles iriangular plate under uniform pressure
Effect of apex angle on convergence of deflection and moments at maximum
deflection location values for various No. of terms (M)

Hyperbolic Trigonometric Functions: Fourier Expansion Method

ﬁ?, = (10%/qa®) M, ; ]'I-?, = (10%/ga®) M, .
Distance of wmax from Apex
22 = Apex Angle: v =03

w = (10* D/ga*) w; X=xa=

2a 30° 60°
M w M, M, X W M, M, X
2 1-542 0-989 0-879 0:775 5-252 1-718 1-646 0-675
3 1-472  1-100 0-727 0-743 5-799 1-749 1-860 0-673
4 1-436 1-067 0-708 0-751 5-772 1-798° 1-819 0-666
5 1-453 1-066 0-736 0-752 5-798 1-814 1-803 0-666
6 1-448 1:071 0-726 0-750 5-773 1-808 1-797 0-666
7 1-450 1:070 0-726 0:751 5-797 1-806 1-809 0-667
8 1-449 1-068 0-728 0-751 5775 1-805 1-801 (-666
9 1-450 1070 0-728 0-75] 5-801 1-807 1-809 0-667
10 1-449 1069 0-727 0-751 5-769 i-805 1-799 0-666
Likely value 1-449+ [-069 0-727 0-751 5-785+ 1:806 1-806 0-667
Ref. 5 : . 3 55 5:787 1-806 1-806 0-667
90° 120°
W M, M, X w M, M, X
6-959 2-186 1-845 0-551 4-761 1-294 2-019 0-503
6-496 1-823 1-979 0-601 3-889 1-297 1-711 0-510
6-521 1-678 2-124 0-612 3-509 1-254 1-582 0-524
6560 1-639 2-185 0-613 3-328 1-198 1-542 0-538
6-5717 1-642 2:194 0-611 3:237 1-144 }-543 0-549
6-581 1-655 2185 0-610 3-190 1-098 I-560 0-556
6-581 1-664 2-176 0-610 3-164 1-062 1 -580 0-560
6-580 1-668 2:171 0-610 3-149 1-035 | -599 0-563
6-579 1-669 2:170 0-610 3-143 1-017 |-615 0:565
6-579- 1-669+ 2:170- 0-610 3-140- 1-017- 1-615t  0-567
6-57 - _ 0-60 2-95 .. 0-57
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TABLE 11

Simply supported Rhombic plate under uniform pressure
Effect of corner angle on convergence of deflection and momenis at centre
values for various orders of approximation (M)

Hyperbolic Trigonometric Functions : Fourier Expansion Method

Mmax = (103/ga®) Mmax ;
2a = Corner Angle : v=0-3

w = (10°D/ga') w;

y 30° 45°
M W Mmu Mmln W Mmu
2 0-4985 2:044 1-192 1-399 3-147
3 0-4198 1-877 1-168 1-304 3-160
4 0-4076 1-874 1-120 1-311 3-214
) 0-4066 1-891 1-097 1-314 3-225
6 0-4069 1-900 1-088 1-316 3-228
7 0-4072 1-904 1-085 1-316 3-227
8 0-4074 1-906 1-084 1:317 3-227
9 0-4075 1-906 1-084 1-317 3-227
10 0-4076 1-906 1-085 1-317 3-227
Sampath (4] 0-411  1-908 1-099 1-:327 3-230
Morley[2] 0-408 1-91 1-09 —_ —
Exact[7] 0-4075 1-905 1-086 1-317 3-226

Mmln

W

Mumin = (10%/ga®) Mmin

b NN DN R
- M . 1’; -

Q0

\O

2:371

2-514
2-516
2-560
2-555
2-561
2-558
2-562

2-557

2-563
2-556
2-56

2-560

137

4-173
4-177
4258
4-253
4-254
4-252
4-255
4-25]
4-256
4-284
4:25

4253

3-319
3-331
3-330
3-319
3-332
3-325
3-332
3-325
3-334
3-322
3-33

3-329

2a 75° 90°
M ; ﬂmu ﬂmin ;’ ﬂmu ﬂmln
2 3:716 5-150 3:950 4-715 5-653 4-409
3 3-532 4-734 4-183 3-934 4-955 4-487
4 3-655 4-763 4-320 4-102 4.723 4-885
5 3-619 4-800 4-234 4-020 4-767 4-768
6 3:652 4-801 4.276 4-117 4.-791 4-845
7 3-618 4-791 4.238 3-984 4.792 4-697
8 3-661 4-803 4-289 4-199 4-789 4-942
9 3-601 4-787 4-215 3-811 4.780 4-505
San:o [ 3-696 4-814 4-330 3-6l9 4-796 5-415
pa —_— i =l 4-06 . ‘
Morley [2] — — — ?_. * ZE ) ZE
Exact [7] 3-637 4-797 4259  4-062 4-789  4-789
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Simply supported Rhombic plate under uniform pressure
Effect of corner angle on convergence of deflection and moments at ceyyre
values for various orders of approximation (M)

Hyperbolic Trigonometric Functions : Least Square Collocation Mecthed

w = (103D/ga*) w;

ﬁ’?max = (102/'?“2) Mmax
2 a = Corner Angle:

v=03

Mmin = (loszfag) Mmip

2a 300 45° 600
M ‘; an: A_Jmln ;1; Mma: Mmin E Mrmn:: an
| 0-4852 2-397 0-836 2:045 4:614 1-922 4-859 6-448 3-389
2 0-4778 2-109 1-091] 1-442 3-276 2-318  2-549 4-197 3-337
4 0-4188 1909 1-124 1-326 3-222 2-212  2-559 4-248 3-332
8 0-4093 1:906 1-091 1-318 3-227 2-192 2-560 4-253 3-329
16 0-4081 1-906 1-086 1-317 3:-227 2-190 2-560 4-253 3-329
Sampath
(4) 0-411 1-908 1-099 1-327 3-230 2-210 2-256 4-284 3-322
Morley (2) 0-408 1-91] [-09 .. . .. 2-56 4-25 3-33
Exact(7) 0:4075 1-905 1-086 1-317 3-226 2:190 2-560 4-253 3-329
75° 80° 90°
l'; ﬂmll Mﬂlin ]; Mmu Mmin "T’ ﬂmu ‘Elmi"
7-813 7-121 4-923 8:486 7-016 5-352 8-953 6-336 5-921
3-636 5-088 3-947 3-986 5-334 4-096 4-584 5-602 4-363
3-626 4-786 4-251 3-866 4-873 4-460 4-133 4-952 4-683
3-635  4:794  4-258  3-867 4-855 4-486 4-073 4-810 4-777
3-636 4-796  4-259  3-867 4-857 4-485  4-044 4-807 4-779
. .. . 3-877 4-858  4-497 4-06 479 479
. . 3-87 4.8  4-48  4.06 479 479
3-637  4:797 4259  3-869  4-856 4-489  4-062 4-789 4-789

e S i ————————————

the principal moment values at that point are presented in Table I for different

e and M.

The convergence of w,,, is, in general, rapid but oscillatory. It deterio-
rates shghtly with increasing corner angle particularly so beyond 90°. The



‘“ Hyperbolic Trigonometric Series for Rectilinear Domains”® 139

convergence for moments follows the same pattern. From the convergence
trend, extrapolations are attempted for the actual values presented in the
same table. It is noted that Conway’s S-term values 5 (with polar coordi-
nates) agree with our S-term results for 2a = 60° and 90°, while for 2 o =
120°, the results given by Conway differ from the authors by 6 per cent.

Rhombic Plates—Convergence studies have been made for a range of
corner angles 2 « varying from 30° to 90°. The order of approximation M
is varied from 2 to 10. The central deflection and principal moment values
are presented in Table II for different « and M wherein the exact values obtained
in Ref. 7 are also given.

The results exhibit oscillatory convergence for all angles. The com-
vergence is rapid for smaller corner angles and deteriorates slowly as 2«
increases. For 2a > 60° the solutions with M = 6 are within 2% of the
exact values for M, M but the results deteriorate beyond M = 6. This
is clearly a result of increasing computational errors due to progressive ill-
conditioning of the equations. We observe that the 5-term values of Sampath
[4] and the 6-term values of Morley [2] are also very accurate. As the Fourier
expansion method gives rise to ill-conditioned matrices beyond M = 6
and 2 a = 60°, two other methods, the simple collocation and least square
collocation, were tried. Preliminary calculations showed that the simple
collocation method yielded highly oscillatory, umsatisfactory results even
for small corner angles, while the least square collocation gave rapidly
couverging values. So computations were carried out by the least square
method. Equidistant collocation points are chosen on AD with the number
of points increased accordingto r=2%,s5=0,1,2, 3aud4 (r=1, 2, 4, 8
and 16), and the number of boundary equations m is chosen as twice the
number of unknown constants n. This ratio of two has been found to be
about the optimum to obtain an accurate solution [6]. The central defiec-
tion and principal bending moments are determined for corner angles 2 a =
30°, 45°, 60°, 75°, 80° and 90° and presented in Table I1lI.

The convergence of deflection values is rapid, monotonic upto 2 a = 60,
and oscillatory beyond 2 a = 60°. Convergence of moment values is oscil-

latory and rapid for all corner angles. The 8-term valués compare very
well with the exact values for comer angles upto 80°.

Parallelogrammic Plates.—From our experience with the earlier example,
we choose the least square collocation method for satisfaction of the error
equations. Convergence trends are studied for a range of skew angles

[.1.5c.—3
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(8 = 0°, 15° 30°, 45°, 60° and 70°) and a few side ratios (a = | -0, 1-5, 2.0,
and 3-0). Equidistant collocation points ar€ chosen on BC with the nymper
of points increasing as p = 2%—1, s =2, 3,4, 5(i.e, p=3, 7, 15 and 3)),
The central deflection and principal bending moments are determined for
each combination of B, a and M.

The results in Table 1V show that the convergence of solution is mono-
tonic and very rapid for larger side ratios and smaller skew angles and becomes

Simply supported parallelogrammic plate under uniform pressure

TABLE IV

Effect of side ratio and skew angle on convergence of deflection and moments
at centre values for various orders of approximation (M)

w = (10° D/gc*) w;

Mmax = (102/gc?) Memax ;

Hyperbolic Trigonometric Functions: Least Square Collccation Method

Mmin = (102/9¢®) Mmin

B = Skew Angle; a = Side Ratio; ¢ = Length of Shorter Side
(v=10-3)
a w M, .
Side B, 2 4 8 16 Other 2 4 8 16
Ratio Analyes
0 4-036 4-063 4-062 4-062 4-06* 4-773 4-798 4-798 4-798
15 3-825 3-649 3-638 3-627 G & 4-776 4-596 4-598 4-598
30 3-126 2-654 2-578 2-566 2:56 [2] 4-703 4-083 4-028 4-023
-0 45 1-980 1-578 1-411 1-378 1-33 [4] 4-206 3-458 3-169 3-105
60 0-697 0-620 0-544 0-436 0-408 [2] 2-771 2-508 2-250 1-802
70 0173 0-169 0-166 0-170 1-431 1-402 1-377 1-404
O 7-728 T7-724 7-724 7-724 7-72*% 8-118 8-116 8-116 8-116
15 7:042 6-894 6-884 6-884 . 7-879 7-733 7-726 17:725
30 5-179 4-846 4-786 4-772 7-070 6-671 6-602 6-589
1:5 45 2-740 2-533 2-438 2-529 5-446 5091 4-929 5-103
60 0-785 0-762 0-739 0-736 . 3:040 2-966 2-892 2-880
70 0-178 0-177 0-176 0-177 0-178* 1-459 1-455 1-452 1-:452
0 10-13 10-13 10-13 10-13 10-1* 10-17 1017 10-17 10-17
15 9-061 8:970 8:-964 8:963 9-710 9:624 9-619 9-618
30 6:298 6-116 6-081 6-078 8§-297 8-090 8-051 8-047
2:0 45 3-057 2-967 2-924 2-912 5-945 5-798 5-729 5-709
60 0:907 0-801 0-794 0-795 i 3-105 3-086 3-066 3-066
70 0-178 0-178 0-178 0-178 0-178* 1-462 1-461 1-461 1-46]
0 12-23 12-23 12-23 12-23 12-2* 11-89 11-89 11-89 11-89
15 10-75 10-72 1072 10-72 11-18 1115 11-15 11-15
30 7-107 7062 7:054 7-052 9-153 9:106 9:096 9:095
3:0 45 3-227 3-213 3:206 3-204 6-208 6-186 6-176 6-173
60 0-813 0-813 0-813 0:813 - 3-124 3-123 3-122 3-122
70 0-178 0-178 0-178 0-178 0-178* 1-462 1-462 1-462 1-462

T T o e e e e I AP i —
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slower for smaller side ratios and larger skew angles. This is not Surprising
because, with increasing skew angle and decreasing side ratio, there is ap
increase in the ratio between the peripheral length on which the boundary
conditions are approximately satisfied and that on which they are exactly
satisfied. It is also observed that the convergence of moment values is
somewhat slower than that of deflection. Comparison of the present ana-
lysis and results with other solutions and procedures reported in literature
shows that, for the type of problems considered, the use of rectangular
Cartesian coordinates compares favourably with the other  methods.

7. CONCLUDING REMARKS

It has been demonstrated with examples that hyperbolic trigonometric
functions in rectangular Cartesian coordinates can be effectively used for
analysing problems when the domain is rectilinear but non-rectangulay.
It has been found that the use of such functions require a proper choice of

Mmin
Other 2 4 8 16 Other
Analyes Analyes
4-79* 4 -804 4-789 4-789 4-789 4-79*
. 4-640 4-476 4-460 4-459 .
4-25 [2] 3-998 2-682 3-587 2-567 3-33 [2]
3-23 [4] 2699 2:577 2473 3-419 2-21 [4]
1-91 [2] 1-159 1-205 | -244 1-044 1-08 [2]
- 0-464 0-476 - 0-477 0-466 ‘3
8-12* 4-987 4-984 4-984 4-984 4-92%
5 4-662 4-633 4-630 4-630 .
3-690 3-677 3-669 3-668
2-277 2-336 2-356 2-398
.. 0-995 1-024 | -052 1-053 s
1-462* 0-442 0-444 0-446 0-445 0-439*
10-17* 4-635 4-635 4-635 4-635 4-64%
.. 4-283 4-290 4-290 4-290 .
3-313 3-351 3-358 3-358
2-048 2-097 2-118 2-125
5 0-952 0-962 0-972 0-971 -
1-462% 0-439 0-439 0-440 0-440 0-439*
11-89% 4-062 4-063 4-063 4-063 4-06*
.. 3-755 3-763 3-764 3-764 .
2-940 2-960 2-964 2-964
1-902 1-914 1-920 1-921
.. 0-938 0-939 0-940 0-940 .
1-462 0-439 0-439 0-439 0-439 0-439*

e
* Corresponds to Values from Ref. 1.
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the method of satisfaction of boundary conditions in order to obtain satis.
factory results with limited effort. With the Fourier expansion method for
non-rectangular shapes, convergence is obtained up to a certain stage and
then the solution deteriorates due to theill-conditioning of the equations.
On the other hand. the least square collocation procedure has invariably
yielded good convergence whenever it has been applied. Comparison of

the results by the present analysis with those by other solutions and proce-
dures reported in literature. shows that for the type of problems considered
they are highly satisfactory. Thus it may be concluded from the study that
in the direct method of analysis, it 1s not always necessary to go in for coordi:
nate systems specialised to the shape of the domain.

Further one may conclude that, for some skew domains such as the
parallelogram, the rectangular Cartesian coordinates can be superior to
oblique coordinates. It would be enlightening to compare the results with
rectangular and parallelogrammic elements for the finite element analysis
of skew plates.

Even though only simply supported edges and uniform transverse load-
ing have been considered in the present study, other types of homogeneous
edge supports and applied loadings can be analysed by choosing proper
functional forms.

Note.—Part of the work given in this paper was presented at the 23rd
Annual General Meeting of the Aeronautical Society of India. held at
Kanpur February 26-28, 197].
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