USE OF HYPERBOLIC TRIGONOMETRIC SERIES IN RECTANGULAR CARTESIAN CO-ORDINATES FOR PROBLEMS WITH ARBITRARY RECTILINEAR BOUNDARIES

K. Rajaiah and Akella Kameswara Rao
(Department of Aeronautical Engineering, Indian Institue of Science, Bangalore 56012)
Received on October 27, 1973, and in revised form on January 30, 1974

Abstract

The effectiveness of hyperbolic trigonometric series in rectangular Cartesian co-ordinates for analysing problems with non-rectangular but rectilinear domains is brought out in the present work. Three typical examples-simply supported triangular, rhombic and parallelogrammic plates under uniform pressure-are considered and elegant solutions presented. Fourier expansion, simple collocation and least square collocation techniques are followed for the satisfaction of the boundary conditions. Numerical results for the three examples are obtained for a range of skew angles and side ratios. The convergence of important parameters like maximum deflection and maximum moments with increasing order of approximation is studied. The results show that the method is capable of providing satisfactory results with limited effort in all the cases.

Key words: Solid mechanics, statics, rectilinear domains, arbitrary plates, bending.

1. Introduction

Series solutions for the Laplace and the biharmonic equations can be written down in various special coordinate systems. Hence there is a natural tendency to match the coordinate system to the geometry of a domain [1], [2], [3]. This is not always the most satisfactory procedure. The simple polar coordinates and rectangular cartesian coordinates are often far superior in application to arbitrary shapes than coordinates specialised to the shape. For example, the use of oblique coordinates for parallelogramm:c shapes appears natural. However, Silberstein [3] found that, applying oblique coordinates and civeloping a series solution ".... was quite a lengthy process, yet the accuracy achieved was sufficient to estimate deflections only; no significant results on bending moments could be obtained using the resulting solution." On the other hand the application of rectangular Cartesian coordinates can often turn out to be effective and superior.

It is the purpose of this paper to demonstrate this useful fact with a few examples in the analysis of thin plate flexure. For simplicity, the analysis is presented for simple supports and uniform transverse pressure. Triangular, rhombic, and parallelogrammic plate configurations are investigated. Depending on the ease of analysis and effectiveness, Fourier expansion, simple collocation and least square collocation methods of satisfaction of boundary conditions are followed for the different shapes considered.

2. Method of Solution

The solution for the governing differential equation for thin plate flexure $\nabla^{4} w=q / D$, can be written in the form

$$
\begin{equation*}
w^{\prime}=w_{p}+w_{c} \tag{1}
\end{equation*}
$$

where w_{p} is the particular integral satisfying $\nabla^{4} w_{p}=q / \mathrm{D}$ and w_{c} is the complimentary function satisfying $\nabla^{4} w_{c}=0$. A suitable form for w_{c} is chosen, in rectangular Cartesian co-ordinates, as

$$
\begin{align*}
w_{c}= & \sum_{m}\left[A_{m i} \cosh m x+B_{m i} x \sinh m x\right]\binom{\cos m y}{\sin m y} \\
& +\sum_{m}\left[C_{m i} \sinh m x+D_{m i} x \cosh m x\right]\binom{\cos m y}{\sin m y} \\
& +\sum_{m}\left[E_{m i} \cosh m y+F_{m i} y \sinh m y\right]\binom{\cos m x}{\sin m x} \\
& +\sum_{m}\left[G_{m i} \sinh m y+H_{m i} y \cosh m y\right]\binom{\cos m x}{\sin m x}
\end{align*}
$$

When the domain consists of straight edges, two of which are parallel, it is then possible to exactly satisfy the homogeneous boundary conditions along the two edges using a part of the solution chosen from Eqn. (2), with appropriate values for m. When the two parallel edges are simply supported, the m 's are real and integral. For other than simple supports, the m 's are generally complex. Further, when the domain has one or more axes of symmetry or skew symmetry, by a suitable choice of the terms of the series in Eqn. (2), it is possible to satisfy at least some of the symmetry conditions identically. In the present study, only real and integral values of m are encountered since only simple support conditions, are considered. In addition, $E_{m i}=F_{m i}=G_{m i}=H_{m i}=0(i=1,2)$ as the other set of constants is sufficient for our study. We shall now proceed to apply the resulting series to some typical examples.

In each example, the following steps are followed. Depending on the problem, the simple support conditions on one or more of the edges and the symmetry or skew symmetry conditions present, are exactly satisfied by a proper choice of the terms in Eqn. (2). The deflection function $w\left(=w_{p}+w_{c}\right)$ is obtained by adding a suitable particular solution w_{p} to w_{c}. The unknown parameters in the deflection function are determined by approximately satisfying the hitherto unsatisfied boundary conditions on the other edges by applying a suitable technique. The conditions on these edges may, in general, be arbitraty. Here we consider them also to be simply supported.

3. Isosceles Triangular Plates

Locating the origin at the apex ' 0 ' of the triangle $O A B$ with the y-axis normal to the edge $A B$ (Fig. 1), and with the distance $O C$ taken as π, w_{c} is chosen from Eqn. (2) with

$$
\text { (a) } m=1,2,3, \ldots \text { and } A_{m_{1}}=B_{m_{1}}=C_{m_{1}}=D_{m_{1}}=0
$$

to exactly satisfy the simple support conditions on $A B$ and (b) C_{m}, $=D_{m_{2}}=0$ so as to satisfy the symmetry conditions on $O C$ Thus

$$
\begin{equation*}
w_{c}=\sum_{m=1,2 \ldots}\left[A_{m} \frac{\cosh m x}{\cosh m t \pi}+B_{m} \frac{x \sinh m x}{\cosh m t \pi}\right] \sin m y \tag{3a}
\end{equation*}
$$

wherein the second subscript in $A_{m_{2}}, B_{m_{z}}$ is conveniently dropped without causing ambiguity.

A suitable w_{p}, satisfying all the boundary conditions that w_{c} in Eqn. ($3 a$) does is

$$
\begin{equation*}
w_{p}=\frac{q}{24 D}\left(y^{4}-2 \pi y^{3}+\pi^{3} y\right) \tag{3b}
\end{equation*}
$$

so that

$$
\begin{align*}
& w=\frac{q}{24 D}\left(y^{4}-2 \pi y^{3}+\pi^{3} y\right) \\
& \quad+\sum\left[A_{m} \frac{\cosh m x}{\cosh m t \pi}+B_{m} \frac{x \sinh m x}{\cosh m t \pi}\right] \sin m y \tag{3}
\end{align*}
$$

It is now necessary to satisfy the boundary conditions along only one of the edges, say $O B$ the conditions being

$$
\begin{equation*}
w=0, \nabla^{2} w=0 \text { on } x=t y \tag{4}
\end{equation*}
$$

where $t=\tan a$.

Substitution of the deflection function w into the boundary conditions, Eqns. (4), lead to the following pair of boundary error equations

$$
\begin{align*}
& \frac{q}{24 \bar{D}}\left(y^{4}-2 \pi y^{3}+\pi^{3} y\right)+\sum_{m}\left[A_{m} \frac{\cosh m t y}{\cosh m t \pi}\right. \\
& \left.\quad+B_{m} \frac{t y \sinh m t y}{\cosh m t \pi}\right\rfloor \sin m y=0 \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{q}{2 D}\left(y^{2}-\pi y\right)+\sum_{m} 2 m B_{m} \frac{\cosh m t y}{\cosh m t \pi} \sin m y=0 . \tag{6}
\end{equation*}
$$

In principle, the constants A_{m}, B_{m} can be determined by any one of many available methods. The functional form of the error equations (5) and (6) suggests application of Fourier analysis, in the range $y=0$ to π.
Thus

$$
\begin{align*}
\int_{0}^{\pi} & \sum_{m}\left[A_{m} \frac{\cosh m t y}{\cosh m t \pi}+B_{m} \frac{t y \sinh m t y}{\cosh m t \pi}\right] \sin m y^{\prime} \sin n y d y \\
& =-\frac{q}{24 D} \int_{0}^{\pi}\left[y^{4}-2 \pi y^{3}+\pi^{3} y\right] \sin n y d y \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
\int_{0}^{\pi} & \sum_{m}^{1} 2 m B_{m} \frac{\cosh m t y}{\cosh m t \pi} \sin m y^{\prime} \sin n y d y \\
& =-\frac{q}{2 D} \int_{0}^{\pi}\left(y^{2}-\pi y\right) \sin n y d y(n=1,2,3, \ldots) \tag{8}
\end{align*}
$$

Carrying out the integrations of Eqns. (7) and (8) we arrive at the following sets of linear simultaneous equations in A_{m}, B_{m}

$$
\begin{align*}
& \sum_{m} A_{m}(-1)^{m-n}\left\{S_{m n}-T_{m n}\right\}(m t / 2) \tanh m t \pi+\sum_{m} B_{m}(-1)^{m n}(t / 2) \\
& \quad \quad \times\left[\left\{S_{m n}-T_{m n}\right\} m / \pi-\left\{U_{m n} S^{2} m n-V_{m n} T^{2}{ }_{m n}\right\} \tanh m t \pi\right] \\
& =-\left(2 / n^{5}\right) q / D \quad \text { if } n \text { is odd } \\
& =0 \tag{9}\\
& \\
& \quad \begin{array}{ll}
(n=1,2,3, \ldots) & \text { if } n \text { is even }
\end{array}
\end{align*}
$$

$$
\begin{align*}
& \sum_{m} B_{m} m^{2} t\left\{S_{m n}-T_{m n}\right\} \tanh m t \pi \\
& =\left(2 / n^{3}\right) q \mid D \quad \text { if } n \text { is odd } \\
& =0 \quad \text { if } n \text { is even } \tag{10}\\
& \text { (} n=1,2,3, \ldots \text {) }
\end{align*}
$$

where

$$
\begin{align*}
& S_{m n}=\left[(m t)^{2}+(m-n)^{2}\right]^{-1} ; \quad T_{m n}=\left[(m t)^{2}+(m+n)^{2}\right]^{-1} \\
& U_{m n}=(m t)^{2}-(m-n)^{2} ; \quad V_{m n}=(m t)^{2}-(m+n)^{2} \tag{II}
\end{align*}
$$

4. Rhombic Plates

In this case, the origin of coordinates is located at the corner A of the rhombus $A B C D$ (Fig. 2) with the diagonal $A C$ taken to be length $\pi . w_{c}$ is given by Eqn. (2) with $m=1,3,5, \ldots$ and we can put

$$
A_{m_{1}}=B_{m_{2}}=C_{m_{1}}=D_{m_{1}}=C_{m_{2}}=D_{m_{2}}=0, A_{m_{2}}=A_{m}, B_{m_{2}}=B_{m}
$$

so that the symmetry conditions on the diagonals $A C$ and $B D$ are exactly satisfied. w_{p} is chosen as

$$
\begin{equation*}
w_{p}=q x^{4} / 24 D \tag{12}
\end{equation*}
$$

The parameters A_{m}, B_{m} are determined by satisfying the simple support conditions on one of the edges radiating from A, say $A D$. These are given by

$$
\begin{equation*}
w=0, \nabla^{2} w=0 \text { on } x=t y \tag{13}
\end{equation*}
$$

where $t=\tan a$.
Substitution of the deflection function into these equations leads to the two edge error equations,

$$
\begin{align*}
& \sum_{m}\left[A_{m} \frac{\cosh m t y}{\cosh m t \pi}+B_{m} \frac{t y \sinh m t y}{\cosh m t \pi}\right] \sin m y \\
& =-q t^{4} y^{4} / 24 D \tag{14}\\
& \sum_{m} B_{m} 2 m \frac{\cosh m t y}{\cosh m t \pi} \sin m y=-q t^{2} y^{2} / 2 D \tag{15}
\end{align*}
$$

Again, Fourier analysing Eqns. (14) and (15) in the range $y=0$ to $\pi_{i} 2$ we arrive at the following sets of simultaneous equations in A_{m}, B_{m}.

$$
\begin{aligned}
& \sum_{m} A_{m}(-1)^{m-1}\left\{S_{m n}+T_{m n}\right\} m \tanh m t \pi+\sum_{m} B_{m}(-1)^{\frac{m-1}{2}} \\
& \times\left[m t \pi\left\{S_{m n}+T_{m n}\right\}-\left\{U_{m n} S^{2}{ }_{m n}+V_{m n} T^{2}{ }_{m n}\right\} \tanh m t \pi\right]
\end{aligned}
$$

FIG.1. TRIANGULAR PLATE

FIG 2 RHOMBIC PLATE

FIG. 3. PARALLELOGRAMMIC PLATE

COORDINATE SYSTEM FOR DIFFERENT CONFIGURATIONS

$$
\begin{equation*}
=-\left[\left\{\frac{(n \pi)^{3}}{2}-12 n \pi\right\}+(-1)^{n-1} 24\right] q t^{3} / 12 n^{5} D \tag{16}
\end{equation*}
$$

and

$$
\begin{gather*}
\sum_{m} B_{m}(-1)^{\frac{m-1}{2}}\left\{S_{m n}+T_{m n}\right\} m^{2} \tanh m t \pi \\
=-\left\{n \pi-(-1)^{\frac{n-1}{2}} 2\right\} \times q t / 2 n^{3} D \tag{17}\\
(n=1,3,5, \ldots)
\end{gather*}
$$

where $S_{m n}, \ldots, \downarrow_{m n}$ are as defined in Eqn. (11).

5. Parallelogrammic Plates

In this example, the origin is situated at the centre 0 of the plate $A B C D$ (corner angles α and $\pi-a$) as in Fíg. 3. w is chosen such that it exactly satisfies the simple support conditions along the two parallel edges $A B, D C$ separated by a distance π and the skew symmetry condition

$$
w(x, y)=w(-x,-y)
$$

Then in w_{c},
(a) $m=1,3,5, \ldots$ with $C_{m_{1}}=D_{m_{1}}=0, A_{m_{1}}=A_{m}, B_{m_{1}}=B_{m}$ and

$$
\text { (b) } m=2,4,6, \ldots \text { witn } A_{m_{2}}=B_{m_{2}}=0, C_{m_{2}}=C_{m}, \quad D_{m_{2}}=D_{m}
$$ w_{p} is properly chosen as

$$
\begin{equation*}
w_{p}=\stackrel{q}{384 D}\left(16 y^{4}-24 \pi^{2} y^{2}-5 \pi^{4}\right) . \tag{I8}
\end{equation*}
$$

It now remains to satisfy the simple support conditions along only one edge, say $B C$, given by

$$
\begin{equation*}
w=0, \quad \nabla^{2} w=0 \quad \text { \&n } \quad x=c+b y \tag{19}
\end{equation*}
$$

where $\quad a=$ side ratio $=A B \mid B C^{\prime}=2 C / d \pi, \quad b=\operatorname{rot} a, C=a d \pi / 2 \quad$ and $d=\operatorname{cosec} a$.

The boundary error equations are obtained as

$$
\begin{align*}
& \sum_{m=o d d}\left[A_{m} \frac{\cosh m(c+b y)}{\cosh \frac{m c}{}}+B_{m}(c+b y) \sinh m(c+b y)\right] \cos m y \\
& +\sum_{m=000 n}\left[C_{m} \frac{\sinh m(c+b y)}{\cosh m c}\right. \\
& \left.+D_{m} \frac{(c+b y) \cosh m(c+b y)}{\cosh m c}\right] \sin m y \\
& =-\frac{q}{3 \overline{8} \overline{4} \bar{D}}\left(16 y^{4}-24 \pi^{2} y^{2}+5 \pi^{4}\right) \tag{20}\\
& \sum_{m=o d d} B_{m} 2 m \cosh \frac{m}{\cosh } \frac{(c+b y)}{m c} \cos m y \\
& +\sum_{m=\text { eoon }} D_{m} \frac{2 m \operatorname{sinn} m(c+b y)}{\operatorname{cosn} m c} \sin m y \\
& =-{ }_{8 \mathrm{D}}^{q}\left(4 y^{2}-\pi^{2}\right) \tag{21}
\end{align*}
$$

For this problem, we have found the simple collocation and least square collocation methods, to be simpler than Fourier analysis for satisfying the boundary conditions.

In the simple collocation method, we satisfy Eqns. (20) and (21) at certain discrete points along the edge $B C$. For any choice of p points, one
obtains the twin systems of simultaneous equations in $A_{m_{1}}, B_{n_{2}}, C_{m_{2}}, D_{m_{2}}$ by replacing y by $y_{i}{ }^{\prime} i=1,2,3, \ldots p$) in Eqns. (20) and (21). The solution of these equations deiermines the unknown parameters and hence completes the analysis. For convenience, one chooses a suitable number of equidistant points on the edge $B C$.

In the least square collocation method, we satisfy the boundary conditions at a larger number of points than the number of unknown parameters employed in the deflection function in a least square sense. Suppose we write m boundary equations for a deflection function with n constants where $m>n$. In matrix notation, this system of equations may be written as

$$
a(m \times n) \cdot X(n \times 1)=b(m \times 1) .
$$

As X cannot be uniquely determined from this equation, we seek a solution $X=c$ such that it minimizes the sum of the square of the residual

$$
e=a . c-b .
$$

The square of the residual e is in fact the dot product $e . e$, so that

$$
e^{2}=(a c-b)^{\mathrm{T}} \cdot(a c-b) .
$$

The minimization process requires that

$$
\frac{\delta e^{2}}{\delta c}=0
$$

which leads to the solution

$$
a^{\mathrm{T}} \cdot a \cdot c-a^{\mathrm{T}} \cdot b=0
$$

or

$$
c=\left(a^{\mathrm{T}} \cdot a\right)^{-1} \cdot\left(a^{\mathrm{T}} \cdot b\right)
$$

where the superscript T denotes the transpose of the relevant matrix. Thus we reduce the original redundant system of m equations to a determinate set of n simultaneous equations in n unknowns.

6. Numerical Results and Discussion

Numerical studies are carried out for the first three examples and the results are presented in Tables I to III.

Triangular Plates.-Table 1 contains the results for the isosceles triangular plates. Convergence studies are carried out for four values of the apex angle $2 a$ from 30° to 120°. The order of approximation M is varied from 2 to 10 . In each case the maximum deflection value and its location and

Table I

Simply supported Isosceles triangular plate under uniform pressure Effect of apex angle on convergence of deflection and moments at maximum deflection location values for various No. of terms (M)

Hyperbolic Trigonometric Functions: Fourler Expansion Method

$$
\begin{array}{ll}
\vec{w}=\left(10^{4} \mathrm{D} / q a^{4}\right) w ; \quad & \bar{M}_{c}=\left(10^{2} / q a^{2}\right) M_{e} ; \quad \bar{M}_{y}=\left(10^{2} / q a^{2}\right) M_{y}: \quad X=x_{j} a= \\
& \text { Distance of wimax from Apcx } \\
& 2 a=\text { Apex Angle : } v=0 \cdot 3
\end{array}
$$

2α	30°				60°			
M	\bar{w}	\bar{M}_{x}	\bar{M}_{ν}	X	\bar{w}	\bar{M}_{x}	\bar{M}_{\Perp}	X
2	1.542	0.989	0.879	0.775	$5 \cdot 252$	1.718	1.646	0.675
3	1.472	$1 \cdot 100$	0.727	$0 \cdot 743$	5.799	$1 \cdot 749$	1.860	0.673
4	1.436	1.067	0.708	0.751	$5 \cdot 772$	1.798	1.819	0.666
5	1.453	1.066	0.736	0.752	5.798	$1 \cdot 814$	1.803	0.666
6	1.448	1.071	0.726	$0 \cdot 750$	$5 \cdot 773$	1.808	1.797	0.666
7	$1 \cdot 450$	$1 \cdot 070$	0.726	0.751	$5 \cdot 797$	$1 \cdot 806$	$1 \cdot 809$	0.667
8	1.449	1.068	0.728	0.751	$5 \cdot 775$	1-805	1.801	0.666
9	1.450	1.070	$0 \cdot 728$	$0 \cdot 751$	5.801	1.807	1.809	0.667
10	1.449	$1 \cdot 069$	0.727	0.751	5.769	i $\cdot 805$	1.799	0.666
Likely value	1.449^{+}	1.069	$0 \cdot 727$	$0 \cdot 751$	5.785 ${ }^{+}$	1.806	1.806	0.667
Ref. 5	5.787	$1 \cdot 806$	1.806	0.667

90°				120°			
\bar{w}	\bar{M}_{g}	\bar{M}_{y}	X	\bar{w}	\bar{M}_{*}	\bar{M},	X
6.959	$2 \cdot 186$	1.845	0.551	4.761	1-294	2.019	0.503
$6 \cdot 496$	1.823	1.979	0.601	3.889	$1 \cdot 297$	1.711	$0 \cdot 510$
$6 \cdot 521$	1.678	$2 \cdot 124$	0.612	$3 \cdot 509$	1-254	1.582	0.524
$6 \cdot 560$	1.639	2.185	0.613	$3 \cdot 328$	1.198	1.542	0.538
$6 \cdot 577$	1.642	$2 \cdot 194$	0.611	$3 \cdot 237$	1-144	1. 543	0.549
$6 \cdot 581$	1.655	2.185	$0 \cdot 610$	$3 \cdot 190$	1.098	1.560	0.556
$6 \cdot 581$	1.664	$2 \cdot 176$	0.610	3-164	1.062	1.580	0.560
$6 \cdot 580$	1.668	$2 \cdot 171$	0.610	3.149	1.035	1.599	0.563
$6 \cdot 579$	1.669	$2 \cdot 170$	0.610	3-143	1.017	1.615	$0 \cdot 565$
$6 \cdot 579-$	1-669+	$2 \cdot 170^{-}$	0.610	3.140	1.017^{-}	1.615^{+}	0.567
$6 \cdot 57$	0.60	2.95			0.57

Table II
Simply supported Rhombic plate under uniform pressure Effect of corner angle on convergence of deflection and moments at centre values for various orders of approximation (M)

Hyperbolic Trigonometric Functions : Fourier Expansion Method

$$
\begin{array}{ll}
\bar{w}=\left(10^{3} D / q a^{4}\right) w ; & \bar{M}_{\max }=\left(10^{2} / q a^{2}\right) M_{\max } ; \quad \bar{M}_{\min }=\left(10^{2} / q a^{2}\right) M_{\text {min }} \\
2 a=\text { Corner Angle }: v=0 \cdot 3
\end{array}
$$

K. Rajaiah and Akella Kameswara Rao

Table III

Simply supported Rhombic plate under uniform pressure Effect of corner angle on convergence of deflection and moments at centre values for various orders of approximation (M)

Hyperbolic Trigonometric Functions : Least Square Collocation Methed

$$
\begin{aligned}
\bar{w}=\left(10^{3} D / q a^{4}\right) w ; \quad \bar{M}_{\text {max }}=\left(10^{2} / q a^{2}\right) M_{\text {max }} ; \quad \bar{M}_{\text {min }}=\left(10^{2} / q a^{2}\right) M_{\text {mix }} \\
2 a=\text { Corner Angle: } v=0 \cdot 3
\end{aligned}
$$

$2 a$	30°			45°		60°	
M	\bar{w}	$\bar{M}_{\text {max }}$	$\bar{M}_{\text {min }}$		$\bar{M}_{\text {max }} \bar{M}_{\text {min }}$		$\bar{M}_{\text {max }} \quad \bar{M}_{\text {min }}$
1	0.4852	$2 \cdot 397$	0.836	2.045	4.614 1-922	$4 \cdot 859$	6.448 3.389
2	0.4778	$2 \cdot 109$	1.091	1.442	3-276 $2 \cdot 318$	$2 \cdot 549$	4-197 3.337
4	0.4188	1.909	$1 \cdot 124$	1.326	3-222 $2 \cdot 212$	$2 \cdot 559$	$4 \cdot 2483.332$
8	0.4093	1.906	1.091	$1 \cdot 318$	3-227 2-192	$2 \cdot 560$	$4 \cdot 2533 \cdot 329$
16	0.4081	1.906	1.086	1.317	$3 \cdot 227$ 2-190	$2 \cdot 560$	4-253 3 -329
Sampath (4)	0.411	1.908	1.099	1.327	$3 \cdot 2302 \cdot 210$	2.256	4.284 3.322
Morley (2)	$0 \cdot 408$	1.91	1.09			$2 \cdot 56$	$4 \cdot 25 \quad 3 \cdot 33$
Exact (7)	0.4075	1.905	1.086	$1 \cdot 317$	3.226 2-190	$2 \cdot 560$	4-253 3-329
75°			80°			90°	
\bar{w}	$\bar{M}_{\text {max }}$	$\bar{M}_{\text {min }}$	\bar{w}	$\bar{M}_{\text {max }}$	$\bar{M}_{\text {min }}$	\bar{w}	$\bar{M}_{\text {max }} \quad \bar{M}_{\text {min }}$
7.813	$7 \cdot 121$	4.923	$8 \cdot 486$	7.016	5.352	8.953	6.3365 .921
$3 \cdot 636$	$5 \cdot 088$	3.947	3.986	$5 \cdot 334$	4.096	4.584	5.602 $4 \cdot 363$
3.626	4.786	$4 \cdot 251$	3.866	$4 \cdot 873$	$4 \cdot 460$	4.133	4.9524 .683
$3 \cdot 635$	$4 \cdot 794$	4.258	$3 \cdot 867$	4.855	$4 \cdot 486$	4.073	$4 \cdot 8104.777$
$3 \cdot 636$	$4 \cdot 796$	4.259	$3 \cdot 867$	$4 \cdot 857$	4.485	4.044	4.8074 .779
		..	$3 \cdot 877$	4.858	4.497	4.06	$\begin{array}{lll}4.79 & 4.79\end{array}$
			$3 \cdot 87$	$4 \cdot 86$	$4 \cdot 48$	4.06	$4.79 \quad 4.79$
$3 \cdot 637$	4-797	4.259	$3 \cdot 869$	$4 \cdot 856$	$4 \cdot 489$	4.062	4.7894 .789

the principal moment values at that point are presented in Table I for different α and M.

The convergence of $w_{\text {max }}$ is, in general, rapid but oscillatory. It deteriorates slightly with increasing corner angle particularly so beyond 90°. The
convergence for moments follows the same pattern. From the convergence trend, extrapolations are attempted for the actual values presented in the same table. It is noted that Conway's 5 -term values 5 (with polar coordinates) agree with our 5 -term results for $2 a=60^{\circ}$ and 90°, while for $2 a=$ 120°, the results given by Conway differ from the authors by 6 per cent.

Rhombic Plates.-Convergence studies have been made for a range of corner angles $2 a$ varying from 30° to 90°. The order of approximation M is varied from 2 to 10 . The central deflection and principal moment values are presented in Table II for different α and M wherein the exact values obtained in Ref. 7 are also given.

The results exhibit oscillatory convergence for all angles. The convergence is rapid for smaller corner angles and deteriorates slowly as $2 a$ increases. For $2 a>60^{\circ}$, the solutions with $M=6$ are within 2% of the exact values for M_{x}, M_{y} but the results deteriorate beyond $M=6$. This is clearly a result of increasing computational errors due to progressive illconditioning of the equations. We observe that the 5 -term values of Sampath [4] and the 6 -term values of Morley [2] are also very accurate. As the Fourier expansion method gives rise to ill-conditioned matrices beyond $M=6$ and $2 a=60^{\circ}$, two other methods, the simple collocation and least square collocation, were tried. Preliminary calculations showed that the simple collocation method yielded highly oscillatory, unsatisfactory results even for small corner angles, while the least square collocation gave rapidly converging values. So computations were carried out by the least square method. Equidistant collocation points are chosen on $A D$ with the number of points increased according to $r=2^{s}, s=0,1,2,3$ and $4(r=1,2,4,8$ and 16), and the number of boundary equations m is chosen as twice the number of unknown constants n. This ratio of two has been found to be about the optimum to obtain an accurate solution [6]. The central deflection and principal bending moments are determined for corner angles $2 a=$ $30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 80^{\circ}$ and 90° and presented in Table III.

The convergence of deflection values is rapid, monotonic upto $2 a=60$ 。 and oscillatory beyond $2 a=60^{\circ}$. Convergence of moment values is oscillatory and rapid for all corner angles. The 8 -term values compare very well with the exact values for corner angles upto 80°.

Parallelogrammic Plates.-From our experience with the earlier example, we choose the least square collocation method for satisfaction of the error equations. Convergence trends are studied for a range of skew angles
($\beta=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 70°) and a few side ratios ($a=1 \cdot 0,1 \cdot 5,2 \cdot 0$, and $3 \cdot 0$). Equidistant collocation points are chosen on $B C$ with the number of points increasing as $p=2^{s}-1, s=2,3,4,5$ (i.e., $p=3,7,15$ and 31). The central deflection and principal bending moments are determined for each combination of β, a and M.

The results in Table IV show that the convergence of solution is monotonic and very rapid for larger side ratios and smaller skew angles and becomes

Table IV
Simply supported parallelogrammic plate under uniform pressure Effect of side ratio and skew angle on convergence of deflection and moments at centre values for various orders of approximation (M)
Hyperbolic Trigonometric Functions: Least Square Collccation Method

$$
\begin{aligned}
\bar{w}=\left(10^{3} D / q c^{1}\right) w ; \quad \bar{M}_{\text {max }}=\left(10^{2} / q c^{2}\right) M_{\max } ; \quad \bar{M}_{\min }=\left(16^{2} / q c^{2}\right) M_{\min } \\
\beta=\text { Skew Angle; } \quad a=\text { Side Ratio; } \quad c=\text { Length of Shorter Side }
\end{aligned}
$$ $(v=0.3)$

$\begin{gathered} { }^{\text {Side }} \\ \text { Ratio } \end{gathered}$	${ }^{a} \beta^{\prime}$	2	4	${ }^{\bar{w}} 8$	16	Other Analyes	2		${ }^{\max } 8$	16
1.0	0	4.036	4.063	$4 \cdot 062$	4.062	4.06*	4.773	4.798	4.798	4.798
	15	3.825	3.649	3.638	$3 \cdot 627$		4.776	$4 \cdot 596$	4.598	$4 \cdot 598$
	30	$3 \cdot 126$	$2 \cdot 654$	$2 \cdot 578$	$2 \cdot 566$	$2 \cdot 56$ [2]	2] $4 \cdot 703$	4.083	4.028	4.023
	45	1.980	1.578	1.411	$1 \cdot 378$	$1 \cdot 33$ [4]	4] $4 \cdot 206$	$3 \cdot 458$	$3 \cdot 169$	3-105
	60	0.697	$0 \cdot 620$	$0 \cdot 544$	0.436	$0 \cdot 408$ [2]	2] 2.771	$2 \cdot 508$	$2 \cdot 250$	1.802
	70	0.173	$0 \cdot 169$	$0 \cdot 166$	$0 \cdot 170$		1.431	1.402	1.377	1.404
$1 \cdot 5$	0	7.728	7.724	7.724	7.724	7-72*	8.118	$8 \cdot 116$	$8 \cdot 116$	$8 \cdot 116$
	15	7.042	6•894	$6 \cdot 884$	$6 \cdot 884$		7.879	7.733	$7 \cdot 726$	7.725
	30	$5 \cdot 179$	$4 \cdot 846$	4.786	4.772		7.070	6.671	$6 \cdot 602$	$6 \cdot 589$
	45	$2 \cdot 740$	2.533	2.438	$2 \cdot 529$		$5 \cdot 446$	5.091	4.929	$5 \cdot 103$
	60	0.785	0.762	0.739	0.736		3.040	2.966	2.892	$2 \cdot 880$
	70	0.178	$0 \cdot 177$	$0 \cdot 176$	$0 \cdot 177$	0.178*	1.459	1.455	1.452	1.452
$2 \cdot 0$	0	10.13	$10 \cdot 13$	$10 \cdot 13$	$10 \cdot 13$	10.1*	$10 \cdot 17$	$10 \cdot 17$	$10 \cdot 17$	$10 \cdot 17$
	15	9.061	8.970	8.964	8.963		9.710	9.624	9.619	9.618
	30	$6 \cdot 298$	6.116	6.081	6.078		8.297	8.090	8.051	8.047
	45	3.057	2.967	2.924	2.912		5.945	5.798	$5 \cdot 729$	$5 \cdot 709$
	60	0.907	0.801	0.794	0.795		3.105	3.086	3.066	3.066
	70	$0 \cdot 178$	0.178	$0 \cdot 178$	$0 \cdot 178$	0.178*	1.462	1.461	1.461	1.461
$3 \cdot 0$	0	12.23	12.23	12.23	12.23	12.2*	11.89	11.89	11.89	11.89
	15	10.75	$10 \cdot 72$	10.72	$10 \cdot 72$		11.18	$11 \cdot 15$	$11 \cdot 15$	11.15
	30	$7 \cdot 107$	7.062	7.054	$7 \cdot 052$		9.153	9. 106	9.096	9.095
	45	3.227	$3 \cdot 213$	3.206	$3 \cdot 204$		$6 \cdot 208$	6.186	$6 \cdot 176$	$6 \cdot 173$
	60	0.813	0.813	0.813	0.813		$3 \cdot 124$	$3 \cdot 123$	$3 \cdot 122$	$3 \cdot 122$
	70	0.178	0.178	0.178	$0 \cdot 178$	0.178*	1.462	1.462	1.462	1.462

slower for smaller side ratios and larger skew angles. This is not surprising because, with increasing skew angle and decreasing side ratio, there is an increase in the ratio between the peripheral length on which the boundary conditions are approximately satisfied and that on which they are exactly satisfied. It is also observed that the convergence of moment values is somewhat slower than that of deflection. Comparison of the present analysis and results with other solutions and procedures reported in literature shows that, for the type of problems considered, the use of rectangular Cartesian coordinates compares favourably with the other methods.

7. Concluding Remarks

It has been demonstrated with examples that hyperbolic trigonometric functions in rectangular Cartesian coordinates can be effectively used for analysing problems when the domain is rectilinear but non-rectangular. It has been found that the use of such functions require a proper choice of

Other Analyes	2	4	M_{8}	16	Other Analyes
4.79*	$4 \cdot 804$	$4 \cdot 789$	$4 \cdot 789$	$4 \cdot 789$	4.79*
	$4 \cdot 640$	$4 \cdot 476$	$4 \cdot 460$	$4 \cdot 459$	
$4 \cdot 25$ [2]	3.998	$2 \cdot 682$	$3 \cdot 587$	$2 \cdot 567$	$3 \cdot 3 \dot{3}$ [2]
$3 \cdot 23$ [4]	$2 \cdot 699$	$2 \cdot 577$	$2 \cdot 473$	$3 \cdot 419$	$2 \cdot 21$ [4]
1.91 [2]	1.159	$1 \cdot 205$	1. 244	1.044	1.08 [2]
..	$0 \cdot 464$	0.476	0.477	$0 \cdot 466$	- 2]
8-12*	4.987	4.984	4.984	4.984	4.92*
. .	$4 \cdot 662$	$4 \cdot 633$	$4 \cdot 630$	$4 \cdot 630$	
.	$3 \cdot 690$	$3 \cdot 677$	$3 \cdot 669$	$3 \cdot 668$	
.	2. 277	$2 \cdot 336$	$2 \cdot 356$	$2 \cdot 398$.
	0.995	1.024	$1 \cdot 052$	1.053	
1-462*	0.442	0.444	0.446	$0 \cdot 445$	0.439*
10•17*	$4 \cdot 635$	$4 \cdot 635$	$4 \cdot 635$	$4 \cdot 635$	4.64*
..	$4 \cdot 283$	$4 \cdot 290$	$4 \cdot 290$	$4 \cdot 290$.
.	$3 \cdot 313$	$3 \cdot 351$	$3 \cdot 358$	$3 \cdot 358$	
	2.048	$2 \cdot 097$	$2 \cdot 118$	2.125	
	0.952	0.962	0.972	0.971	
1-462*	0.439	0.439	$0 \cdot 440$	0.440	0.439*
11-89*	$4 \cdot 062$	4.063	$4 \cdot 063$	4.063	4•06*
	$3 \cdot 755$	$3 \cdot 763$	$3 \cdot 764$	3.764	
	2.940	$2 \cdot 960$	$2 \cdot 964$	$2 \cdot 964$	
	1.902	1.914	1.920	1.921	
	0.938	0.939	0.940	0.940	
1.462	0.439	0.439	0.439	0.439	0.439*

[^0]the method of satisfaction of boundary conditions in order to obtain satis. factory results with limited effort. With the Fourier expansion method for non-rectangular shapes, convergence is obtained up to a certain stage and then the solution deteriorates due to the ill-conditioning of the equations. On the other hand, the least square collocation procedure has invariably yielded good convergence whenever it has been applied. Comparison of the results by the present analysis with those by other solutions and procedures reported in literature. shows that for the type of problems considered they are highly satisfactory. Thus it may be concluded from the study that, in the direct method of analysis, it is not always necessary to go in for coordinate systems specialised to the shape of the domain.

Further one may conclude that, for some skew domains such as the parallelogram, the rectangular Cartesian coordinates can be superior to oblique coordinates. It would be enlightening to compare the results with rectangular and parallelogrammic elements for the finite element analysis of skew plates.

Even though only simply supported edges and uniform transverse loading have been considered in the present study, other types of homogeneous edge supports and applied loadings can be analysed by choosing proper functional forms.

Note.-Part of the work given in this paper was presented at the 23 rd Annual General Meeting of the Aeronautical Society of India. held at Kanpur February 26-28, 1971.

References

1. Timoshenko, S. and Theory of Plates and Shells, McGraw-Hill, 1959, New York. Woinowsky-Krieger, S.
2. Morley, L. S. D. .. Skew Plates and Structures, 1963, Pergamon Press.
3. Sitberstein, J. P. O. .. Stutic Loading and Free Vibration of Plates, Australian Research Lab. Structures and Materials Report, 1962, p. 290.
4. Sampath, S. G. .. Some Problems in the Flexure of Thin Rectilinear Plates, 1966, M.Sc. Thesis (unpublished), Department of Aeronautical Engineering, Indian Institute of Science, Bangalore, India.
5. Conway, H. D. .. Triangular Plates Analysed by Point-Matching, J. Appl. Mech., 1962, 29, 755-756.
6. Hulbert, L. E. .. The numerical solution of two-dimensional problems of the theory of elasticity. Bulletin No. 198, 1963, Engineering experimental Station, Onio State University.
7. Rajaiah, K. and Rao, A. K. Exact analysis of simply supported rhombic plate under uniform pressure. To appear in Proceedings of Cambridge Philosophical Society.

[^0]: * Corresponds to Values from Ref. 1.

