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Abstract

In this note, the buckling of a heated annular circular plate of thickness varying as an exponentis]
functicn of radjal distance is considered. The general stability criterion hzs been derived.
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1. Introduction

‘The literature on thermal buckling of plates is rare. Nowacki? has studied the buckling
of a heated rectangular plate under various boundary conditions. The buckling and
crling of a heated thin circular plate of constant thickness has been investigated by
Mansfield® when the temperature varies through the thickness and the edges are
TStraimed. A similar problem for the buckling of simply supported plate under
*Ymmetrical temperature distribution has been described by Klosner and Forry* by
Wing Rayleigh-Ritz method. Sarkar® has discussed the thermal buckling of a circular

Plate taking jts thickness to be constant.

i Paper records the discussion of a buckled annular circular pl_ate when its thick-
Fss varies as the exponential function of radial distance under stationary temperature

Stribution. The edge of the plate is restrained. The general stability criterion h:S
i obtained from which the critical compression and critical temperature can D€

term; : ;
“mined for different values of parameters involved.
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Statement of the problem and fundamental equations
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riable thickness A = s e,
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OHSi‘_-'lEl‘ an isotropic thin annular circular plate of va
9 being constants and r the radial distance. The P
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the space —h/2 <z < h/2 and 1s subjected to stationary
c

We further assume that the edge of the ' : Mpe
. plate 1s restrained fature gig,.:
plane of the plate 1s zero. The deflections are Supp‘JSedS(: Oth;it the diSplaCe;;rthllhl.
theory of thermo-elasticity. The compression in the middle p] ¢ governed by mu.“k
to be N, = Ny, plane of the Plate 5
aﬁiuw
The equilibrium equation relating the components of m
hand is given as’ orent for the Probley
(M + aid, dr) d |
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+ AN, ¢rdidr =0
where d) is the angle subtended between the two radial planes and :
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Neglecting higher order quantities, equation (2.1) becomes
dM, ‘
M, +r = Mg+ B N,¢pr =0. | -
Substituting values of M,, Me, h, D and N, in (2.3) we get
rrd? ¢ rd
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Putting / =rfa, b = b/a the outer and inner boundaries correspond to p =1 and
p= p. Then (2.4) becomes
D ke %Pt (o — vk o 1
p'-HEg+(l kp)p dp+( p*—vkp—1)¢
dM
2 kP
ap-e s
—— DO (l —_— v) ; | (2.5)
where
2
k = 3aq, )-——-hog"a are constants.
0

We further suppose that the outer boundary of the plate is clamped and supported
and the inner boundary is clamped. Then the appropriate boundary conditions of
the problem are’

¢ =0 when p = ], p= ﬁ
o =0 when p = 1. (26)
3. Solation of the problem o " AT

Let the plate be subjected to the tempera*ture field
T(r,2) =1,(r) + z 7(r). | i -1

For a plate of medium thickness buckling occurs when © =0, 7,50, Therefore
Mr==0 and from (2.5) we get

d? ¢ do . (3.2)
g =¥ _ s g __ — = (.
p 0 + (1 —kp) p 7 + (Ap vkp — 1) @
Putting x =kp, ¢ =y eX'? the above equation becomes
.3)
a*y d l A _WNy:_(ly=0. (3
X2m+X-€?‘—l'{}:,+{(§—v)X+('k‘g 4)X }
Now writing Y = X-U2 ¢ jn equation (3.3) we obtain
3.49)
d? 42\ val £ =0 (
4X2'J§'€z+ {——3 + 2(1 -Zv)X—-(l *’E‘z)x}‘:

Again, putting

—____5:1 1 —2v
'\/ “EX=n — i
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in (3.4) we get

dn? 4 7 "

The solution of (3.5) is given by
=AW, (n) + B W_, (—mn)

where W (n) are Whittaker functions® and A, B are constants.

¢ = (kp) 122 [AWe,, (¥p) + BW_¢,y (— yp)]

where
41
y=All"1
since
dw
dtf) = — *a;
we obtain

o = AF,(p) + BFs(p) + C

‘E+{—-—I+f+*_l}§=o.

Hence

(3.

(.4

where F, (p) and F, (p) are functions of p obtained after integration and C is a constanl
of integration. Introducing the boundary conditions (2.6) in (3.8) and eliminam:

constants A4, B, C we get

The determinant on expansion yields

Wer(¥) Weey (— yB) — W_er (— ) We, (yB) = 0.

g - i 5 . o . ﬂd
This is the general stability criterion from which the critical compression .

temperature can be determined for different values of the parameters

equation (3.10) are known.

4. Nomenclature

0 = Deflection of the middie surface

# = — 22 = Slope of the middle surface

h = Thickness of the plate, a variable quantity

Wf,l (J’) W-e,l (_ J’)
We,l (yﬁ) w_ €] (_ yﬁ)
L Fy (1) Fy (1)

=0 33

(3.10
critica
if the roots
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D = T—(—f;;i A = Flexural rigidity
a = Coefficient of thermal expansion
E,v = Young’s modulus and Poisson’s ratio
M,M; = Components of moment
N, = Compression in the middle plane of the plate, a varjable quantity
a,b = Radii of the outer and inner boundaries of the plate

=
I
SR
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