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Abstract

Governing equation of a system with a linear element and a nonlinear tims varying gain can be
expressed in an integral equation form, Bellman-Gronwall Lsmma can be applied to this integr=1 equa-
tion to dzrive bounded-input-boundsd-output stability and Liapundv stability. The criterion derived
ieads to less conservative results, compared with other methods, such as circle criterion, for cases
waere the fluctuations in the gain are large and rapid. This is so because in the nmew criterion tae
gin appzas in the argam:nt of a tim: integral, waich significantly reduces the effect of fluctuations

Key words: Stability, control system, time varying system,

l. Introduction

Sufficient conditions for stability for a Lure problem having a single memoryless non-
lmear gain with large and rapid fluctuations, when derived with the help of available
methods, are generally very conservative 1» %3, This is so, because, the criteria are
derived for the maximum value and rate of change of the gain. If the governing
¢quation is expressed as an integral equation instead of a differential equation, _Bellm an-
Gronwall Lemma can be used to derive sufficient conditions for stability. In this condi-
tion, the gain appears in the argument of a time integral whic!l significartly reduces
the effect of fluctuations. As such, this method is specially suitable for cases where
the fluctuations in the gain are large and rapid. For example, if the fluctuations are
in the form of delta functions, in general, other available methods lead to very conser-

Vative results, or fail to be applicable.

2. The type of systems considered

Systems described by equations of the following type are considered;

I
Y(s) =G (s) (R(s) — U(s) (2;
u) =¢ (1, y(@)) 2(93

H-SC~S i
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where R, U and Y are Laplace transforms of r, u and y, €2) 35 an ey
¢ is such that for all #=>0 "l inpy

—BDSA—b(:)sq!’(;’y) <A+b()< B, < o

3
¢, 0) =0 )

where 4, B, and b are non-negative. t

Let H, W and ¢ be introduced such that

o = +G,;2(5 5
Y(s) = —H()[W () — R(s)] o
wt) =y (,y(0) =¢(1,y () — Ay 0
where
| (L y @) [<by(t) for all £>0 ]
The output, y, can now be expressed as,
y(@)=yt) — of R —tYW (', y) —r@a’ - 0

where y, (¢) represents initial condition response. Let X (¢) represent the state of the
system at time t. If G(s) is ™ order, then X :Rt—¢". In this +n:::1s&-:,,_||l'(f)t|l
represents Euclidean norm of X. If G represents an infinite dimensional system, 5':35
as distributed parameter or a time delay system, then a suitable normed Space
to be chosen. -

3. Theorem

0
(a) If there exist positive constants M,, M,, a and h, such that for all 12
7] < [ x©) | M, e
|h(t —1t')| < hgeett-*

(10
(1)

and

{ hob(t') Exp [—at+ [ hob(p)dp] dt’ < M; < o0
0 ¢
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the trivial solution of equations (1) and (2), for r(r) =0, is globally ffopitiy-

y g
::]aeble with respect to (l u (t)I -} | y (1) D, that is, given any ¢ >0, there is 2 § (e) >0,

qch that,
Ju(|+ ly@)]) <& for all r=0, if | X(0)f <.

(b) The trivial solution 1s globally asymptotically stable with respect to (ul+]y)]
if, in addition to conditions (10)-(12), we have

f hob(t) Exp [—at + ‘{‘ ho b (p) dp] dt - 0 (13)

l
a8 { = OQ.

(¢) The system described by equations (1) and (2) is bounded-input-bounded-output
aable if, in addition to conditiors (10) and (11), :r(t)l i1 bounded and

[ hob(t) Exp [a(t'— 1) + [ hob(p)dpl dt’ < My< oo (14)
0

tl‘

for all t =0

' Proof : Suppose,
| |r}< R for all t=>0 . (15)
It follows from relations (8), (9), (11) and (15) that

$ , ,
lyO < g+ [ hob@)| y(@)| e di (16)
0
forall t >0
Where g is defined as
h 17
=10 ) e o
a a .
Introduce v () such that | "
U(f) =y(t) et (
In“l'-’luality (16) can be rewritten as _
(!9)

2(O)<g()e® + | hob(p)v(p)dp¥ 20
0
1 . 3
Application of Bellman-Gronwall Lemma to inequality (19) Teads 1o

(V< g()e + | hob(¢)g(t) Exp [aF
’ (20)

+ J! ho b (p) dp] dt’ for all t =0
b
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or

YO <e®+ § mb() () Exp [a '~ 1)

3
+ :j hob(p)dp) dt’, for all 1> 0

)
Consider the case where there is no external input, that S, R=0 |4
from relations (12), (17) and (21) that v T be gy

9 7

|y (@) < LX) ]| Mee= (1 + f hob (") dt’ Exp '! hy bdp)

<|XO | Mo + M) for all +>0
Hence, from inequalities (3) and (22)
lu@ |+ |y < XO || Mo (1 + M)A + By) | o

for all ¢ =0

Part (a) of the theorem is proved.

If condition (13) is satisfied, it is seen from inequality (22) that y ()= 0, as1-w
Hence, u(¢) also tends to zero. Part (b) is proved.

Consider the case where || X(0) | =0. From inequalities (14), (15), (17) and (2},
it follows that

Rh, Wl
‘y(t)ls*—a—‘ (1 + M,) for all t =0
part (¢) is proved.
Example : Consider the following Hill’s equation ; 0
yW+2a+(A+f)y=0 L
s Circle cT
where £ (t) is bounded and periodic with zero mean value, and 4>
predicts stability if? ¥
If(t)IS Za\/A — a2 for all t>0
. . hoos€
In order to apply the criterion developed in this paper, let us € 9
1
HS) = g2+ 4 o

vty =1y
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then
b(f) = |f(r) ‘ < bmu (29)
] .
hy = 74 — (30)
Since, f(1) is periodic, b(7) is also periodic. Let
b()=|f@)] =fo + £ () (1)

where f, is constant and f, is periodic with zero mean,

Conditions (10) and (11) of the theorem are satisfied in this case. Condition (12)
requires that there be an M, such that

j hob (') Exp [—at + hofo (0t — ') + f filp)dp] dt’ <« M, < oo (32)

Since, f, 1s periodic and bounded, an m can be found such that

t
| | Aip)dp| < m for all «, ¢, suchthat0<1t' <t (33)
]

Inequality (32) is satisfied, if for all + >0
bm“ PALR AT (1 — e~ nru‘) < Ml e-" fo (34)

It can be seen that if

fisr=af/i—a (35)
0

nequality (34), and hence condition (12), is satisfied for sufficiently large M;. So that
Mequality (35) ensures stability. It can be shown that if

fo < a \/:4 :_aﬁ
Condition (13) is also satisfied. In which case global asymptotic stability is ensured.

If

(36)

37
J(t) =5, cos® ot >
then circle Criterion predicts stability for (38)
| by| < a JA4 =&
Whereas, the above theorem predicts stability for
(39

Ibnl-:: %EHJA—a’-

Which :
h s less conservative.

IlSLG
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We can also find an example where other methods do not o
results. Consider the equation SIVE any mﬁaningm

5 +209+(A+ I S(—m(=1)y=0

(4

Sufficient condition for glotal stability, as given by condition (36) is

aJA4—a>1
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