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Abstract 

Governing equation of a system with a linear element and a nonlineir time varying gain can be 
expressed in an integral equation form. Bellma.n-Gronwall Lemma can be applied to this integrti equa- 
tion to derive bounied-input-baunded-output stability and Liapunw stability. The criterion derived 
ieads to less conservative results, compared with other methods, such as circle criterion, for cases 
where the fluctuations in the gain are large and rapid. This is so because in the new criterion the 
gun appears in the arg 'merit of a time integral, w:lich significantly reduces the effect or fluctuations 
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I. Introduction 

Sufficient conditions for stability for a Lure problem having a single memoryless non- 
linear gain with large and rapid fluctuations, when derived with the help of available 
methods, are generally very conservative 1 1 2 1 3 . 

This is so, because, the criteria are 
derived for the maximum value and rate of change of the gain. If the governing 
equation is expressed as an integral equation instead of a differential equation, Bellman- 
Gr.  onwall Lemma can be used to derive sufficient conditions for stability. In this condi- 
tion, the gain appears in the argument of a tirn,e integral which significantly reduces 
the effect of fluctuations. As such, this method is specially suitable for cases where 
the fluctuations in the gain are large and rapid. For example, if the fluctuations are 
IR the form of delta functions, in general, other available methods lead to very conser- 
vative results, or fail to be applicable. 

2. The type of systems considered 

Systems described by equations of the following type are considered ; 

Y(s) = G (s) 	(s) 	(s)) 	
(J) 

 
u(t) 	(t, y(0) 	

(2) 
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where R, U and Y are Laplace transforms of r, u and y, ; 7 	:s an external • . Innu 40  is such that for all t 	
F t, and 

A 	b (t) SA ± b (t) B 0 < oo 

where A, B o  and b are non-negative. 

Let H, W and isk be introduced such that 

G (s)  I I (s) 	+ AG (s) 

Y (s) = — H (s) [W (s) — R (s)] 

w(t) = IP 01 Y (0) = 0 0, Y 0)) —Ay 

where 

I Ili (t,  Y (0) 'Shy (t) for all t 	0 

The output, y, can now be expressed as, 

y 	= y i (t) —5 h (t 	 y(')) 	r (r)] 
0 

where yi  (t) represents initial condition response. Let X(t) represent the state oldie 

system at time t. If G (s) is nt h  order, then X : R÷ 	e . In this case, 11 ii(t)1 

srepresents Euclidean norm of X. If G represents an infinite dimensional sysiem, such 

as distributed parameter or a time delay system, then a suitable normed 
space has 

to be chosen. 

• • 

3. Theorem 

(a) If there exist positive constants M o, M1 , a and h 0  such that for all tO (10) 

I Yi 	I 	(0) I Afs eat 

h(t —  t' )1 	h o  e-ett -t') 

and 

(tyY)  

,5 h o b (C) Exp (a at + if h o  b(p) de)] dt' 	<00 
o 	 st 

(4) 

(5) 

(6) 

(1) 

(8) 
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theft  the  trivial solution of equations (1) and (2), for r 	= 0, is globally Liapunov- 

stable with respect to (I u 	1 + 1 Y 	I), that is, given any s >0, there is a 6 (a) >0, 

such that, 

u (t) I + I y 	I) 	c for all t 	0, if 11 'CP 11 	6 . 

(b) The trivial solution is globally asymptotically stable with respect to (Iukly 
if in addition to conditions (10)414 we have 

j h o b (e) Exp [— at + f h o b (p) dp] dt 0 (13) 
0 

IS 1 -0  CO. 

I (c) The system described by equations (1) and (2) is bounded-input-bounded-output 
stable if, in addition to conditions (10) and (II), i r 0) I is bounded and 

h o b (e) Exp [a (t 1  — 4- 5  ho  b (p) dpi dt' Al 2 < 00 

0 

for all 	0 • 
Proof: Suppose, r 

IrO)ISR for all t 0 

It follows from relations (8), (9), (11) and (15) that 

(14) 

• 

(15) 

ly 0)1S OH- 1 h o  b (01 y(e) I eent -e)  dt' 
0 

(16) 

for all t 	0 

where g is defined as 

-Rhot 	h° g (I) (II X (o) M —0 — --Ts ) a 	a 
(17) 

Introduce v (t) such that 

v = y (t) eat 

Inequality (16) can be rewritten as 

2' 	g (t) e" 	fg  he 14P) v (P) dP sit 	0 
0 

APPlication of Bellman-Gronwall Lemma to inequality (19) leads to' 

v 	g eat +f h. b (e) g (C) Exp [at' 
0 

+ 1 ho  (p) dp] de for all t 0 
to 

(18) 

0 9) 

(20) 
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Or 

y 	I 	g (t) + 	h o  b 0 1) g (t ') Exp (a 	t) 

I t o  b (p) dpi dt' , for all t > 0 
(11) 

Consider the case where there is no external input, that is, R = o
. It can be st from relations (12), (17) and (21) that 

I y 	I 	0 X (0) 11 oe-°` (1 ± 	h 0  b (t') dt Exp 

11 X(0) II AI 0  (l 	MI) for all t 	0 

Jr h °  bdp) 

(21) 1  
Hence ;  from inequalities (3) and (22) 

I u (t) 1 -4- I y(01 	0 X(0) jJ M 0 (1 	MOO +B 

for all t 0 

Part (a) of the theorem is proved. 

If condition (13) is satisfied, it is seen from inequality (22) that y (t) -40, as t- ,  

Hence, u (0 also tends to zero. Part (b) is proved. 

Consider the case where I X(0) IJ = 0. From inequalities (14), (15), (17) and Oa 

it follows that 
Rh, ,, 	 (241 

I YO I 	+ M2) for all t 0 
a 

part (c) is proved. 

Example : Consider the following Hill's equation ; 
(23)  

j) (0 4- 2 cepi 4- (A f (0) y 0 

Circl e  Senn  
where f (t) is bounded and periodic with zero mean value, and A >  

predicts stability if2 	 (26) 

I .1-  (t) I S 	 for all t 	0 

In order to apply the criterion developed in this paper, let us 
choose 

(21) 

H (s) 	1  
s2 

2as 
 + A 	 (2S) 
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then 
b(t) = 11(0 1 	b man  

h = 	_ 	

(29) 
1 

° 7A —Sa2  (30) 

Since, f(t) is periodic, b (t) is also periodic. Let 

b 	11(t)1 = + (t) 	 (31) 

where fi, is constant and 11  is periodic with zero mean. 

Conditions (10) and (11) of the theorem are satisfied in this case. Condition (12) 
requires that there be an M 1  such that 

J ho b 	Exp (— at + &Jo — + 1 (1) 	di' < 	< 00 	(32) 
0 

Since, 11  is periodic and bounded, an m can be found such that 
t 

f 	(P) dp I 	m for all t, it', such that 0 S tt 	t 	 (33) 
t• 

Inequality (32) is satisfied, if for all t 	0 

b r,„ e(holo-a}t (1 — e -haY) 	es" Jo 	 (34) 

It can be seen that if 

(35) 
n o  

inequality (34), and hence condition (1 
inequality (35) ensures stability. It c 

2), is satisfied for sufficiently large M3. SO that 

:an be shown that if 

< a .1 A — 
	 (36) 

Condition (13) is also satisfied. In which case global asymptotic stability is ensured. 

1(0 b 0  coss co t 

then circle criterion predicts stability for 

1b01< ailA 	a2 
Whereas, the above theorem predicts stability for 

lb o l< 	ailA — at 4 

Which is less conservative. 
itsc,6  

(37) 

(38) 

(39) 
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We can also find an example where other methods do not give an y 	. 
results. Consider the equation 	 meaningful 

(t) 2a,P + (A + E 6(t ---n)(- 1)") y =_- 0 
(40) 

Sufficient condition for global stability, as given by condition (36) i s  

a NIA -d2 > 1  
(41) 
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