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Abstract 

This paper is a survey of the present state of understanding, prediction and control of turbulent 
flows, intended to be intelligible also to workers not directly involved in research in turbulence. 
`Complex' turbulent flows, as affected by such factors as rotation, additional rates of strain, compres- 
sibility, etc., are not covered by the survey, but an attempt has been made to include all aspects of 
simpler flows in an incompressible fluid. Inevitably, the survey is strongly influenced by the work 
done by the author himself and his colleagues. 

A major conclusion of the survey is that there are still wide gaps between the experimental discoveries 
being made on the structure of turbulent flows, the mathematical tools necessary for describing such 
structure, the numerical models invented for predicting turbulent shear flow behaviour, and the devices 
being tried for turbulence management. A great deal of work is necessary in all areas before these 
gaps can be bridged. 

Key words : Turbulent flows, incompressible fluid, turbulence management, irregular eddying motions, 
Reynolds number, chaotic fluid motions, boundary layer. 

1. Introduction 

" I had less difficulty in the discovery of the motion of heavenly bodies in spite of 
their astonishing distances, than in the investigation of the movement of flowing water 
before our very eyes." 

Galileo 

Although Galileo, Leonardo and many others devoted some thought to the irregular 
eddying motions that are so familiar in air and water, the scientific study of the 
problem of turbulent fluid flow may be said to have begun only about a hundred 
years ago, with Reynolds's famous paper of 1883'. Reynolds made the important 
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distinction between laminar and turbulent flow—or between ' direct ' and sinuous ' 
motion, as he called them—and showed that the criterion governing 

transition from 

one state of flow to the other is the non-dimensional 
group that has since come to 

be known as the Reynolds number. (Incidentally, Reynolds's use of the word ' sinuous ', 

for what later came to be called ' turbulent ' following Lord 
Kelvin (1887), appears 

now to be not without some virtue, in the light of recent work that indicates a far 

greater degree of spatial order in the turbulent flow than had been generally thought 

for a long time : see section 7 below.) In spite of much inspired and ingenious work 
by experimenters and theoreticians, and by engineers, mathematicians and physicists, 
however, it is to this day not possible to predict such simple gross parameters as 

e.g. the pressure loss experienced by a fluid in turbulent flow through a Pipe the 

loss is of course known, but has not yet been deduced from first principles (say the 
Navier-Stokes equations), without having to appeal to pipe-flow experiments at 
some stage. Although analyses of various kinds enable one to reduce the amount 

of testing required, it cannot yet be eliminated. 

A more complicated problem is that presented by the flow past a simple circular 
cylinder. Figure 1 shows the data collected by Roshko 2  on the base pressure coeffi- 
cient, measured at the rear of the cylinder, as a function of the Reynolds number. 
The function shows at least three maxima and two minima ; and it is still a matter of 
debate what the limiting value of the pressure coefficient will be as Reynolds number 
tends to infinity. There is no satisfactory theory that can predict the pressure varia- 
tions shown in fig. 1 (but a fascinating account of the phenomena responsible has 
been given by Roshko and Fiszdon3). 

The difficulty encountered by Galileo therefore still persists. Feynman has called 
turbulence the greatest puzzle in classical physics. Turbulence is so often the natural 
state of fluid motion in technological applications, and in the atmosphere and the 
oceans—that the potential rewards for being able to ' manage ' it (see section 8 
below) would be immense : Reynolds himself seems to have realized this, and listed 
the factors conducive to direct and sinuous motion (see Table I). 

The defining characteristics of turbulent motion are that it is : 

— unsteady, 
— chaotic, 
— rotational. 

The field variables in turbulent flow are time-dependent ; they may 
of course be steady in the mean, i.e., statistically stationary. If a turbulent field is sought to be expressed 

as a superposition of sine waves, it will be found that all wave numbers 
would have to be included. The element of ' chaos ' is essential, but all chaotic fluid motions are not necessarily turbulent ; e.g., acoustic noise and random gravity 
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Fin. 1. Experimental data on pressure at the rear stagnation point in flow past a circular cylinder 
(Roshko 2) ; the pressure Pb is expressed as the coefficient (pa  —p a0)14 PU2, where pa, and+ pU2  are 
respectively the static and dynamic pressure at upstream infinity. Seven different flow regimes, 
corresponding to different Reynolds number ranges, are also sketched in the diagram, and indicate 
(in order of increasing Re) : (i) steady laminar wake with recirculating flow, (ii) unsteady far wake, 
(iii) vortex shedding, (iv) transition in wake, (v) transition in free shear layer following separation, 
(vi) laminar separation followed by transition and. turbulent reattachment, comprising a separation 
bubble, followed by turbulent separation, (vii) transition to turbulent boundary layer on cylinder, 
followed directly by turbulent separation. 

waves both involve chaotic motion, but are distinguished from turbulence in that they 
are ifrotational, whereas turbulence is basically rotational. Another kind of chaotic 
potential flow occurs, e.g., just outside a turbulent jet, being induced by the (rotational) 

turbulence within the jet 4  but this potential turbulence' decays as it cannot sustain 



Particular variation of velocity 
stream, as when a stream flows 
still water. 
Solid bounding walls. 
Diverging solid boundaries. 
Curvature with the velocity 
inside. 

across the 
through 

greatest on the 

It. NARASIMHA 
4 

Table I° 
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Circumstances anducive to sinuous or unsteady motion 
Direct or steady motion 

• 

Viscosity or fluid friction which continually 
destroys disturbances (Treacle is steadier 
than water). 
A free surface. 
Converging solid boundaries. 
Curvature with the velocity greatest on the 
nt itisde. 

From Reynolds"8. 

itself*, and is therefore of no great interest. Finally, turbulent motions are generally 
three-dimensional, but two-dimensional turbulence is neither trivial nor academic : 
a form of it occurs in large scale motions in the atmosphere 6, and in certain magneto- 
hydrodynamic flows'. 

We may in summary say that turbulence 
be associated irrotational motions as well. 

is chaotic vorticity, although there may 

A striking feature of turbulence is that it is intermittent in many rather different 
senses. First of all, turbulent shear flows have a surprisingly sharp although convo- 
luted and fluctuating boundary (fig. 2); wakes, jets and boundary layers all provide 
examplen. Thus, a probe placed towards the edge of such a flow shows a trace 
of the kind illustrated in fig. 3, revealing distinct periods of activity when .a 
turbulent patch passes the probe. Secondly, if the velocity signal at any point in 
a turbulent flow (not necessarily sheared) is filtered at a sufficiently high frequency, 
it is again found that there are periods of intense activity followed by relative lulls ; 
thus, the dissipation which occurs at these high wave numbers also has a certain spotty 
characteru2 2  (see KraichnanI3  for a simple argument suggesting why the fine-scale 
strutucre of turbulence should be intermittent). Thirdly, during transition from 
laminar to turbulent flow, turbulence often first appears in relatively well-defined 
' spots ', entirely surrounded (both upstream and downstream) by laminar flow. For 
example, in the boundary layer on a flat plate, turbulent and laminar flow are not 
separated from each other across a jagged line spanning the flow, as had once been 
thought ; instead, there are many ' islands ' of turbulence, which grow downstream 
and eventually cover the whole flow 140: 5 . Although these intermittencies have been 
measured, and sometimes there are satisfactory models for them", no convincing 
dynamical theories of the phenomenon exist. 

* Phillips's theory, 
predicting a decay of energy in the potential turbulence as the inverse four? 

Power of distance away from the jet, is in surprisingly good agreement with 
measurements (Bradshaw) • 
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FIG. 2. The edge of a turbulent boundary layer, as seen in smoke-flow visualizations. 

Finally, the production of turbulent energy in many flows, including in particular 
the turbulent boundary layer, is very bursty ', in the sense that production does not 
occur uniformly in time but in short, intense bursts of activityP. 

There is no evidence whatsoever to suggest that the phenomenon of turbulence is 
beyond ' the Navier-Stokes equations ; certainly, turbulence is entirely consistent with 

them, whose consequences 4nso far as they can be deduced at all are borne out by 
all measurements made to-date. It is sometimes argued that the phenomenon of turbu- 
lence must be traced to the motion of molecules. All phenomena must of course be 
capable of explanation eventually in terms of molecules (or even more fundamental 
particles), but they cannot hold the key to turbulence as fluids with vastly different 
molecular structure (e.g., air and water) exhibit the same flow structure in equivalent 
flow conditions (e.g., at the same Reynolds number). In any case, at normal tempe- 
rature and pressure the mean free path air is about 10 m, which is far smaller than in 
the smallest eddies of interest in turbulent flow, which in typical laboratory or atmos- 
pheric situations would be of the order of 10-4  m. Thus, except in cases where giant 
molecules are involved, we may safely assume that it is unnecessary to invoke mole- 
cules in the study of turbulence. 

The century of studies of turbulent flow is marked by certain well-defined advances ; 
Table II lists some of these. 

.0 
The present paper is a general survey of the present status of understanding and 

research on the turbulence problem. 	It is not claimed to be complete : effects of 

compressibility, body force, rotation, etc., are not considered at all. 	On the other 

hand, all aspects of low speed turbulent flow in the absence of 	the complicating 

factors mentioned are sought to be covered, in the hope that the reader can get a 
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FIG. 3. Hot wire traces of longitudinal velocity in boundary layers ; values of the intermittenci 
are also marked on most traces. 

/1/41-A5, constint pressure boundary layer uniergoing transition from laminar to turbulent flow, 
after being tripped by wire oi surface. The traces were all taken at a distance of about 03 mat 
above the surfio, bit at diffetent streamwise stations. Tollmien-Schlichting instability waves can be 
observed in traces Al, A2. Note the striking changes in velocity in traces A2, A3, corresponding to 
the passage of turbulent spots past the probe : there is clearly an appreciable change in be 
fluctuating ani mean velocity levels within the spot. A5, fully turbulent flow. The slight Battening 
of the traces near the top is due to overloading of the in.strumentation. 

	both the 

B1, B2 show intermittency towards the outer edge of the boundary layer ; there are strong . flUCtUr 
tions as each turbulent tongue (see fig. 3c) crosses the probe, but clearly no appreciable difference 
in mean velocities. 

CI, C2 : filtered longitudinal velocity signals in fully turbulent boundary layer, revealing bursts Or 
pulses of high activity. Cl is band-passed through 803-5000 Hz, at Re o  = 1110. CZ is filtered a 
6 kHz, Re g = 9450. Note the richer high-frequency structure at the higher Reynolds number' s? • 

at 
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feel for the present position (as seen by the author !). For a more detailed account of 
some of the topics dealt with here, the reader is referred to Liepmann 18 ,19 , Batchelor", 
Bradshawn,", Townsend's, Durst et al" and the papers on turbulence in Narasimha 
and Deshpande25. 

Table II 

History of studies of turbulent flow 

Event 
	

Reference 

Formal recognition of two states of fluid motion ; discovery of 
the Reynolds number as the criterion governing transition, 
Reynolds' averaging. 

Use of the word'turbulence' 

Introduction of eddy viscosity 

Study of eddies in atmosphere ; diffusion 

Mixing length theory 

Hierarchy of eddies ; cascade process 

Statistical throry, use of generalized harmonic analysis 

Discovery of log law ' in flow near surface, and of outer 
'defect' law 

Theory of spectrum at high wave numbers 

Exploration of possibilities of electronic computation 

Development of statistical theory for homogeneous turbulence 

Role of instability in transition to turbulence 

The turbulent spot' 

Concepts of equilibrium and self-preservation 

The bursting phenomenon in boundary layers 

Evidence for .coherent structures 

Hagen (1839) 
Reynolds (1883) 
Reynolds (1894) 

Kelvin (1887) 

Boussinesq (1897) 

Taylor (1915, 1921) 

Taylor (1915), Prandtl (1925) 

Richardson (1922) 

Taylor (1935) 

Prandt1 (1925) 
Karman (1930) 

Kolmogorov (1941) 

Von Neumann (1940s) 

Batchelor (1953) 

Schubauer and Skramstad (1947) 

Emmons (1951), Schubauer and 
Klebanoff (1955) 

Clauser (1954), Townsend (1956) 

Kline et al (1967) 

Brown and Roshko (1971, 1974) 

Use of big c:omputing' for calculation of turbulent flows 
	

Now a minor industry ! 
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2. The Reynolds equations 

As just mentioned, we shall consider here only the simple incompressible fluid with a 
constant viscosity and no body force. The Navier—Stokes equations for such a fluid are 

(1 1% 
div u = 0, 

du 	I v =-- p+ vV 2 il,  

representing respectively conservation of mass and 
the instantaneous velocity vector, p is the pressure, 

viscosity. 

(2.2) 

momentum. Here a = a (X, t) is 
P the density and v the kinematic 

	

A consequence of (2.2) is that the vorticity 	= curl a is governed by the equation 

do) _ 	'co = - -I- (u. grad) co = (co. grad) u ÷ v N:7 2  u , 	 (2.3) 
dt — DI 

advection 	vortex- 	viscous diffusion 
stretching 

this says that the rate of change of vorticity following a fluid particle is determined 
by viscous diffusion and vortex stretching (see e.g., Batchelor 2s, p. 267). In two- 
dimensional flow to is normal to the plane of the flow, so (a) .grad) it is zero; 
hence there is nil vortex stretching. En three-dimensional flow, if the distance 
between two neighbouring fluid particles on a vortex-line increases because of the flow, 
the vorticity increases as well ; thzile is thus an important mechanism available for 
vorticity amplification. 

One line of approach that is due to Reynolds is to split the flow into mean and 
fluctuating components, 

u = 	u'. 	 (2.4) 

The mean & here can be defined in several ways. It can be (0 an average over time 
if the flow is statistically stationary, i.e., if the statistics are time-independent ; 	an 
average over a spatial dimension if the flow is statistically homogeneous over that 
dimension, e.g., the spanwise coordinate in two-dimensional flow ; (iii) an average 
over an ensemble of identical copies of the flow in question. 

With a decomposition similar to (2.4) for p as well, the equations for the mean flow become 

div u = 0 

du 1 
-di 1-10 	+ v V2  u div 

—14 lei  
(2.5) 



TURBULENCE PROBLEM 	 9 

where we have omitted bars on u and p, and is the (kinematic) Reynolds stress tensor, 
The Cartesian component rii  represents an effective stress acting on the fluid because 
of momentum transfer due to velocity fluctuations in direction j on an elementary 
surface perpendicular to direction 1. 

We shall call (2.5) the Reynolds (or the Reynolds-averaged) equation, and shall 
always make a distinction between this and the Navier-Stokes equations (2.1) and 
(2.2). 

The Reynolds equations basically contain new unknowns M I  and so canrtot be solved 
as they stand. A dynamical equation for To  can however be obtained by multiplying 
the equation for u; (itself obtained by subtracting (2.5) from (2.1) and (2.2)) by u; 
and averaging ; the result is" 

d 40 ,• 

r 	 P S 
	•MgM. 14

\J Xk 
 ui 	I) 

bxk 	- k  bXk 
(generation) 	(viscous destruction) 

± V 	  
bX0Xt U; 	PI 

(viscous diffusion) (redistribution) 

1 
— (p'zi b• + 11'14(5 ik) (pressure transport) p xk  

u; 14;) (third order correlation) 
bxk  (2.6) 

The significance of each of the terms is indicated in brackets above, and is discussed 
in greater detail by, e.g., Bradshaw22  (also see fig. 4). 

The major feature of (2.6) that we wish to highlight here is that the dynamical 

equation for the second order product u: di  involves the third order product u; u; 
A dynamical equation for the latter can be derived along lines similar to those followed 
above, but such an equation will be found to involve fourth order products ; and so 
on. Thus, the hierarchy of equations for mean products of different orders, derived 
from the Navier-Stokes equations, does not form a closed set for any finite number 
of such products. This is the problem of closure ; it arises because of the nonlinear 
term u . V  u in the Navier-Stokes equations. 

The above problem arises even in homogeneous flow (i.e., one in which all mean 
quantities are constant in space; in particular therefore there is no shear). Thus, if in 

(2.6) we put uf  = 0, and consider the dynamical equation for u, for example*, 

* In homogeneous flow doers 0 if I 0 J. 
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we will find on the right hand side the triple product u'4 —one order higher than the  

moment being considered. 

it follows that, to solve for the mean quantities for turbulent flow using the Reynolds 
equations, closure must be ' forced ', by making suitable assumptions on the Reynolds 
stresses. None of the assumptions in use today can be called 'rational ' in the sense 

of Van Dyke', i.e., they cannot be considered approximations that become more 
nearly valid in some limit ; they are for this reason incapable of being improved upon 

(even in principle) in any systematic way. 

This leads us naturally to consider turbulence ' modelling ', which is the name given 
for constructions of closure schemes involving mean products. Although these models 
are essentially empirical, some of them seem to be quite successful in handling certain 
classes of flows. We will consider modelling in Section 5, but before doing so shall 
briefly describe certain basic considerations in the statistical theory of turbulence. 

transport in 
	

transport out 

F. 4. 
Schematic representation of terms in the turbulent energy balance equation 22 . Note  that 

production need not necessarily be always positive. In a similar equation written for the Reynolds 
Shear stresses, viscosity may also contribute to generation, in addition to its role in transport and dissipation. 
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3. The statistical theory 

3.1. Description of random fields 

Any dynamical theory of turbulent flow first needs a suitable method of description 
of the flow field. Several methods are available (see e.g., Lumley), but one of the 
earliest and still the most common, going back to G. I. Taylor's pioneering studies 
(see e.g., Taylor"), utilizes what has become known as generalized harmonic analysis. 
Among the quantities of major interest in this description are the spectrum functions 
E (k) and al (k), defined by 

u t  1 2  ) = K = r E (k) dk = f (k) Dk, 
0 (3.1) 

where k is the magnitude of a wave number vector k ; the function E (k) is the contri- 
bution to the turbulent kinetic energy K (per unit miss of fluid) from the wave 
number range dk at k, and (k) is similarly the contribution from the elementary 
volume Dk at k in wave number space. 

We could instead have asked for the wave-number contribution to the velocity 
re (rather than the energy) ; this may be expressed through a Fourier coefficient dZ (k), 
writing 

(x, = 5 exp (i k .x) dZ (k, t) 	 (3.2) 

(the integral being used as in general all wavenumbers k may be present). It can be 
shown that, for a turbulent trace of the kind shown in fig. 2, 1 di is not integrable, 
and consequently that a Fourier transform of u' does not exist, i.e., Z (k, 0 is not 
a function differentiable in k. A Fourier series for re does not exist, of course, as 
there is no basic period or fundamental ' in a turbulent signal. The representation 
(3.2) must therefore be interpreted as a Fourier -Stieltjes integral. 

We will for brevity suppress the time dependence below. The representation (3.2) 
implies that 

u' 2  ) = ( (exp 1k . x) dZ (k) [ (exp k' . x) dZ (kr ) 

= is  exp i (k k'). 	dZ (k) dZ* (le)) 

(angular brackets denote a suitable mean : see Section 1), and comparison with (3.1) 
suggests thatla we must have 

(dZ (k) dZ* (11) = 6 (k k') (1) (k) Dk. 	 (3. 3) 

Thus, if k k the coefficients dZ (k), dZ (k') are uncorrelated or statistically ortho- 

gonal to each other ; and each of them is (loosely speaking) of order (Dk) 1/2  

A generalization of (3 . 1) puts 

( 	(x) u; (x) ) = 5 Oil (k) DI() 
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so that f 	. 
A related quantity of great interest is the correlation tensor 

(x, r) 	( u4  (x) 	(x 	r)). 

If turbulence is homogeneous, i.e., its statistics are independent of space, B0  depend s  

only on the separation vector r, and not on the location x; we will then have Re  

R41 (r only). According to the Wiener-Khintchine theorem It o  and 	are Fourier 

transforms of each other : 

R if  (r) = 	(k) exp (i k . r) Dk, 

041 (k) = 87r- 	Rii  (r) exp (--1 k . r) Dr. 

The correlations Rd  clearly tell us how velocity components at different places are 
related to each other 'on an average '. Measurements of some of the R" have 
been made in a very large number of flows, and have sometimes led to interesting 
inferences on the structure of such flows 31. 

As an example, we may cite the correlation measurements of Grant 32  in a turbulent 
boundary layer, on the basis of which Townsend n proposed that the flow near the wall 
was in the form of nearly two-dimensional, upward jets marking the boundaries of 
counter-rotating, streamwise vortices —a picture not unlike that found by flow visuali- 
zation in the elaborate studies of Kline et al". 

We may generalize the definition of Ro  to include a separation in time (or 'lag' or 
delay ') as well as in space : a general 	space-time correlation' in statistatically 

stationary turbulence would be* 

t+ 

Measurements 	of such correlations in a 	turbulent boundary layer, 	reported by 
Favre et alu, show graphically (fig. 5) the time and space scales involved in 	the flow. 

Some quantitative measures of such scales are in common use. If R (s) is the 
correlation of a variable v with separation s (which may be space or time), we define 
a micro-scale A (often called after G. 1. Taylor) and a macro-scale L by the relations 
* if i= j and r = 0, Rli  reduces to the auto-correlation ' .16 (T)=-- ( u4  (ON (t .7-)) (no sum over 0 of the component ui  at a given place. The Wiener-Kliintchine relations now give 

1 f Ri('r) 21r 	
COT dr,  

Ri (r) = I tog  (Oen dco, 
where co is the frequency, and (1)4  (oo) is the spectrum—or, as it is more elaborately called, the power spectral density of u4. 
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A = a ( v 2  )1R ff  (0)} 112 , 
co 

L= 1 	R(s)ds. < v 2 
0 

[Note that A> 0 as R" (0) = d 2  Rids' 1.=0  < 01 We shall encounter these scales 
again in the following in general L represents the large scales in the turbulent flow, 
and A. appears to be characteristic of the separation between the regions of high 
vorticity that occur in the turbulent velocity field*. 

Other descriptions of turbulence could be in terms of eddies or of a series of 
stochastic processes ; these are discussed by Lumley 29 . 

3 .2. Behaviour of the spectrum 

The typical form of E (k) is shown in fig. 5. • The viscous dissipation is proportional 
to the viscosity and to the square of the velocity derivatives ; hence in terms of E 
the dissipation is 

6 = ( ) v k2  E (k) dk. 	 (3.4) 

The maximum contribution to c occurs therefore at higher wave numbers. Corres- 
pondingly, the low wave numbers do not suffer dissipation, and tend to remain perma- 
nent to a greater or lesser degree. 

If a bottle of liquid is shaken, turbulence is produced in the liquid ; it seems clear 
in this case that energy is put in at length scales corresponding to the size of the bottle, 
and transferred to higher wave numbers, (presumably by nonlinearity); energy must be 
dissipated at the highest wave numbers by viscosity. One may therefore visualize a 

cascade process', in which energy is transferred from low to high wave numbers and 
finally dissipated as heat (see fig. 5). For a given energy and viscosity, it is also clear 
that the scales contributing most to energy become larger as the Reynolds number 
increases ; thus the separation in wave number space between the energy-bearing and 
dissipating wave numbers increases. 

3 .3. The spectrum at high wave numbers 

Consider a turbulent flow with velocity and length scales it and L respectively, the 
Reynolds number /20 being large (a could be the 	r.m.s. value of the 	fluctuating 

velocity u`, and L could be the macroscale). 	If there is no external input of energy, 
the kinetic energy in the turbulent motion will eventually decay because of viscous 
dissipation. 	At the scales corresponding to L dissipation must be negligible, as the 

Reynolds number is large. 	It follows that the dissipation must occur at 	very small 

scales, and that this drain must be reflected in the decrease in energy of the large scales. 

* Tennekesa5  has shown that the total dissipation can be accounted for if the vorticity is confined 
to tubes with a characteristic separation of length A. 
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It further follows, by dimensional arguments, that the dissipation per unit mass 6  must 
be given by 

6  = 	63/L ; 

i.e., the dissipation is actually viscous, but it must be capable of being expressed in 
large-eddy variables, not including the viscosity. The dependence on viscosity is shown 
in terms of the ' Taylor ' rnicroscale (e.g., Batchelor", p. 100) 

6 = 	Va 2R 2  ; 
ilset 	st■ 1/ 2 

clearly 	 = 	(
a
--) • 

The actual dissipation occurs at even smaller length scales, because the velocity 
characteristic of the scale 2 is not necessarily 22. Kolmogorov 38, in his famous theory, 
argued that at very high wave numbers turbulence must be isotropic, and must depend 
only on c and v; this suggests the length and velocity scales 

= ( v6)1/43 uk  = v314 6-114 • 
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FIG. 5. Space-time iso-correlation stufaces in a flat plate turbulent boundary layer, after Favre et al 34 . 

The correlation coefficient shown at any point is with that value of the time lag that produces the 
highest correlation at that point. Two sets of curves are shown for two different points x in the 
boundary layer. Boundary layer Reynolds number is Rea r= 27900. 

(i) Fixed probe at y= 003 ô. 
(ii) Fixed probe at y= 0 - 77 5. 

Note how the maximum correlation surfaces extend over several 3 for separations (r e) in th e stream- 
wise direction, but only over a small fraction of 5 in the transverse direction (re), suggesting the 
presence of relatively slender streamwise structures in the turbulence. 

If the maximum correlation at separation r„, occurs at a time delay sr„„ then the quantity dr m /dr„, 
represents the velocity of propagation of maximum correlation, often called the celerity 	In turbu- 
lent boundary layers, experiments suggest that the celerity in the outer region of the boundary layer 
is about 0 - 8 times the free stream velocity. 

note that the Reynolds number 

uk / v = 1, 

as we should expect when viscosity is dominant ; and also that 
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The universal spectrum at high wave numbers must therefore have the form 

E (k, t) = Uft lft  g (ki k) 

where g is a universal function. A principle that is often used in turbulence is that 
a viscous limit like the above must match the inviscid limit valid at lower wave number s  

(see Section 4). Thus, as k decreases, E in (3 .5) should become independent of 

viscosity. Using (3 .4), this requires that 

E (k) = a62 / 3  lc", 	 (3 .6) 

where a (according to Kolmogorov) should be a universal constant, i.e., the same in 

all high Re flows. (3 .6) should be valid in the so-called inertial ' sub-range. A detailed 

discussion is presented by Batchelor'. 

Much effort has been expended to determine_ whether the Kolmogorov spectrum is 
valid. The most impressive evidence for the IC" law is provided by the experiments 
of Grant et ft' in Discovery Passage, off the coast of Vancouver (fig. 6). Although the 

dependent on 
condition of 
formation 
a E(k t) small at 

independent of condition 
of formation 

E (10) 
	 e2 k  

1k 4  

  

k K 

universal equilibrium  range largest eddies of 
parmanent character conet rerg  al ininy- 9eddies 

inertial e 2  
subrani const. 

Re)! >>> I 
Fla. 6. The spectrum E (k, 0 in decaying homogeneous turbulence (i.e., turbulence which is statisti• cally uniform over all space, but decays because there is no forcing or turbulent energy Production). 
For 'largest eddies of permanent Character' it has been proposed by Loitsianskii that 

E (k)--= ( ) k P  
and by Saffman that E (k)=-- ( )k2 . In the diagram, kK  is the Kolrnogorov wave number, and A is the Taylor microscale, 
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exponent of k in the inertial sub-range is evidently very close to the Kolmogorov 
value, there is no agreement on the precise value of a. (—it is around 1. 5)*, and often 
the turbulence even in the dissipation range is not isotropic. 

In 1962, Kolmogorov published a modification of the theory, to account for the 
spottiness of dissipation that we have noted in Section 1 38. Many attempts, too 
numerous to mention here, have been made to demonstrate by more elaborate dynamical 
theories the correctness or otherwise of the Kolmogorov spectrum ; and, when it is 
inferred to be correct, to estimate the value of a. In particular, Kraichnan has over 
the last three decades used perturbation methods developed in quantum mechanics for 
attacking the problem ; a full account of this kind of theory will be found in Leslie n. 
However, these calculations make a variety of assumptions whose validity is hard to 
assess ; furthermore, all calculations of this kind do not agree among themselves. 

Yakhot" has recently developed a dynamic ren.ormalization group method to study 
the spectrum of turbulence in a randomly stirred fluid. He assumes that the stirring 
force decreases as an inverse power of k for large wave numbers. He concludes that 
the spectrum 

Ic-5/ 3  E (k) 	) kL 

at large k; the Kolmogorov spectrum without corrections never exists in the high 
wave number limit. It would appear that some of the conclusions of Yakhot's theory, 
in particular for the moments, are in qualitative agreement with recent observations 
by Klebanoff and his colleagues. 

4. Some general principles in turbulent shear flows 

Before examining the more elaborate numerical models that are now being constructed 
in such profusion to calculate turbulent shear flows, it is necessary to ask whether any 
general features or principles governing such flows can be identified. We attempt in 
this section to describe such principles in the hope that they will give an overall 
appreciation of the qualitative behaviour of turbulent shear flows. 

4.1. Rapid distortion 

There are many situations in which a turbulent field is strained rapidly. Examples are 
provided by flow through a wind tunnel contraction or rocket nozzle, round a building 
or hill, past a Prandtl—Meyer corner at supersonic speeds or in a highly accelerated 
shear layer. If the final position of a fluid particle in such a flow is determined by the 

* Townsend 23  (p. 98) summarises and critically examines available experimental data on C 18a/55 
and concludes C 0.50 ± 0.03. 
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imposed strain to within a distance less than the (macro-) scale of turbulence, it c an  

be shown that both inertial and viscous forcescan be neglected n, and the proble m  
becomes linear vortex-stretching is the dominant mechanism. The condition as 

i stated is very severe, but can be considerably relaxed f interest is limited to the energy 
in the turbulence (or to the Reynolds stresses). After a detailed re-examination of the 

matter Hunt' 2  has suggested that the appropriate conditions are that 

z:g_uou  < 	< 
	

(4.1) 

where subscript 0 
distortion takes pl 
conditions similar 
flow. Conditions 
small. 

denotes the initial state, 
ace, and L is the macro-sca 
to (4 . 1) on irrotational 
(4. 1) are not infrequently 

D characterises the distance over which 
le of the turbulence ; there are two other 
fluctuations that may be present in the 
satisfied in practice, as ti ofuo  is generally 

Batchelor and Proudman 41  provide a complete solution of the rapid distortion 
problem for initially isotropic, homogeneous turbulence ; Sreenivasan and Narasimhau 
have done the same for several forms of axisymmetric turbulence. An interesting feature 
of these solutions is that the change in the turbulence intensities due to rapid distortion 
depends on the total strain experienced by the fluid, and not on the strain rate. As 
the intensities are proportional to the normal Reynolds stresses, turbulence in these 
situations resembles an elastic (but not necessarily linear) solid more than a fluid ! 

2.0 

1.0 

C71  

—In - 
12 	-08 	—04 	'0 

log x 
FIG. 7. Seventeen spectra, measured in a tidal channel, compared with the theories of Kolmogorov 
(straight line), Heisenberg (full curved line) and Kovasznay (dashed line). The data within the squar

e  are too crowded for display in the same figure, and so are shown separately. The measurements agree closely with the Kolmogorov Ic-5/ 3 
 spectrum over more than three decades in the wave number37. 
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A simple extension to shear flows* has also been made". This shows that a plane 
shear flow subjected to rapid acceleration experiences a decrease in the streamwise 
intensity, an increase in the normal intensity, and practically no change in the 
Reynolds shear stress. (Although the theories for homogeneous flow involve no 
shear stresses, the trend for streamwise and normal intensities is the same, thus reinforc- 
ing the conclusion.) The strange situation often encountered in turbulent shear flows, 
that when the flow is rapidly strained the shear stresses keep frozen at their initial 
values and do not change in step with the mean flow (see e.g. Narasimha and Sreeni- 
vasan46), is therefore quite simply the expected effect from rapid distortion. 

Townsendu: has extensively utilized rapid distortion results in formulating some 
general ideas about equilibrium in shear flows, where there are competing effects. 

Although, in general, rapid distortion 	theory 	rarely provides completely 	satis- 
factory quantitative results in any real flow ** , 	it is a simple 	limit which offers much 
insight into the behaviour of turbulence, 	and is a good 	corrective to the free (and --c— — 	— 	 _ 
often unjustified) use of concepts like eddy viscosity. 

4.2. Similarity arguments 

Inability to achieve a rational closure to the turbulence problem (mentioned in Section 2) 
has encouraged the formulation of certain general principles in the hope of 
deducing the broad features of turbulent flows without appealing to detailed models 
of questionable validity. Of course, as these general principles have not yet been 
deduced from the basic laws of fluid motion, they also remain open to some doubt ; 
they therefore remain hypotheses, and their value must be judged by their usefulness. 

Townsendu stated explicitly two principles that had earlier been used implicitly by 
many workers. The first of these, called the principle of high Reynolds number 
similarity, may be stated as follows : 

at sufficiently high Reynolds numbers, any turbulent flow away from solid 
walls does not depend directly on the viscosity of the fluid. 	 (4.2) 

Normally, 	geometrically 	similar 	flows 	(e.g., 	plane 	jets) 	would be dynamically 

	

similar as well only if Reynolds numbers were the same. 	Principle (4,2) states that if 

* It is again often thought (erroneously in my view) that rapid distortion of a shear flow is rarely 
possible. For example, Bradshaw 46  quotes the condition necessary as .ouPy <e, the rate of strain. 
But this is unnecessarily stringent, in view of (4.1). It must also be noted that, in the outer part 
of a turbulent boundary layer, ti/ey< U/8 as the total change in mean velocity across the outer 

i layer s a fraction of the free stream velocity ; furthermore the streamwise macro-scales in the boun- 
dary layer are appreciably larger than a (as the data of Favie et 41 34  mentioned in Section 3 show). 
Rapid distortion is therefore far more frequent than is generally thought. 

** For a method of applying viscous coriections, see Tucker and Reynolds'''. 

1,1.Sc.--2 
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the flows are turbulent and the Reynolds numbers are sufficiently high, geometrically 

similar flows are also dynamically similar independent of the Reynolds number. 

Thus, all incompressible turbulent plane jets are dynamically similar among themselves 
at all (sufficiently high) Reynolds numbers. 

The implication of (4.2) in general is that viscosity plays a secondary role in many 

turbulent flows ; even in the presence of a wall, e.g., in a turbulent boundary layer, 
the dependence on Reynolds number is weaker than in laminar flows. Thus, the 
skin friction coefficient c f  is proportional to Ret2  in a laminar boundary layer, to 
something like Reil" (see the Ludwieg—Tillmann relation, Section 4.3) in a 
turbulent boundary layer at moderate Reynolds numbers, and to an even smaller 
power of Re in a turbulent wall jet (Bradshaw and Gee"). 

The second principle is that 

if an equilibrium solution to the development of a turbulent shear flow 
exists, consistent with the prescribed boundary conditions and with the first 
principle (4 .2), then the flow will eventually obey that equilibrium solution. 

4 .3) 
The word ' equilibrium ' has been used in many different senses in turbulent flow, 
but we adopt here (following Narasimha and Prabhu 49) the operational definition that 

a turbulent shear flow is 
station in the region, the 
stresses exhibit similarity, 

To illustrate, consider the two va: 
priate mean velocity and stress in 
exhibit what we may call internal 

in equilibrium in a region if, at every streamwise 
distributions of mean velocity and of the turbulent 
with essentially identical velocity and length scales. 

(4 . 4) 
riables w (x, y) and To  (x, y), respectively an appro- 
a plane turbulent flow. The quantities w and T o  
similarity if we can write 

w (x, y) = w o (x)f [y18 (4, 

2 (x, y) = 70  (x) g [31(5, (x)), 

where x and y are coordinates along and normal to the stream, and iv, T o, (5 and br 
are suitable local scales. In equilibrium these scales are inter-related in such a 
manner that 

wo (x)/r  (x), 6  00/6 (x), 

and similar ratios of all other relevant mean velocity and stress scales, are independent of x. 

Townsend' calls such flows self-preserving. For a flow to be in equilibrium, the 
existence of self-preserving solutions to the equations is a necessary but not sufficient condition. 
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The word 'eventually ' in (4.3) is important. It implies the existence of a 
characteristic time beyond which the details of the initial conditions are forgotten, 
only certain grOSS parameters retaining significance (perhaps this should be stated as 
a separate principle). For example, the turbulent near-wake behind a body depends 
very much on the body and the flow conditions, including the flow Reynolds number ; 
far downstream, however, the wake attains a state of equilibrium determined entirely 
by the drag of the body, or the momentum thickness of the wake. By principle (4.2) 
the Reynolds number is irrelevant ; therefore, the equilibrium wake can depend only 
on the free stream velocity U, and the momentum thickness 0. It follows that the 
wake thickness 5 and the maximum velocity defect Iv o  must obey relations of the 

type 

510 -= f(x10), wolU = g (x10) 
	

(4.5) 

0/8 (wo /U) 1 1  

(equilibrium wake) 	_oat 

at  0 
+ 	• 
D 

40 /- 

laminar 
boundary 
layer 

0.1 • 

.• 0/8 
• 

• .; 	- 

(W O/W[I1 - (WO /U)I2] • a • • 

• circular cylinder 835 .R L.S.8100 

*) square cylinder RL::: 2240 
a 
+ flat plate R e  =3160 814000 

• twin plate 10205.ReS1500 

0.02 
0.01 
	

01 
	

LO - 

w0  /U 

no. 8. Relation between thickness and maximum velocity defect in wakes behind different two- 
dimensional bodies. The straight line is the relation for an equilibrium wake, and seems to be a 
good approximation for w0/U< 0 -  05 ; the curve is a second order approximation. In the Reynolds 
numbers RL , L = diameter of cylinder or side of square. It is interesting that the value of 015 near 
wo/U = I is close to that for a laminar boundary layer51. 
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etc., where the functions f, g are universal, if we substitute the 

equations of motion (and carry out the self-preservation analysis : s 

we get the further result that, in the far wake, 

f (x19) = ( ) (x10) 1/2 , g(4O) = ( ) (48) -112 . 

forms (4.5) in the 
e e.g., Townsendm) 

(4.6) 

This is essentially the self-preserving ' solution of Townsendn. The constants of 
proportionality in (4.6) can be determined quite accurately°, provided due care is 

taken about higher order terms. 

As will be clear, these equilibrium solutions depict the streamwise development of 
the flow, but the conditions under which they obtain are quite restricted. For example, 
to obtain an equilibrium wake takes a distance of several hundred momentum thick- 
nesses, the precise distance depending on the wake-generating body". 

Fortunately, there is a principle whose application leads us to some general infor- 
mation even well before equilibrium is reached, or even before mean velocity profiles 
become similar. This principle is that 

under conditions far less severe than necessary for equilibrium, a turbulent 
flow attains a 'fully developed state ' in which the flow parameters that 
characterise each streamwise station obey unique inter-relations among 
themselves. 	 (4.7) 

Many examples of successful application of this principle can be quoted. Thus the 
flow parameters 8 (thickness) and w o  (maximum velocity defect) in a turbulent wake 
are related to each other in a unique way (as shown in fig. 8), well before equilibrium 
is attained51 . In a turbulent boundary layer, it has been well known for a long time 
(and was particularly emphasized by Coles) that the inter-relation between the skin 
friction coefficient ci f  and the local momentum thickness Reynolds number Rea  is 
much better defined than, e.g., the relation of ef  to a Reynolds number Re, based 
on streamwise distance. (If the flow obeyed appropriate similarity laws, the relation 
with Ree  can be converted, through the use of the momentum integral, to one with 
Re, but the point of this principle is that there are useful relations in the state of 
full development even in the absence of strict similarity.) A particularly striking 
example of a successful (but empirical) relation of this type is that due lo Ludwieg 
and Tillmann53  for the skin friction coefficient, in terms of Re o  and the shape 
factor H, to be discussed in Section 4.4. 

The application of such principles to wall jets is discussed by Narasirn.hma et al4  who find that the flow development far downstream depends only on the jet momentum 
flux and the viscosity very weakly, but unmistakably, on the latter. 

The fourth principle concerns solutions in sub-domains where viscosity is important (e.g., the mean velocity near the wall in a turbulent boundary la Vele nr them en/It-4111M 
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at the high wave numbers which cause direct dissipation of kinetic energy to heat). 
The hypothesis is that 

the viscous solution valid in some appropriate sub-region of the domain of 
interest in the turbulent flow must match the viscosity-independent solution 
away from the sub-domain. 	 (4.8) 

This has been called the Millikan-Kolmogorov Principle by Afzal and Narasimha 55 , 
as its application was the basis of Millikan's argument for the log law in a turbulent 
boundary layer (Section 4.3), and of Kolmogorov's argument for the r513  spectrum 
(Section 3.2) 56. At first sight the two applications seem quite different, but it is 
easy to see that the idea in both the cases is matchability 9 . 

This matching here is not unlike that used with asymptotic expansions, as described 
e.g., by Van Dyke". There is however one important difference : because the equa- 
tions for turbulent flow are not closed, the matching condition in general leads to a 
functional equation, and not merely to an evaluation of constants, as it often does in 
the problems described by Van Dyke°. The solution of this functional equation gives 
the functional form of the solution in the appropriate sub-region. 

Because of its general success, and its avoidance of unnecessarily detailed models, 
the Mithkan-Kohnogorov Hypothesis has been applied in a variety of different flows. 
In a zero-wall-stress separating boundary layer, the hypothesis suggests an inertial 
sub-layer governed by 

U = —2 (ay)1/ 2  + (av)n co  
ko  

where a is the stress gradient, and /c o  and Co  are constants ;2358  Kader & Yaglom56, 
Yaglom6° and Afzal & Narasimhe have studied the lowstress boundary layer in 
detail. A similar study in axisymmetric turbulent layers is Afzal and Narasimha 55 . 

In two-dimensional turbulence, the application of the hypothesis leads to an inertial 
sub-range with a 1c 3  spectrum' an interesting result here is a reverse cascade that 
transfers the energy from higher wave numbers to lower ones. There is some evidence 
from measurements in the atmosphere to support the kas spectrum 6. 

4 , 3. Validity of the principles 

What is the status of the principles that we have stated above ? There can. be  no 
doubt that they are extremely useful and have led to many results which are broadly 
realistic and have been confirmed by experiments. On the other hand, none of them 
can really be said to have been established beyond doubt. In each case the experi- 
mental evidence, when closely scrutinized, turns out to be slightly less than decisive. 
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Let us take a few examples. We have used earlier the idea that the dissipation 
of energy in turbulent flow of given large scales is independent of viscosity. R ow.  

ever, the experimental evidence for this basic idea (see for example Batchelor26  p. 106) 
is by no means overwhelming. A weak dependence on the Reynolds number, in the 
range covered in the experiments, cannot be ruled out. Similarly, the rate of growth 

of the mixing layer, say a where 8 is a measure of the thickness of the layer, m ay  
be expected on the basis of the principles which we have stated to be a universal 
number as the Reynolds number tends to infinity. Measurements quoted by Brown 

and Roshko63  however show an appreciable scatter (see fig. 9). It is possible that 
the reason for this scatter is a dependence on initial conditions, such as for example 
the bpundary layer at the tip of the splitter plate from which the mixing layer 
springs. Of course, we expect that sufficiently far downstream the state of the boun- 
dary layer at the tip is irrelevant to the characteristics of the mixing layer. What 
seems clear from the experiments is that in the range of downstream development 
covered in the experiments, a dependence on the Reynolds number or a memory of the 
initial conditions still persists. A dependence on initial conditions is of course a 
reflection of the long memory of a turbulent shear flow that we shall discuss in 
Section 5. 
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no. 9. Rate of spread of a mixing layer between streams of velocity 14 and U
2 .60  is a 'voracity .  thickness of the layer, as defined by Brown 

and Roshic063, from whom this figure is taken, 
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The principle that a turbulent shear flow will eventually attain equilibrium and obey 
the self-preserving solution if the governing equations permit one, must again be 
qualified by various conditions. Certainly a time constant is involved: that is to 
say, even after the conditions requited for a self-preserving solution are satisfied, the 
flow may take a finite time—indeed often a fairly long time before it attains equili- 
brium. If flow conditions change before equilibrium has been attained, clearly the 
self-preserving solution is not of much use. A striking example is provided by the 
behaviour of a wake in a pressure gradient". 

We finally come to the matching principle. 
leading to the log law in the inertial sub-layer 
been assumed that the log law tests on a 5 
meats have tended to confirm the existence of 
exhaustive analysis of all boundary layer daU 
ment with the log law not only in constant 
subjected to very strong pressure gradients (in 
However, after a close reexamination of expel 

Since the time of Prandtl's arguments 
of the turbulent boundary layer, it has 
'cure foundation. Innumerable experi- 
the log law, and Coles" has made an 
available and shown impressive agree- 

pressure boundary layers but in those 
luding nearly separating flows) as well. 
mental data, Long and Chen°5  have 

recently sought to cast doubt on the validity or me tog taw anor ctatm mat tne 
measurements show systematic (although slight) depattures from the log law. If this 
is correct it would throw doubt on the argument leading to the log law, although 
it may not make the log law any less useful. Similarly (as we have already seen in 
Section 3) Kolmogorov's argument leading to the k -5" spectrum in the inertial sub- 
region has also been doubted. Once again experimental evidence is largely in agree- 
ment with the ka  I 3  law as we have seen in Section 3. But recent theoretical and experi- 
mental work seem to suggest that there are small but systematic departures from the law. 

The position of these so-called principles and laws is therefore slightly ambiguous. 
They are obviously very useful, 	being close to reality ; but 	they cannot still be 
elevated to the status of scientific laws, because the smaU departures noted from them 
cannot be dismissed as experimental error, and seem to indicate that the principles 
are strictly valid only under certain as-yet unstated conditions which would not always 
be 	easily 	obtained. 

4.4. The boundary layer 
Because of its importance in many applications, we consider the plane turbulent 
boundary layer in some detail. 

If the pressure gradient is zero, the boundary layer must be determined in terms 
of three basic parameters: the free stream velocity U, the streamwise station x and 
the kinematic viscosity v. Based on the hypothesis of local relations, we may expect 
that, when the flow is fully developed, all boundary layer parameters are determined 
in terms of U, v and the boundary layer thickness 3. It is convenient to use the 
momentum thickness 0 instead of 3, and look for relations of the type 

= cf  (Re0), H = H (Re 0), 	 (4.9) 
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etc., for the skin friction coefficient cf , the shape factor H, etc. (H S (5.10, Where  

ö is the displacement thickness). 

Now certain similarity arguments suggest the form of the functions (4 .9). These 

arguments must begin by 
noting that, as the mean flow equations are not closed, we ma y  

admit a characteristic Reynolds stress - say the wail stress to  -as an additional variable. 

In laminar flow el  Rea 0 (1) ; in turbulent flow cf  is higher, and we have 

cReo co as Reis oo, -+ 0. 
	 (4. 1 0) 

Introducing the friction velocity 14 = T 12 , we see that there are two vastly different 

length scales in the problem, namely vitf*  and 6. 

This suggests that the turbulent boundary layer needs an analysis of the singular 
perturbation type" ; indeed, in an early application of a kind of matching argument, 
MiIiikan" derived the log law in an inertial sub-layer of the boundary layer, 

= - zegf* 	1 
= 	In ey.4. + 

IC 
B, y + = yU*Iv, 

 

as y÷ -, 03 1  ylo 0 ; 

 

(4.11) 

ic (known as Karman's constant) and B here are universal numbers (for the constant 
pressure boundary layer on a smooth surface). The argument has been cast in the 
language of matched asymptotic expansions by Yajnik 67, but to derive (4 .11) he 
assumes specific asymptotic expansions for the stress. The application of the Millikan- 
Kolmogorov matchability hypothesis eliminates the need for such assumptions. 

Coles", after a thorough analysis, shows that all the experimental data available 
on the velocity profile can be fitted very well to a composite 'standard profile' 

= f 	+ -1--c w 0116) 
	

(4.12) 

where f (y+) represents the law of the wall, and the second term the law of the 
wake, with 

'(y0) 2 sin2  (7! -1.1  
2 6) 2  

17 being a parameter that depends on the Pressure arndient Thpra ;0 tin 

agreement on the precise values of the 
of the data indica,te" K -I= 0.4, B 	5 0, 
layer on a smooth surface). 

various parameters in these laws, 
= 0.55 (for a constant pressure 

complete 
but most 
boundary 

As already mentioned, Long and Chengs have recently cast doubt on the validity of (4.3) (and hence also on the Millikan.-Kolmogorov Hypothesis) ; but even the 
systematic departures from (4.3) noted by them appear to be so small that the log 
law will probably continue to be used as a standard. 
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If we accept the similarity 
many other results follow. For 
tion tw (obtained by putting 

arguments that lead to the composite profile (4.4), 
example, an immediate consequence is the skin-fric- 

y = 45 in (4.4)), 

/U. ,p(5 
U*  =/ 1-7—) + 2 — 

fc 
ll  = (2..V/2  

c ) 	• (4.13) 

This implies a unique relation between ch  Rea and 17, or between ch  Reo  and H as 
in the Ludwieg-Tillman relation (see Section 5.1) which can therefore be looked 
upon as a fit to (4.13) (Rea and 11 can be eliminated in favour of Reo and H using 
(4.12)). Expressions can similarly be derived for other boundary layer parameters 52 )68 . 

S. Turbulence models and closure schemes 

As will already be clear, a rational scheme for prediction of turbulent flow charac- 
teristics is not yet in sight. However, the need for making such predictions is very 
bidly felt in te;.thnology, m.:teorology, oceanography, istrophysics, etc. Many 
calculation methods and numerical models have been devised to fill this need: some 
very simple, others quite elaborate, but all (necessarily) empirical to a greater or 
lessec extent. These models differ in the degree of generality they seek to achieve, 
and in the amount of information regarding the known structure of turbulence that 
they incorporate. In the author's view, however, none of the models achieves the 
kind of success that would suggest that the model may have hit the dynamical truth. 
Thus, although it is unlikely that these models will survive far into the future, their 
use at the present time seems inevitable for making the kind of parameter estimates 
that technology needs. Incidentally, it is worth reminding ourselves that these models 
have till now been used chiefly for 	post-diction ', i.e. for comparing the results of 
calculations made with experimental data already available. 

A brief and useful summary of the current status of turb&ence modelling has 
recently been given by Ohji 69 . It has become convenient to distinguish between simple 
and complex turbulent flows: Table Ili lists some of the factors currently thought 
necessary to qualify a turbulent flow to be termed complex. In general, models for 
simple flows can now be considered satisfactory for engineering calculations, whereas 
for handling complex flows further development is necessary (Table 1V), and is in fact 
vigorously taking place. 

The schemes in use can be broadly divided into three classes: integral, differential, 
au.d spectral. 

5 .1, Integral methods 

These methods deal only with integrals of the partial differential equations of motion. 
For example, let us consider plane incompressible boundary layer flow. The Reynolds 
momentum equation in this case is 
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Table 

Factors characterising ' complex ' turbulent flows 

Wall properties 
	 Fluid properties 

Rough 
Curved 
Porous 
Flexible 

Flow conditions 

Externally turbulent 
Viscosity-dependent 
Recirculating 
Three-dimensional 
Unsteady 
Non-isothermal 
Polluted 

Compressible 
Electro-conductivz 
Reactive 
Multi-phase 
Non-Newtonian 
Baroclinic 

Additional forces 

Normal stress terms 
Buoyancy 
Centrifugal force 
Coriolis force 
Lorentz force 

• Based on °Wipe 

Table IV* 

Comparative summary of current numerical models for turbulent flows 

Integral methods Differential methods Numerical simulations 

Feature Economy Accuracy Universality 

Generation Past Present Future 

Equations Ordinary differential Partial differential Unsteady differential 
equations equations equations 

Assumptions Empirical functions Empirical constants Universal constants 

Application Simple flaws Complex flows Large-scale flows 

Utilization Routine design work Advanced design work Numcrical forecast 
Example** Entrainment method The K E method Large eddy simulations 

Isased on unite. 
** Only a typical method is cited here. 
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du _ 	
-t- 

1 dp , 
- 
b2  u ZT 

dt 	p dx 	by2 	
, (5.1) 

the corresponding momentum integral equation, often known after Karman, is (see 
e.g. Schlichtinr) 

dO + (H + 
irx 

d ln U 
2) 0  dx = cp (5.2) 

where 0 is the momentum thickness, 
free stream velocity as a function of 
friction coefficient. 

H =PIO is the shape factor, U= U(x) is the 
the streamwise coordinate x, and cf  is the skin 

In laminar flow, (5.2) is solved by assuming a velocity profile u = Uf (y, 6), where 
f is a function of the distance y normal to the surface and the boundary layer thick- 
ness 6. Such an assumption leads directly to expressions for H and ct  as well. This 
is not so in turbulent flow, where H and CI appzar as independent variables the 
reason is that it is not possible to use a profile which (without introducing additional 
parameters) is sufficiently good all across the boundary layer that it can yield useful 
estimates of H and cf  as well. The usual practice is to find additional relations for 
H and cf. 

A very large number of proposals have been made for such relations : fig. 10 shows 
some of them, from a survey made by Ronan. Among the most successful of these 
proposals is the entrainment method of Head 72  which uses the equation 

dx  (UGO) = (5 . 3) 

G = fU0 
0 

U dy = (10. 

Here G is clearly proportional to the mass flow in the boundary layer, and (5.3) 
is a statement about how this mass flow varies downstream, i.e. about entrainment. 
The equation involves two empirically determined functions 0 (G) and tg (10. 

The third relation is provided by the Ludwieg-Tillmann skin friction formula, 

CI = 0-246 x 10-°067811  (U0/ 446268 , 
	 (5.4) 

which, although now more than thirty years old, has proved remarkably durable. 

The above method suffers from the defect of taking insufficient account of the 
history ' of the flow (such methods have been called pre-historic '). There is 

considerable evidence, however, that in turbulent flows the stress cannot be uniquely 
related to the local flow field. 	For example, Narasimha and Prabhu4v showed that 
a characteristic memory length for a turbulent wake was of the order of 10 3 0, i.e. 
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FIG. 10. Al! proposed equations for the shape parameter P, for use in integral methods, can be 
put in the form 

dP 	0 dU 
 —N 

dx 	Udr 

where L is either 0 or 1, and on smaoth surfaces M and N are functions of only P and Re g . Figure 
shows H as a function of the pressure gradient parameter (01U)dUldx when dpIder = 0, in the numerous 
proposals made : note how much of the plane is covered by one proposal or the other ! (From 
Rotta, 71 , Figure 22.1). 

the stresses at any point are influenced by the previous history of the fluid that has 
reached that point over a distance of that order (fig. 11). 

This objection has been overcome to a oi 
as the 'lag-entrainment' method. Here, 
a further first order differential equation for 
defined ' equilibrium ' values of 0 (C). 
Variants of the method for use in 
formulated 74,75 , 

Dnsiderable extent by a modification known 
in addition to equations (5.2) and (5.3), 
0(G) is introduced, involving appropriately 
Details can be found in Green et al'. 
three-dimensional flow have also been 
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0 	 5.0 	 100 	 150 
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FIG. 1!. The =wry of a turbulent shear flow, as revealed by the approach of a perturbed wake 
to a new equilibrium state. The quantities q in the diagram represent non-dimensional measures of 
departure from an equiliarium state in a plane wake subjected to a pressure gradient , as indicated 
by the piran•ter A : in the exp,riment, the free-stream velocity is increased over a short distance 
from one constant value upstream to a different value downstream. The subscript on q indicates 
its value as judged from measurements of (i) Q , the longitudinal r.m.s. velocity, (ii) v, the normal 
r.m.s. velocity, (iii) the Reynolds shear stress 	Note that the approach to equilibrium is exponential 
and that the 'relaxation' distances involved are very large (56 in. = P 42 m for it, 	and 26 in. 
= 066 m for T). That is, there are measurable departures from equilibrium at distances of the 
order of 100 in.=a.  2 . 5 m downstream of a perturbing pressure gradient" ! 
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5.2. Differentid methods 

There are an enormous number and variety of turbulence models used with diffe. 
rentiaJ ' methods, which directly tackle the Reynolds equations (2.5). An `n- equa. 

tion ' model adds n partial differential equations to the Reynolds equations. 

A well-known ' zero-equation ' model introduces the eddy viscosity y r  defined by  

— VT .7.11 
	 (5.5) 

(in two-dimensional flow). Note that 17 7. (first proposed by Boussinesq 
a property of the class of flows considered and could be a function of 

that flow, but it is not a property of the fluid. Thus v r  is often taken as 
of appropriate velocity and length scales, say q and 1: 

in 1897) is 
position in 

the product 

v r  = 
	

(5.6) 

In Prandtl's mixing length theory 

q = 1 lw 	 (5.7) 

Typical variations of v r  and 1 across the boundary layer, as assumed in turbulence 
models, are shown in fig. 12. As an example of such schemes, we may cite the 
work of Cebeci and Smith 76. They assume that the eddy viscosity is given in the 
wall region by 

VT  = (0)2  [1 — exp (—y1A)] 2  1 bulby 1, 
where ic = 04 is the Karman constant, and A is a damping length given by 

= 26 (v/U* ) [1 — 1 1 saPP- R, 
vUdU —v d P = 	= 	P 

+ 	dx pUs dx • 

Flo. 12. Typical eddy viscosity and mixing length distributions across a turbulent boundary laYers 
as assumed in the calculation procedure of Cebeci and Smith". 
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In the outer layer the eddy viscosity is taken as 

VT = 0 0168 UP Y 

1  
where 7 = ± 5 . 5 (y0)6  

is the intermittency ; omission of y alters the stress distribution slightly, but hardly 
affects the mean velocity profile. 

Zero-equation models achieve closure at the mean velocity equation level of (2. 5), 
without any additional differential equations. Such models are therefore also called 

mean velocity field closure' models. 

The use of an eddy viscosity in certain flow situations has been justified by Townsendn 
through considerations of the large eddy structure ; the idea has been used extensively 
in turbulent flow computations by Cebeci and Smith'. 

Both mixing length and eddy viscosity concepts have well-known Limitations (see 
e.g. Corrsin"). For example, they imply that = 0 when Nu/by = 0, but measure- 
ments in a wall jet, for example, show that at the velocity maximum, T is not only 
not zero but quite appreciable (fig. 13). We have already referred to wake flow 
experiments° which show that no local theory would be satisfactory. Nevertheless, 
in a surprisingly wide class of flows the eddy viscosity model provides reasonable 
estimates of gross engineering parameters, even where the predictions of the stresses 
are in considerable error*. 

These models are also pre-historic ', and modifications to account for history 
effects have been made. A one-equation model which does not use eddy viscosity 
concepts but accounts for effects of history successfully (certainly in plane wakes) 
is a relaxation-diffusion equation 7809, 

thr 
dt 	 by 	by) 

where A is a relaxation frequency, 	a stress diffusion coefficient and t an equili- 
brium stress distribution. 

Nee and Kovansznays° proposed an equation of the form 

ou dv, 	
2 	(v 	 (5.8) ---t = Ay r  1-1 —B v

—T- + L 2 b
b r dt 	oy 	 y   

but this can be cast in the form of an equation for the stress by substituting v r  = 
TI(Oulby), and so is properly considered an example of a one-equation ' model. 
Relaxation equations for the mixing length have also been used. 

* This must surely mean that the same rusults can be obtained without the use of an eddy viscosity; 
thus, a suitably designed integral method should in general be equally effective, and perhaps simpler 
and cleaner as well. 
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FIG. 13. Reynolds shear stress in a wall jet in still 
(i= 1, bulby= 0), the stress is comparable to the 
vanishes at 14-1- 1. 

airI29 . Note how at the velocity maximum 
wall value, but opposite in sign ; the stress 

Among one-equation models perhaps the best-known is Bradshaw's, which models 
the equation for turbulent energy (obtained from (2.6) by putting i= j and summing). 
It is further assumed that the stress is proportional to the turbulent energy : 

(5.9) 

Obviously this cannot be universally correct, as it implies that T, like K, must always 
be positive (a counter-example is already provided in fig. 13). The model is 

ch 	, „ 	,,, , 	,r 3/ 2 
—dr = zai[ bu  

t -- ta.2 b — kurt)— =---] 	 (5.10) 
by 	max by 	L, 

where t is in kinematic units, and Tout  is its maximum value , ai  is a constant (=I 0 15)9 
and the non

-dimensional quantities 0 and La are taken to be (empirically selected) 
universal functions of yla (fig. 14). Equation (5 . 10) is hyperbolic, and Bradshaw 
et del have used a method of characteristics to integrate it. 
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Ho. 14. Empirical function used in Bradshaw's model for turbulent boundary layers. (5 here is the 
height above the surface at which the velocity is 99 . 5% of the free stream value. Ut .„, is the friction 
velocity based on Tina. 

Although (as already mentioned) the assumption (5.9) about stress in the Bradshaw 
model has obvious limitations, much information from experiments on the structure of 
turbulent means has gone into modelling the terms in the energy transport equation, 
which has therefore been widely used with much success. 

Two-equation models have been studied extensively in recent years ; the basic 
argument behind such models of the Prandtl-Kolmogorov ' class is that, in addition 
to the energy equation (5. 10) which in essence determines a velocity scale KIP, a separate 
equation for a length scale may also be necessary. Such an equation has for example 
been proposed by Ng and Spalding82 . But the dynamics governing the length scale 
is obscure. Instead of an equation for a length scale, Saffman. 83  proposes one for a 
pseudo-vorticity, which may be considered the reciprocal of a time scale. 

Perhaps the most widely investigated two-equation system is the so-called la model' 
Here an eddy viscosity is assumed in the form 

VT  = C14  K216, 

where 	is a constant and 

6 = k 3/ 2/L 

IIScr 3 
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is a dissipation rate. In plane flow, K and c are supposedly governed by the equationt 

( gC\ 	
iztA2 

di 	Virg  Sy) + VT L57-) — 

do 	b 

bY 

(VT be 	Cei
) 	E 	 62 

di  — 	-ere 	k  VT s—y 	Ce 2 -k . 

In the KE1 ' model, the constants are taken as follows. 

CA  ali. Ce Ce1 CE 2 

0 . 09 1.0 113 1 . 43 1.92 

Development of the Ke models is described by Jones and Launder 84 , Jones" and 

Launder et a186. 

An even more elaborate model would consist of a set of equations that govern the 
development of each component of the Reynolds stres tensor. In these so-called 
'Reynolds stress field closures ', the equations for the ti  take the form 

+ U —b  i4F1 P 	26 4- D -I- n — 	_ 	_ 0  _ 
ert 	1  

where each of the terms on the right is modelled. Among models of this type is one 
due to Hanjalic and Launder 87. 

We have had space to mention only one example of each kind of turbulence model ; 
there are now a large number of these models, and the number keeps growing. A 
conference held in 1968 at Stanford's , 89  took stock of the experimental data avail- 
able at the time, and the relative performance of various prediction methods. A similar 
attempt was made during 1980-81, to consider in particular complex turbulent flows, 
and to assess the data acquired and the new methods developed since the 1968 conference. 
No single method emerged as clearly superior in either conference, but the 
general consensus appears to be this'll:. Some of the simplest integral methods work 
very well in the classes of flows for which they have been tuned and tested ; the KG 
models seem to have wider applicability than the others that have been tried. It 
appears likely therefore that we will see continued use of some simple integral methods 
as well as further refinement of partial differential equation methods. Whether a 
universal model for all classes of turbulent flows will emerge is still not clear ; I consider 
it unlikely. 

6. Higher level models 

Each of the methods we have described till now postulates a mathematical model for 
the turbulent mean quantities to enable closure of the Reynolds equations: they are 
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basically empirical, in the sense that (as already pointed out) there is no implied 
rational procedure for improving any of the models. There are however some other 
approaches to the turbulence problem which involve a much lower order of modelling 
(in the sense that less is modelled, more is left to genuine dynamics). One of these is 
called 'large eddy simulation '. This class of methods, originally introduced by 
meteorologists, is now being investigated for application in technology. 

6.1. Large eddy simulation 

The basic idea here is to divide turbulent eddies into two broad classes, following the 
general description of Section 3. The large eddies carry most of the energy, and are 
chiefly responsible for so-called eddy transport : they have a long memory, depend on 
how the flow was created, and are correspondingly hard to model. On the other hand 
the small eddies are more nearly universal, and tend to depend only on certain gross 
quantities characteristic of the turbulence, such as e.g. the dissipation. It might there- 
fore be fruitful to model the small eddies but compute ('exactly') the large ones. If 
the computational grid is chosen to suit the large eddies, the small eddies are sub-grid 
scale motions ; so this kind of simulation is also often called sub-grid modelling. 

The large eddy motion is defined by a filtered or coarse-grained variable. 

q )  = ( q (x,t)) ' = f G (x,y ; P) q (y,t) Dy, 

where the dashed angular brackets indicate the filtering operation and G is a filter 
function, of effective width A in the sense that scales smaller than A are smeared out. 
For example, a Gaussian filter would be 

G (x, y ; A) = (6/7)3/ 2  ak-3  exp — (
6 (x — 

O. 

A2 ) • • 

Then we split q, 

q= (q + e = 77 + qc 
where q" is the sub-grid variable ; note that in general 

( q" )' = (q)'-((q)' y 540. 

The filtered Navier-Stokes equations can be written as 

zit = 0 bx, 
a 

to '''"' 

bte 	i bat 	1  sZP) 	( 314  ± S + A ii) 9  
,... 	+ ----- V — 	ii --j + U4 __ =2  4— 	 bx, bt 	• bx, 	p .)c, 	bxi  1 

where 

S 0 --= ( IC WI ) — ( U .1 °  li I ) — Nilis  

= the 'sub-grid stress ', 

ilii  = u)i  ul — ( ul tei  ). 
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The idea is to model the sub-grid stress here as in mean velocity field closures, a nd 

compute the filtered velocity field. 

Sub-grid modelling could use a corresponding sub-grid eddy viscosity, or could be 
more elaborate, involving equations analogous to Reynolds stress closures. Reviews 
of the present status of large eddy simulation are presented by Ferziger" and Herrine. 

Although there are still some unresolved Issues concerning the modelling of sub- 

grid motions, it would appear that the final results are not too sensitive to the sub- 

grid model. 

Indeed the solutions so obtained are quite close to observations, not only regarding 
mean parameters (fig. 15), but also on the turbulent flow structure 92 . 

However, the time taken to compute shear flows of practical interest is still very 
large ; e.g. channel flow at a Reynolds number of 5000 demands about 100 hr of the 
CDC-7600 for one solution ; to establish the validity of this solution it probably needs 
about 1000 hr. It would therefore appear that, as a method of making engineering 
calculations, large eddy simulation is still prohibitive in cost and time, but with advances 
in computing systems the situation may well change. Even otherwise, it is possible 
that exact numerical solutions on the computer would provide information on 
quantities needed in lower-order models 	quantities that are very hard to measure, 
e.g. the pressure-strain terms of (2.6). 
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FIG. 15. Results from a large eddy simulation92  of flow in a charnel (points), compared with standard loglaw profile. 
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6.2. Vortex dynamics 

We saw in Section 3 that the dynamics of much of turbulent flow, especially the large 
eddies, is largely inviscid. Recent experiments have suggested, as we shall see later, 
that in many turbulent flows there is a considerable degree of spatial order ; in parti- 
cular, mixing layers have revealed recognizable vortices. 

Several very interesting calculations have recently been made working out the dyna- 
mics of vortex filaments 03-95. For example, a plane mixing layer is computed by 
studying the evolution in time of a layer of vortices (fig. 16) which interact through 
the Biot-Savart law. The calculations are particularly simple and effective in a mixing 
layer, where at Reynolds numbers that are not too high the vortex structures are largely 
two-dimensional; thus a collection of vortex filaments provides a reasonably faithful 
representation of the actual flow. 

The effect of viscosity has been sought to be introduced in different ways, but 
none of them seems completely satisfactory. An obvious way is to include a 
viscous core, whose diameter will increase like the square-root of time by viscous 
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(i ) 

Fig. 16. (i) Streakline plots of each discrete vortex for a time (L/119) with respect to the average 
velocity. The field of view is equal to 40 L. The top plots have the origin at the left with each 
succeeding plot displaced two units downstream and two units later in time. Left column is 
Re= 250 flow and right column is Re= 1000. 

(ii) Trajectories of vorticity clusters in Re In 250 flow. Flow field shown in (i) starts at time 124 
(from Ashurst95). 
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Flo. 16. (iii) Typical results from the unsteady one-dimensional vortex calculations of Deicourt 94. 

diffusion. A more elegant way" is to impose a random walk on the filaments: 
it is well known that in the limit of small steps and times such a random walk is equi- 
valent to diffusion. Delcourt" divides physical space into a large number of cells . ; 

the position of each vortex is calculated at the end of each time step, and the vortex is 
then placed at the middle of the cell it happens to reach before the next round of dis- 
placements is calculated. It may be shown that this procedure is equivalent to the USC 

of an effective viscosity. 

40 
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In contrast to the calculations of Acton and Delcourt, who used one space dimen- 
sion + time, Ashurst" has computed the mixing layer using vortex trajectories in 
two space dimensions + time. Ash urst uses the method suggested by Chorin 96 ; 
the inviscid flow is solved via discrete vortices (no finite difference mesh is required), 
the viscous effect being incorporated in the form of a superimposed random walk of 
the vortices. If the dispersion produced by this random walk is an r.m.s. distance 
a

f' 
the effective kinematic viscosity is 

V = a,̀41A t 

where p t is the time step in the calculation. 

Calculations using point vortices experience some difficulty, with the velocity diver- 
gence at the centre ; this is tackled in Chorin's method by using a short-range cut-off 
6, so that for a radius r <ô the induced velocity has a constant value. The difference 
between the Euler solution and the numerical results can be shown to be 0 (6 2). 

7. Experimental work on coherent structures 

For about three decades following G. I. Taylor's pioneering studies in the statistical 
theory of turbulence (Section 3), experimenters concentrated on measurements of spectra, 
correlations and turbulent energy balance in a variety of shear flows. These studies gave 
considerable insight into the dynamics of such flows, but perhaps led to an over-emphasis 
on an approach to turbulence that looked upon the phenomenon as a rather complicated 
kind of noise ' (in the electrical engineer's sense). Although measurements of correla- 
tions often pointed to the presence of ordered structures, and these were identified by 
Townsendu in several flows, the inferences drawn in these cases often seemed like 
inspired guesses at best and made no strong impact on research. However, in recent 
years experimental evidence has accumulated, indicating the presence of a far greater 
degree of spatial organization than had been conceded earlier. 	la particular, the 
experiments of Brown and Roshkofia in a turbulent mixing layer provided spectacular 
visual evidence for the presence of organized motion or to use terminology that is now 
getting to be widely accepted —4  coherent structures '. 

According to Coles", the adjective coherent ' means 4  having an orderly 
logical arrangement of parts such as to assist in comprehension or recognition. 
meaning of the word structure ' is less transparent '. 1-{ussain 98  
structure as 4  a turbulent fluid mass connected by a phase correlated 

and 
The 

defines a coherent 
vorticity 

As already mentioned, the most convincing evidence of coherent motion appeared in 
the work of Brown and Roshko", one of whose shadowgraphs of a mixing layer 
between fluids of slightly different density is reproduced in fig. 17. It was at first 
difficult to believe that this picture represented turbulent flow, but the observed rate of 
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Flo. 17. Spark stradowgraph of turbulent mixing layer between nitrogen flowing at 81 m/s (upper 

stream) and helium flowing at 3 . 3 nits (lower stream) ; pressure= 4 atm.63 . Large organized vorticiil 

structures are clearly revealed. 

growth and the chaotic nature of the fluctuations at any fixed point in the flow leave 
no doubt about the point. At relatively low Reynolds number the flow organization is 
surprisingly two-dimensional, but as Re increases transverse structures develop. There 
is still some controversy about the degree of organization present at very high Rey- 
nolds numbers ; e.g., Bradshaw r2 71®  holds the view, based on his own mixing layer 
experiments, that what coherence may be present gets eventually lost. Coles's defini- 
tion of coherence, quoted above, poses a pattern recognition problem ; it is possible 
that an underlying pattern may be masked by a lot of 'hash ', making recognition diffi- 
cult in many situations. If however the hash is dynamically irrelevant (and is there only 
to confuse the observer, so to speak 9 and much of the significant transport occurs 
through the coherent structures, it becomes important to understand and identify them. 
The real significance of Brown and Roshko's work is perhaps its demonstration that a 
high degree of spatial organization is not inconsistent with turbulent transport as we 
have always known it. 

Is there a way of recognizing a coherent structure even when it is not visually appa- 
rent, as may happen either when visualization is difficult or when it is masked by 
hash' ? How do we recognize and eliminate ' hash ' ? Most attempts at answering 

this question use the concept of ' conditional ' averaging or sampling, the condition 
often being a phase. For example, we may decompose any quantity in a turbulent flow 
into three parts, 	• 
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FIG. 18. Trajectories, in the xt plane, of vortices like those shown in (i). Note the vortex amalga- 
mations taking place where two neighbouring trajectories meet and result in a single trajectory 
downstream ; also the gradual increase in separation distance between vortices as one goes downstream, 
in general agreement with turbulence similarity arguments requiring the increase to be linear. 

q (x) 	+ 	(x, 	+ qv (x, t). 
(mean) 	(coherent part) 	(incoherent or ' random ' part) 

To call (1 random may be misleading, because it would suggest that q" is deterministic— 
which would be wrong; even the coherent part has a strong random element. For 
example, the vortices in the mixing layer of fig. 17 are not periodic ; their separa- 
tion, life time and other characteristics are best described in terms of probability 
distributions (fig. 18). 

Now if a 'phase' can be defined in some meaningful way, the coherent part can be 
educed ' by averaging at constant phase; the assumption is that the so-called phase- 

average 
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( 	) co  = 0, but ( q' )* 0, 

where ( q" )4, denotes an average at fixed 0, not an average over all phases. 

As an example of such eduction, we may examine the work of CantwellW on the 
wake behind a circular cylinder at a Reynolds number (based on free-stream velocity 
and diameter) of about 140 000. He used a transducer on the surface of the cylinder 
upstream of the point of separation, and defined the phase from the nearly periodic 
signal from this transducer. (In actuality there is a jitter in the period of this signal, and 
this blurs the educed structure to some extent.) The velocity field in the wake was 

measured by a 'flying hot wire ', i.e. one which was in motion relative to the cylinder, 
to ensure that there was an appreciable relative velocity between the probe and the fluid 
even in those regions where the fluid was nearly stagnant relative to the cylinder. 

The educed flow field is shown in fig. 19; it is immediately apparent that there is a 
stone well-organized motion even at the high Re of the experiment. This coherent 
motion accounted for about half the total Reynolds shear stress in the flow. 

Perry and Watmuffi" have studied the wake behind an oblate ellipsoid and con- 
cluded that the coherent contribution is 'probably more' than 1 5-3O%. They can 
recognize the structures up to a distance of 20 diameters downstream of the cylinder. 

Because of the problems connected with phase jitter and eduction, these figures for 
the coherent contribution to momentum transport can only be a lower bound : i.e. 
the sum of the contributions from all the individual (jittering) structures is certain to 
be more, although how much more is not easy to establish. 

The main conclusion from these experiments is that the educed field is rather like 
unsteady laminar flow. We are led to suspect that, if we could properly educe the 
flow from a chimney in cross-wind, we would find it very much like that from a cigarette. 

A host of other flows have been studied in a similar way ; it is not possible to cite 
all of them here, but particular mention may be made of the many investigations of 
Hussain and his colleagues in axisymmetric jets and other free flows", and of the 
vastly more complex flow in the turbulent boundary layer by Kline et al", Corino and 
Brodkey4°3  and many otders. 

The boundary layer is worth some further attention, because of its importance. The 
flow near a surface is more complex and less evidently organized than free shear flows) 
but Kline et al" showed from visual observations that most of the turbulent produc- 
tion occurred in short periods of activity or ' bursts '. Heathershaw;" reported 
measurements in the Irish Sea that showed that events outside three standard devia- 
tions, lasting only 3% of the time, accounted for 31% of the shear stress. 

Corino and Brodker3  showed that each 
known as ejection, inrush and interaction 

burst is part of a cycle 	of 	events 	now 
respectively (fig. 	20). 	The 	formation of 
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FIG. 19- Tar.: velocity field averaged at a selected fixed phase behind a circular cylinder at a 

Reynolds number of 140 03) ult. Sixteen phases were defined in each cycle of the signal from a 
pressure transducer on the surface of the cylinder ; the signal showed a mean vortex-shedding 
frequency of 37 Hz, the actual frequency being within 10 Hz of the mean 90% of the time. 

The pictures show the velocity field in a frame of reference (a) moving with the vortices, (b) moving 

with the cylinder, 
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FIG. 20. Schematic sketch of the bursting phenomenon in a turbulent 
speed streaks occur at distances of order 100 w/U, from each other alo 
the wall is lifted and stretched by the secondary flow associated with 
resulting unstable shear layer may be responsible for a rapid increase 
energy. The bunts occur at a frequency of approximately U/R5 10k 

boundary layer". The low 
rig z ; a vortex element near 
the low speed streak. Tb 
in high frequency turbulent 

intense shear layers during ejection and inrush, leading to vortices of the mixing layer 
type, appears to play a leading role in the generation of turbulent energy and its transport. 
These observations suggest that turbulence may in a sense be continuous transi- 
tion. The frequency of occurrence of bursts scales on outer variables (say free-stream 
velocity U and boundary layer thickness 5) ; this flnding105  indicates that the flow in the 
wall layer is coupled with the outer flow, being on the one hand forced into 
catastrophic bursts every now and then by outer events, and, on the other, feeding the 
energy so created outwards during the rest of the cycle. The whole process by which 
turbulence sustains itself is in fact rather similar to that by which an internal combustion 
engine runs. The power is created during a short spark (=burst), which is made at a 
frequency determined by the rotation speed of the output shaft, which itself is deter- 
mined by the rate of energy production. The closed loop here is very similar to 
in turbulent flows; the only difference is that the cycles in turbulence are more 
irregular; it is as if the engine were sputtering and misfiring all the time ! 	

that 

Unfortunately, all this insight has not yet been trans lated into hard theory; there 
is no prediction method based on our knolwedge of coher ent structures. The formula - 
tion of such theories must surely figure prominently on the agenda for future research, 
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8. Turbulence management 

Methods of achieving turbulence control have been the subject of much research 
especially because of possible applications in technology. Perhaps management is 
a more appropriate word than control ', because both suppression and enhancement, 
of turbulence are of interest in technology, depending on the particular application. 
Suppression is useful if skin friction or fluctuating loads on a surface are to be reduced ; 
enhancement is useful if e.g. greater heat transfer is desirable or if a boundary layer has 
to overcome an adverse pressure gradient. As we noted in Section 1, Reynolds had 
already listed factors promoting and suppressing turbulence: see Table I. A classic 
example of turbulence management was Wieselsbergees use of a trip wire on a sphere, 
whose drag was thereby reduced appreciably at what would otherwise have been sub- 
critical Reynolds numbers as the enhanced turbulence delayed separation of the 
boundary layerm. 

Most methods of turbulence management now in use may be termed direct ', in. 
the sense that they involve injection or exchange of appreciable amounts of energy. 
Of course, where the goal is say a reduction of drag, there must be a net gain in energy 
for the control to be worthwhile. For example, the use of vortex generators on an air- 
craft wing entails a certain additional drag, but at higher angles of attack the energiza- 
tion of the boundary layer by the vortices will reduce the pressure (and hence the total) 
drag of the wing by preventing or delaying the separation that would otherwise have 
occurred. The use of (steady) blowing for similar purposes, or of (steady) suction of 
the wall boundary layer to reduce turbulence intensities in a wind tunnel test section, 
or the use of screens in the contraction of a tunnel to damp turbulence, all belong to 
this category. Extensive studies of boundary layer control techniques of this direct' 
type have been made for a long timeoi 7408.  Although these studies have led to the use 
of certain boundary layer devices itt practice, the spectacular savings that have always 
seemed in principle possible, specially by total larninarization of the flow, have not 
been realized in practice till today. 

This brings us to a discussion of laminarization. 

A detailed analysis and survey of such laminarizing flows ' has recently been 
published", so it is sufficient here to recapitulate the conclusions of that survey. 
First of all, there is the remarkable fact that the number of agencies that can. cause 
laminarization is so large : curvature and rotation (of the right sign*), heating, cooling, 
suction, favourable pressure gradients, magnetic fields (when the fluid is electrically 
conducting)—all these can, under the right conditions, render turbulent transport 
negligible or irrelevant. 

* The right sign for suppression of turbulence is that the sense of the rotation, or 	the 	curved stream- 
lines, must be the sane as that of the vorticity in the shear layer, 
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Secondly, one needs to be clear about what 
	laminarization ' meanst09. For  

some, laminarization can only mean the total disappearance of turbulence, o r  at least  

a tendency towards zero turbulence as an asymptotic state. This concept is clearly What  

is important to engineers who might be interested, for example, in estimating the loading 
i due to random pressure fluctuations on a surface n a flying vehicle, or the disturbanc e  

levels likely to be encountered in a wind tunnel. If the intensities in these cases are not 
sufficiently low, it would be justifiable to hesitate in calling the flow laminar, n s-- 11 the 
other hand, there are many situations where intensities may not tend to zero but 

Possible 

flow parameters, including such important ones as skin friction and heat transf er  
coefficients, attain laminar values. Again, to engineers interested in estimating th e  
drag of a surface in a flying vehicle or the heat transfer in a rocket nozzle, the 
presence of turbulent fluctuations in the flow is of secondary importance compared to 

the fact that the momentum n and heat transport can be estimated as in laminar flows 
It may be worthwhile to call the first type, in which turbulence eventually vanishe,s, 
' hard ' laminarization, and the second type, in which only turbulent transport is ren- 
dered negligible, 'soft' laminarization. We adopt here a rather pragmatic definition 
of laminarization according to which it will have occurred if the development of a flow (or 

a part of it) can be understood without recourse to any model for turbulent shear flow. 

Although in any given laminarizing flow several factors may be operating simulta- 
neously, it is useful to realize that there are three different classes of mechanism that 
may be responsible. In the first, turbulent energy is dissipated through the action 
of a molecular transport property like the viscosity or conductivity, and the governing 
parameter is typified by the Reynolds number. In the second class turbulence energy 
is destroyed or absorbed by work done against an external agency, like buoyancy forces 
or flow curvature; the typical parameter is a Richardson number. In both types 
experimental evidence indicates that the suppression of turbulence goes beyond the 
mere decay of energy to an actual decorrelation of the velocity components contributing 
to the crucial Reynolds shear stress that governs the mean flow. 

The third class of reverting flows is exemplified by a turbulent boundary layer sub- 
jected to severe acceleration. Here a two-layer model is indicated 1“. In the outer 
layer, turbulence is fairly rapidly distorted and the Reynolds shear stress is nearly 
frozen; the inner viscous layer exhibits random oscillations in response to the forcing 
provided by the residue of the original turbulence. Reversion here is not so much 
the result of dissipation or destruction of energy (although these mechanisms are also 
operating), but rather of the domination of pressure forces over slowly-responding 
Reynolds stresses in the outer region, accompanied by the generation of a new laminar 
sub-boundary layer stabilized by the acceleration. 

It is instructive to compare these different types of laminarization. In both dissirs 
tive and absorptive types of reversion, there is a net decrease in turbulence energy: In 
the first instance, this energy is dissipated, essentially by the action of a molecular 
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FIG. 21. Suppression of turbulence in a mixing layer by excitatioh 113 . The excitation was provided 
by irradiating the origin of the mixing layer from a loud-speaker placed 400 mm from ruidspan, 
away from the high speed flow (span of mixing layer 910 mm). Strouhal number was varied by altering 
the frequency of excitation. The measurements were made 100 mm downstream of the origin, 
127 mm away from the centre-line on the high speed side. The suppression is largest at Sto a 0 . 019. 
Experiments in circular and plane jets also show greatest suppression in the St e  range 0 . 016-0 . 019. 

transport parameter like the viscosity or the electrical resistivity ; ill the second, it is 
destroyed by the work done against a body force like gravity. But dissipative revere% 
sion is very slow : if the Reynolds number in a pipe flow drops to a value as low as 
half of the critical value (following an enlargement in that pipe, say), the distance 
required to complete reversion is of the order of a hundred diameters. In contrast, 
in the absorptive type of reversion, the destruction of turbulence energy appears to 
proceed rapidly once the critical value of the parameter is exceeded: turbulence in a 
buoyant jet can be suppressed in a few jet widths. In both the cases, there is evidence 
that what happens goes beyond a mere decrease in turbulence energy; in fact some 
mechanism seems to be at work to decorrelate the velocity components that generate 
the crucial Reynolds shear stresses. In particular, the effects of even mild curvature 
on a turbulent shear flow seem astonishingly strong. Clearly one is not merely wearing 
the machinery of turbulence down in these cases - it is more as if one were throwing a 
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spanner in the works ! In other words, these external influences imposed on the B ow  

must be interfering with its organization - with the coherent structure and the bursting 

cycle that sustain turbulence. 

This brings us to the possibilities of turbulence management by interference with the 
coherent structure in a turbulent flow. If turbulence energy production is patchy (a nd/ 

or ordered) in space and intermittent in time, it would seem logical that novel methods 
of indirect control should be possible. Much attention is being devoted now to this 
subject; such 'structural ' control need not necessarily be time-dependent. It i s  

possible that Roshko's 112  experiments on the effect of a splitter plate on the wake 
behind a circular cylinder belong to this class. He found that a plate extending 5 dia- 
meters along the centre line behind the circular cylinder drastically altered the pressure 
field, reduced the drag coefficient of the cylinder from 1 -1 to 0.7 and increased the base 
pressure coefficient from 	0 - 5 to —1 O. 

There is now definite evidence that many free shear flows are sensitive to harmonic 
excitation. Zaman and Hussain 13  studied the turbulence intensity in the mixing 
layer at the exit of a nozzle when the flow was excited through a loudspeaker in the 
settling chamber; some results are shown in fig. 21. It is seen that at a Strouhal 
number of about 0.018 (based on momentum thickness at the exit, 0., and core 
velocity) the longitudinal intensity is down to a third of the value in the unexcited state. 
The suppression was detected as far downstream as 6000 O.; the excitation level 
corresponded to an r.m.s. value 22 	0 - 3 to O5% of U. Wygnanskil'A has reported 
how mixing can be enhanced or suppressed at different locations along the mixing layer, 
depending on the excitation. 

Efforts to control boundary layer flow by similar intermittent operation or excitation 
have, on the other hand, given only ambiguous results. 	Spangler et a1P:5  used 
pulsed blowing though a flush transverse slot, at frequencies up to 340 Hz (estimated 
burst frequency in his boundary layer, using the data of Rao et a(i°59  was about 
14 Hz). Wall stress reductions of 16% were achieved at a distance of 2 . 8 boundary 
layer thicknesses downstream of the slot. Spangler attributed the effects to the intro- 
duction of low turbulence air into the boundary layer. 

Yajnik and Acharyam showed that wall stress decreased if a grid was inserted 
in the boundary layer, but of course there is a momentum loss at the grid that has also 
to be taken into account. Nagib et all17  have studied the pressure loss in a channel 
whose walls have special grooves cut in them (presumably interfering with the formation 
of bursts). 13ushnell'm has recently reviewed work on a variety of turbulence control 
devices. 

Ideally, one may visualize a system of boundary layer control in which the controlling 
agent operates at just those places and times where, say, a turbulent burst is about to 
occur; this would need suitable detectors distributed over the surface on which the 



+10 

• 

t UttBULENCE PROBLEM 
	

51 

suction flow 

0 

1- 

C 

0 

0 	 0.25 	 0.50 	 0.75 

m * 

FIG. 22. The effect of continuous and pulsed suction through a flush two-dimensional slot on the 
wall stress in a turbulent boundary laYer 119. Measurements made at 21 boundary layer thicknesses 
downstream of the slot. Abscissa shows both actual suction flow in litres/second-metre, and_its non- 
dimencionalized (m*) by free stream velocity and displacement thickness of the unsucked boundary 
layer at the slot. Note that the reduction in wall stress (A T ic) is a maximum of about 5% at m* = 0° 18, 
but that the r.m.s. value of the stress fluctuations, to  decreases monotonically with increasing suction. 
The data displayed in the diagram show that pulsing frequencies up to burst rates in the boundary layer 
Produce no significant differences compared to continuous suction. More recent work at frequencies 
up to five times the burst rate has revealed no change in trend. it is thought that the reduction in 
wall stress at moderate suction is a genuine effect on the turbulent boundary layer, the increase at 
*her suction being the consequence of the generation of a new laminar sub-boundary layer at and 
downstream of the suction slot. 

flow is to be controlled. This has not yet been done; but the response to various 
degrees of pulsation in the control, at fixed points, is being attempted. If control is 
applied at a point, its effect will be felt over a certain characteristic area. Precise infor- 
mation over the mangitude of this area is not available, but it is clear that the chances 
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of obtaining a beneficial effect due to pulsing are higher if the control is applied over a 
line rather than an area, because of the smaller smearing effect. Recently p arikh 

et 
arls studied the effect of controlled oscillations of the free stream on a certain area 

on a flat plate. They found no significant effect of pulsation up to the bursting rates 
A similar negative conclusion was reached man experiment with pulsed slot suctionn; 
whose results are shown in fig. 22 ; while optimum suction does result in lower wall 
stresses, and high suction in higher wall stresses (of use in preventing separation), it was 

found that pulsing the control, up to burst frequencies, produced no significant effect s  

at given suction mass flow. 

it thus appears that while pulsed excitation has strong effects on free shear flows, 
boundary layers present a harder problem for control ; either selection of favourable 
control points, or use of frequencies much higher than bursting rates, may be necessary 
before significant gains can be made. 

An interesting discussion of various turbulence 'manipulators' is given by 
MorkovinP°. 

Another method of achieving significant modification of a turbulent flow is by the 
addition of polymers to liquids. Since Toms's discovery 1 21: of the effect in 1948 (see 
Lumley;22  and Virk'23  for reviews), many studies have been made ; surface drag reductions 
of 50-80% may be achieved by the addition of small amounts (of the order of ten to 
hundred parts per million by weight) of such polymers as polyox ' (= polyethylene 
oxide) in water. The additives do not alter the density or shear viscosity of the solvent 
appreciably; and the effect reaches a saturation level as concentration increases, indepen- 
dent of the solvent-molecule pair, the molecular weight of the polymer, 24  etc. In 
fact, the law of the wall appears to be modified, in the asymptotic saturation state, to a 
semilogarithmic form with a Karman constant of about 0•085 (instead of the classical 
value 0.4). Experiments show that the effects are stronger in wall flows than in free 
flows, and when the polymer is injected at the wall rather than in the outer flow. It 
therefore appears 125 , 126  that the polymer interferes in some way with the bursting cycle 
in the turbulent boundary layer (discussed in Section 7) . It has been suggested that the 
interference arises as a result of the coiling and uncoiling of the long polymeric mole- 
cular chain, possibly resulting in a sharp increase in the viscosity for extensional 
strain (Lumely 122  estimates that the increase may be by a factor of 10 4  !). 

Somewhat similar drag reduction effects may arise from fibre suspensions (e.g. asbestos) as well'". 

9. Conclusion 

This survey has touched on various aspects of the turbulence problem. A remarkable 
feature of the current scene is the proliferation of numerical models - that have little 
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relation to what is being learnt about the structure of turbulent flows by new experiments. 
These models are generally highly empirical ; although many of them are inspired by 
the dynamical equations (often for stress transport), the spirit in which the models are 
formulated is usually not very different from that in which empirical loss formulate are 
to be (and are still) constructed in, say, hydraulics. Karman is supposed to have called 
early hydraulics the science of variable constants '. The tools available for carrying 
out computations have now become very powerful, and so, instead of constructing 
algebraic formulae as in the last century, we can now construct (with no greater effort) 
partial differential equations instead. If some relatively simple equation of this type 
had proved spectacularly successful, we could have expected scientific advances. How- 
ever, no such model is in sight ; instead, the models in use are becoming more compli- 
cated. Of course, such models are perhaps necessary in engineering work, but their 
near-total isolation from the work on the structure of turbulence makes one doubt 
whether they are of any lasting value. It is indeed to be hoped that they will be 
rapidly replaced by something more satisfactory, although what this will be is not 
yet clear Large eddy simulations still take too much computing time, and do involve 
some modelling of the small eddies ; it is not clear at the present time whether they will 
become practical in the not-too-distant future. My own view is that the most promising 
line of attack is via vortex dynamics : a great deal more study here would be justified, 
and could be very rewarding. One reason for suggesting this is again that contact here 
with observations seems more immediate. 
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Special Notation 

f ((x)) 

Dk 

identically equal to 

the functional form f (x) 
(if f((x)) = x 2  f ((Y)) = y2 ) 
element of volume in k-space 

proportionality sign. 
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( x ) 	mean of x (over a 
ensemble) 
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coordinate in which x is homogeneous, or over an 

vector x 

tensor 
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