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Abstract 

In Coddington and Levinson 1  we get the requisite boundary conditions to be 
order symmetric ditTerential expression which defines a self-adjoint operator. 
corresponding set of boundary conditions to be associated with a 2n x 2n 
involve first order derivatives. 

associated with a 2n-th 
Naimark2  obtains the 

matrix whose elements 

Here we discuss self-adjoint extension of certain type of matrix differential operator with a set of 
non-separated boundary conditions at the end points a, b. 

A similar problem associated with an r x r matrix differential operator with elements depending upon 
differential coefficients of orders up to 2n has also been discussed. Finally, we deal with the corres- 
ponding singular problem where the interval [a, II is replaced by [0, co). 

Key words; Self-adjoint extension, Quasi-derivatives, Domain of definition, Lagrange's identity, 
Deficiency indices, Square-integrable solutions. 

1. Introduction 

The form of the boundary conditions to be imposed at the end points of a finite intet vat 
so that a 2n-th order symmetric differential equation together with boundary conditions 
should lead to a self-adjoint differential operator is knownl. Theprobleni when the 2n-th 
order differential equation is replaced by a set of 2n first order equations with the corres- 
ponding set of boundary conditions has also been studied 2. 

2. Construction of the matrix differential operator L 

We define a 2 x 2 matrix differential expression Q by 

2:  /4122) (3y712) 	
(2.1) 

where 

YOT  ={yi'Y:),} 
and 

(Z) 	1) 2  (pii  Z(2))(2) 	1) (q4,ZO))(1) 	Z ; 	 k,` (2.2) 
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(i,j =-- 1, 2). Then (2.1) is equivalent to 

(y) = (py(2))(2) 	(q),(1))(1) 	ry 	
(2.3) 

where p = (p11), det I  p ii i0 0, q = (g o) and r = (r e) are 2 x 2 matrices such that 
p (x), q (4, r 	are Lebesgue measurable in the interval (a, b) and are Lebesgue. 
integrable in any closed subinterval [a, /3] of (a, b). 

In order to remove the restriction 
p, q, r up to the prescribed order, we 
function y (x), defined as follows. 

regarding the differentiability of the coefficients 
introduce the" quasi-derivatives" of the vector 

yr°3  (x) = y (x) 

(x) =es 	(x) 

d2  
y[21 (X) = p (.7) com y (x) 

Y[3i (X) 	q (x) 	y (x) — 	y(2) (X) 

(2.4) 

y[43 (x) = r (x) y (x) 
	

Yr" (x)  

Then (2.3) can be rewritten as 

Q (.Y) = Y")  (x). 
	 (2.5) 

Using Green's formula it follows that the adjoint of Q is 

Q1 := (
1
11

1
2
1 1

/
2
21

2
) • 

Hence for symmetry, we should have / 12  ---= /21* 

Let the domain of the operator L be defined as 

ci) (L) f e 	= 2 (a, b), 

the space of square integrable vector functions over the interval (a, b), 

where (i) the components of f = If 1f2} 
up to the order three ; 

have absolutely continuous quasi-derivatives 

f14] 	e 

Lf = Q (f ),  

Let co o  represent the set of all vector functions Y (x) in cp which satisfy the conditions 

yvb ]  (a) = y tkJ (b) = [0], 	k = 0, 1, 2, 3. 	
(2.6) 
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FinallY, let Lo  be defined by 

Loy =-- LYI 	V Y E  c00 

where is the domain of definition of the operator L o. cDo 

3. Existence of solutions 

We begin by establishing the following theorem on existence and uniqueness of the 
solution of the vector-matrix differential equation Q (y) = f 

Theorem 3.1: If 

(i) f Cr) =--- ff 1(x), f 2 WI be .0-measurable in (a, b), 

(ii)f (x) e 2 [a, /31 for every [a, fl] c (a, b), 

(iii) C --= few, C20, cal C21 ,  c129 c22. c13, c23}9 

cil  et," for i = I, 2 ; 1 =70, 1, 2, 3, 

(iv) a < xo  < b 

then there exist a unique vector function y(x) = {y i  (X), Y2 00} such that 

and 

where 

Q (y) f 

1, 2; k = 0, 1, 2, 3 

Y in (x0) = {YIN (xI)) ,  Y2(ki  (xo)} 

(3.1) 

(3.2) 

are defined as in (2.4). 

The theorem remains true if x 0  =-- a or x0  =-- b (x0, regular) of if the equation 

(3.1) is replaced by Q (y) - Ay =--- f, where A is an arbitrary complex parameter. 

Proof : From (2.4) and (2.5) it follows that the equation Q (y)= f is equivalent to 

the following system of first-order equations. 

(x) 	Y u]  (x)  

-c-b-c  YE" (X) 	p- i (x) YE 2J (X) 	 . (3.3) 

crx 	(x) = q (x) Yr" 	3431  (X) 

(x) = r (x) y (x) f (x) . 
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From these we obtain 

4: Y (x) =-- A (x) nx) — F (x) 
-ilex (3.4) 

where 

Y (x) = {.}"19 Y2, YiE" , yeii , y 1 [2] , y2(2) 2  yip], y2 [31} 

F (x) = {0, 0, 0, 0, 0, 0,1 1,f 2} 

and 

(0 I 0 0 ) 
(11 0 P 	0 

	

A (x) L---- 	0 q0--I 
r 0 0 	0 

0, 1 being respectively 2 x 2 null and identity matrices, also P = p-- ' (x). 

The elements of the matrix A (x) and the vector F (x) are measurable in the interval 

(a, b) and I A (x) 1, I F (x) I are summable in every finite sub-interval [a, 11 of the inter- 

val (a, b). Hence the theorem follows, since the equations (3.4) have one and only 

one solution satisfying the initial conditions 

Y (x0) -L-----  C 

i.e., ;Pi (x0) =-. Cuo  i -re 1, 2 ; k = 0, 1, 2, 3 in (a, b). 

[See Naimark2, Th. 1, § 16.1]. 

Lemma 3.1. If f (x) = (f' (x), 1 2 (x)} e 2 2  (a, b), then the equation Q (y) = f has 

a solution y (x) = {yi (x), Y2 (x)} satisfying the conditions 

	

pi (a) 	yEki (b) =--- [0]; k = 0, 1, 2, 3 	
(3.5) 

if and only if the vector function! (x) is orthogonal to all solutions of the homogeneous 

system Q (y) = [0]. 

Proof : Consider a particular solution y (x) of the equation Q (y) = f such that 

(3M 
Ski (a) = E0]; k = 0, 1, 2, 3 

and it follows from Theorem 3.1, that there exists precisely one such solution. 

Let Z, = {Z 1„ Z23; s =-- 1, 2, ..., 8 form a fundamental system of solutions of 

the homogeneous system Q (Z) = [01 satisfying the initial conditions 
OM 

rki (b) =-' 3i+24 I if 

i 
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By Lagrange's identity 

( f , Z,) 	(Q 	Z,) 	fy, Z + (y, Q 3 )). 	
(3.8) 

But Q (Z,) 	[01 and by the conditions (3.5), [y, 	=! O. Hence (3.8) takes the form 
2 

( f , Z,) 	U, 	 Z t4-4] 
• 	Y 14-k)  Z R -11 .1 

J rag) k=i 

where 37 is the transpose of y, 

Finally making use of the relation (3.7), we get 

(— 	s = 1,2 gf.z21-1)1(fIza= t 
Yt", s = 3, 4 (3.9) 

From (3.9) it follows that the equations yru (b) 	[0], k=-- 0, 1, 2, 3 are satisfied if and 
only if (f,  Z,) =-- 0 for s = 1, 2, ..., 8 which shows that f (x) is orthogonal to all solu- 
tions of the homogeneous system. 

Lemma 3.2. Given arbitrary real numbers 

aik , fla = 1, 2 ; k — 0,1,2,3-     

such that at  = {aik, an}, fit = {fin, ig2}. Then there exists a vector function y (x) 
= fyi  (x), y2  (x)} e cl), which satisfies the conditions Pi (a) = at  and yfti (b) = fit , k 
0, 1, 2, 3. 

Proof : Let f (x) = {f f} be an arbitrary element in gis satisfying the conditions 

{(f , z,_1), 	Z28)} = 	114-0 S 	1, 2 

( 
(3.10) 

where Z, , s 	1, 2, ..., 8 are the same as in Lemma 3.1. The vector function f (x) 

exists and f (x) can be chosen to be an element of M, the set of all solutions of the 

equation Q (Z) =-- [0]. Since all these solutions are continuous functions in the interval 

la, 11, they all belong to .02  (a, b). Hence M c gr. For let 

8 

f = E Ck Zk, Ci g = constant 
kcal 

then from (3.10) we obtain a system of equations in the constants 
G whose deteiminant 

IS the sam( as the Gram-deteiminant for the linearly independent vector functions 

Z1, Zg2 9  • I 	and therefore does not vanish. 
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v (x) = {v 1  (x), v 2  (x)} be a solution of (3.1) and let v (x) satisfy th e  initial  

vR 3  (a) 	k =-- 0, 1, 2, 3 

then by applying Lagi ange's identity to v (x) and Z, (x) we get 

(f ,  Z,) 	(v), Z = (v, 	(v, Q (Z 

But Q (Z,) 	[0], also from the conditions (3.11) we have [v, Za],, = 0. 

Further, by virture of the conditions (3.7) 

{(

f, Zo,j, (1, Z21)} = {— 	
s = 1 , 2 

 vf"), S = 3, 4 

Now comparing (3.10) and (3 . 12) 

um (b) = fik , k = 0, 1, 2, 3. 

(3.12) 

(3.13) 

Thus there exists a solution, v (X) E 0, of (3.1) such that (3.11) and (3.13) hold. Simi- 
larly there exists a second solution w (x) = {w 1  (x), w2  (x)} of (3.1) satisfying the initial 
conditions 

w[k] (a) =at ) 
win (b) = Ulf 

k = 0, 1, 2, 3 . 

The lemma therefore follows by taking y (x) = v (x) w (x). Since y (x) satisfies the 
stated conditions, belongs to 2) and is the solution of (3.1). 

4. Deficiency indices of the operator L o  

Let m be the number of lineally independent square-integrable solutions of 4Z = AZ, 
A. a complex number and 71, the same of LoZ = XZ, X complex 	conjugate of A. Then 

(m, n) 	is 	called 	the 	deficiency 	indices 	of the 	diffeiential 	operator 	Lo. 	If the 
coefficients of the differential expression Q (y), by means 	of 	which 	the 	differential 

operator Lo  was defined, are real, then. m = n. 	Following § 2.2 and Naimark 2, §17. 3  

we find ihe deficiency indices of the operator Lo  to be (8, 8). 

5. Self-adjoint extension 

Let L. be the self-adjoint extension of the matrix differential operator L o, such that its 

domain of definition 0, satisfies 210  c 	c 2. The following theorem characterises 
the domain of definition of 4,  by means of the boundary conditions. 

Theorem 5.1: The domain of definition .0, of an. arbitrary self-adjoint extension 
of the operator Lo  with deficiency indices (11, h) consists of the set of all vector functions 
y (x) e 0, which satisfy the conditions 

[Yf (kk]b 	LY, Odo = 0, k = 1, 2, ..., h 



Pniii, , 	mlf,} = — 0,[4-k] (a) 

{mit k , 	mistk} = r i  Q (2a3  (a) 

{4 $ 	42) r---' 41t ("J  (b) 

Ing-k, 	n it ki, 	=._ ..... 0 0 [2-k] (0 

■ 
jb 

(5. 5) 
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where oh  02'  , O h  are certain vector functions belonging to 0 and determined by 
which are linearly independent modulo Z o  and for which the relations 

od b  — [0 1 , O kb -= 0 hold for k, j = 1. 2, ..., h. 	 (5.2) 

Conversely, for arbitrary vector functions 01, 02, •, 4i belongin3 to 2) which are 
linearly independent modulo 2i o  and which satisfy the relations (5.2), the set of all 
vector functions y (9 e 0 which satisfy the conditions (5.1) is the domain of definition 
of a self-adjoint extension of the operator to. 

y (x) and 44 (x) are 2-dimensional column vectors. The proof follows exactly in the 
same way as Naimark 2, Th. 4, § 18.1. 

We are now in a position to prove the following theorem. 

Theorem 5.2: 	Every self-adjoint extension L, of the operator L. 
by linearly independent boundary conditions of the form 

is 	determined 

4 	 4 

M y(k-u (a) ± E Nk yv-l] (b) = [0] 
k=1 	 11=2 

with 

2 2 

M, M 57—s E M 5—s MsT  E N. Nies — 
id 	 s-I 	 8-2 

where Alk Tr--  [n4,1, N k = 	s = 1, 2; k = 1, 2, 

Conversely, every system of linearly independent boundary conditions of the form (5.3) 

defines a certain self-adjoint extension L, of the operator L o  provided that the IS- 

tions (5.4) are satisfied. 

Proof We apply theorem 5.1 to the operator L o. In this case h = 8. Let the 

domain of definition 	of a self-adjoint extension .L, of the operatot L o  be given in 

the sense of theorem 5.1 by the elements 4h, 2, . 	08; where tfrk rat--  {On, ?AMC = 1, 

2, • .., 8. 

We put 

2 N 
N5--s`', 

s=1 

3, 4; t = 1, 2, 	..., 8. 

(5.3) 

(5.4) 

k 	1,2; t = 1, 2, ..., 8. 
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Now the conditions (5.1) and the relation (5.2) can be put in the form (5,3) and  
(5.4) respectively. Hence the linear independence of the vector functions 41

b tfr
2•• 

08 confirm the linear independence of the conditions (5.3) (cj'. Theorem 5.1). 

Conversely, let the linearly independent boundary conditions (5.3) satisfying the 
conditions (5.4) be prescribed. By lemma 3.2, there ate elements (k i , 02 , 	4, 8  in 2  
satisfying the conditions (5.5), but then the conditions (5.3) and (5.4) can be written 
in the form (5.1) and (5.2) respectively. Hence the conditions (5.5) separate out the 
domain of definition of a ceftain self-adjoint extension of the operator L o. Hence the 
theorem follows. 

The piesent theorem can be generalized as follows. 

Every self-adjoint extension LE, of the operator Lo  generated by an r x r matrix diffe- 
. rential expression with elements depending upo L differential coefficients of older 2n, 

can be determined by 

(0 linearly independent non-separated boundary 

2 211 
Ek y[1-1) (a) ± f Fk y (k-1] 	== 

k=1 	 k=1 

conditions of the form 

with 

F, 

r•T 
E Es 	— I E 24  si.s+1 	Eon  -s±1 E 87.  = 	r ig i 2n. 1+1 	F thr. 44.1 

8=1 	 sal 	 8=1 	 1=1 

and conversely. 

(ii) linearly independent separated boundary conditions of the form 

2" 
E Gk  y'1  (a) = [0] 

k=2 

2" 
and E Hi, Pen (b) = [0] 

k=1 

with 

ft 

E Gs  Grn 841. 	E G „g ain  Gr, 
s1 	 a=1 

pi 

= 1:01 

• 

• 

E H „, H 
1=1 

H T  H2n—s 4-1 
asc1 

and conversely ; where y (x) is r-dimensional column vector ; Ek, Fk  are 2nr x r matrices 

and Gic, Ilk  are nr x r matrices. 

The proof follows by dimensional generalisation of Theorem 5.2. 
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6. The operator Lo  in the singular ease 

We consider the operator L o  as discussed in *4. Let us suppose that the end-point 
a  is regular and the end-point b is singular. 

The domain of definition 00  of the operator L0  consists Theorem 6.1: 

those vectoi functions y (X) = {.vi (x), y2  (x)} bc longing to 0 which satisfy 

conditions 

piecisely of 
ihe following 

(1) _Oki (a) =- 	
k --- 0, 1, 2, ..., (2/7 — 1) 

(2)DA (b) = 0, for vector functions z (x) = {Lei  (x), z2 (1)}. 

The proof follows by Naimark 2, § 17.5. 

Theorem 6.2 : If the operator L 0  has the deficiency indices (4, 4) then for any arbi- 
trary vector elements y, z e 

[y (b) --= O. 	 (6.1) 

Proof : Let A = [a, 1] be a fixed finite interval lying entirely within (a, b). Then 

the matrix differential expression Q (y) of order 4 is regular in t.In 0a, we choose 

the vector functions z. 	{z it , z 2.); s 	1, 2, ..., 8 such that 

4 (a) =Oi+21: i 
•iki (P) = ° 	• 

i = 	=0,1, 7,3 

j = 1,2,...,8. 

Such vectoi fuu.ctions do exist by Lemma 3.2. Beyond the limits of the interval [a, /3] 

these vectoi functions are equal to zero, i.e., 

Lo 

NOW by Naimark2
, lemma VI of § 17.5, p. 71 and Theorem 6.1 the proof follows. 

The theorems 5.1 and 5.2 can be restated as 

Theorem 5.1 	
The domain of definition 0. of an arbitrary self-adjoint extension 

L. of the operator Lo 
 with deficiency indices (4, 4) consists of the set of all vectoi func- 

tions y (x) e 2) which satisfy the conditions ,  
(6.2) 

(3) (a) =-- 0 , k 	1, 2, 3, 4 

where C.,  0 ),  tiots,  04 are certain vector functions belonging to 
33 which are linearly inde- 

pendent modulo 0 0  and for which the relations (6.3) 

(kla (a) = 0  

hold. 
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Con.vetsely, for arbitrary vector functions 4916 1 , 02 9  03, 04 belonging to Q 
Which are linearly independent modulo 0 0  and which satisfy the relations (6.3), the set of all 

vector functions y (x) e 0 which satisfy the conditions (6.2) is the domain of definition 
of a self-adjoiut extension of the operator Lo . 

Theorem 5.2: Every self-adjoins extension L, of the operator L o  is determined 
by linearly independent boundary conditions of the form 

r 	
.)
.,[k-11 (a) = [0] 

k=1. 
(6.4) 

with 

ET 
E 	2n-3+1 — 

Itst 

T  
4-0  2n-8 }-1 L.a 

s=1 
[0] 	 (6.5) 

and conversely. 
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