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Abstract

In Coddingtﬂn_ anq chin'sunl We gr.?t the requisite boundary conditions to be associated with a 2n-th
order symmetric differential expression which defines a self-adjoint operator. Naimark? -obtains the

corresponding sct of bf:)unflary conditions 10 be associated with a 27 x 2n matrix whose elements
involve first order derivatives.

Here we discuss sclf-adjoint extension of certain type of matrix differential operator with a set of
non-separated boundary conditions at the end points a, b.

A similar problem associated with an r X r matrix differential operator with elements depending upon
differential coefficients of orders up to 2z has also been discussed. Finally, we deal with the corres-
ponding singular problem where the interval [a, b] is replaced by [0, c0).

Key words: Seclf-adjoint extension, Quasi-derivatives, Domain of definition, Lagrange’s identity,
Deficiency indices, Square-integrable solutions.

1. Introduction

The form of the boundary conditions to be imposed at the end points of a finite int'e.: val
so that a 2n-th order symmetric differential equation together W#h boun.dary conditions
should lead to a self-adjoint differential operator is known!. The pro-blem u:hen the 2n-th
order differential equation is replaced by a set of 2z first order equations with the corres-

ponding set of boundary conditions has also been studied®.

2. Construction of the matrix differential operator L

We define a 2 x 2 matrix differential expression Q by

- (i ) ()
]21 122 Yo
where
Y= (Y1, Yo)T = {J’u Ya}
and
; | s (2-2)
. " W 4 ry, Z;
(@) = (= 1) (py 22 + (= D@ Z7) . 0 g8
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(i,j=1,2). Then (2.1) is equivalent to
Q () = (py®)® — (gy™)® + ry

where p = (p;), det |p; |# 0, g = (g,) and r = (r;) are 2 X 2 matrices
p(x), g(x), r(x) are Lebesgue measurable in the interval
integrable in any closed subinterval [a, f] of (a, b).

2.3)

such tha
(a, b) and are ]_ebesgueE

In order to remove the restriction regarding the differentiability of the coefficients
p, q, r up to the prescribed order, we introduce the ‘ quasi-derivatives »

of th
function y(x), defined as follows. ¢ vector
Yl (x) = y (%) \
d
yH (x) = =y (%)
42
yil (x) = p (x) T2 y (x) 1
( (2.4)

yB3(x) = g (x) % y(x) — ;—x yi (x)

d
YO (x) = 7 (1) ¥ () — 3 Y ()
Then (2.3) can be rewritten as
Q (») =y (x). (2.5)
Using Green’s formula it follows that the adjoint of Q is

Ql - lll ,21

SRV

Hence for symmetry, we should have /;, = /5.

Let the domain of the operator L be defined as
D (L) :fEr%.= L* (a, b):
the space of square integrable vector functions over the interval (4, b),

: _derivatives
where (i) the components of f ={f,f>} have absolutely continuous quasi-derivati’
up to the order three ;

(i) fW (x)e A
Lf =0Q0(f) ¥feD(L)

Let @, represent the set of all vector functions y (x) in P which s
yE (@) =y (B)=1[0], k=01,2,3.

atisfy the conditions
(2.6)
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Finally, let Lo be defined by
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Ly=Lr ¥red,

where @, is the domain of definition of the operator .

3. Existence of solutions

we begin by establishing the following theorem on - _
solution of the vector-matrix differential equation Q(ly)eic; R

Theorem 3.1: If
(i) £ (x) ={f1(x), f2(x)} be L-measurable in (a, b),

(i) £ (x) e L{a. fi] for every [a, f] ¢ (a, b),

(i) C = {19, Cags €115 Cors €13, Cay, Cy3, Cas}s
cy€C fori=1,2;;=0,1,2,3,

(iv) a < Xo < b

then there exist a unique vector function y(x) = {3 (x), ys (x)} such that

o=/ (3.1

and

J’i[t] (xu) =cih£= 112: k=0: l: 213 (32)

where
Y (xg) = {31 (xp), 3™ (X0)}
are defined as in (2.4).

= b (x, regular) of if the equation
is an arbitrary complex parameter.

= f is equivalent to

The theorem remains true if Xo = a OT Xp
(3.1) is replaced by Q (y) — Ay = f, where 2

Proof : From (2.4) and (2.5) it follows that the equation Q (y)

the following system of first-order equations.
\

%J’ (x) = yl(x)

"%y M) =ty | . (3.3)
;;y 21 (x) = g (x) Y (x) — Y (%)

a%yfﬁl (x)z"(x)y(X)-—f(x). |
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From these we obtain

,‘i Y()=A ()Y — F&)

g (3.4)

where
Y (%) = {y1, yo: 1, yoltl, 3112, p,13, 3,0, yo 131}
F (x) ={0,0,0,0,0,0,f1,f2}

and

0 O
P 0
AR = 0 —17
0 ©

-~ OO
O O ™

0, I being respectively 2 X 2 null and identity matrices, also P = p~*(Xx).

The elements of the matrix A4 (x) and the vector F (x) are measurable in the interval
(a,b)yand [AC) |, | F (x) | are summable in every finite sub-interval [a, f] of the inter-
val (a, b). Hence the theorem follows, since the equations (3.4) have one and only

one solution satisfying the initial conditions
Y(Xo) —_— C

e, yE(x)=cu,i= 1,2 k=0,1,2,3 in (a, b).

[See Naimark?, Th. 1, § 16.1].

Lemma 3.1. If f(x) ={fi (%), f2(x)} € L? (a, b), then the equation 0 (»)
a solution y (x) = {y; (x), ¥, (x)} satisfying the conditions

-:fhﬁs

}m (a) =y (5) =[0]; k=0,1,2,3 (3.5)

it and only if the vector function f (x) is orthogonal to all <olutions of the homogeneow

system Q (y) = [O].
= f such that

Proof : Consider a particular solution y (x) of the equation Qo ()
(3.6)

y (@) =[0]; £k=0,1,2,3

and it follows from Theorem 3.1, that there exists precisely on¢ such solution.

| ions Of
Let Z,={Zy, Zos s=1,2, ..., 8 form a fundamental system of solution

the homogeneous system Q (Z) = [0] satisfying the initial conditions

ZE?} (b) = 5i+2l: J

3,7
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ri=12:1k=0.1,2.3:j=12 ¢ 229
By Lagrange's identity
(f.Z) - (Q (), Zl) = b ZL4+ (0, 0(zZ
(. 2(Z)). 3.8)

But O (Z,) =~ [0] and by the conditions (3.3), [», Z,],-. = 0. Hence (3.8) takes the fi
g ' " € 1orm

2
(f;2) =0 Z)em = & PN Z00 _ jren z ey

k=1

where y is the transpose of y.

Finally making use of the relation (3.7), we get

s Y e
(- Za (S 2} = {Th i )2 6.9

From (3.9) it follows that the equations p# (b) =1[0], k=0, 1, 2, 3 are satisfied if and

only if (f, Z,) =0 for s = 1,2, ..., 8 which shows that J(x) is orthogonal to all solu-
tions of the homogeneous system.

Lemma 3.2. Given arbitrary real numbers

aihﬁil f=],2;k=0,1,2,3

such that @, = {ay., a5}, Be = {Pu P} Then there exists a vector function ) (x)
= (%), y. (x)} € D, which satisfies the conditions y*1 (@) = a, and y“1(6) = fi, k =

Proof : Let f(x) ={f1, f2} be an arbitrary element in H satisfying the conditions

— Py 8=1,2
(. Za (£ ZY = {50235 3.10)

where Z, , s =1, 2, ..., 8 are the same as in Lemma 3.1. The vector function f (x)

exists and f (x) can be chosen to be an element of M, t]w set of al_l sollftions ‘of the
equation Q (Z) = [0]. Since all these solutions are continuous functions in the interval

[a, 5], they all belong to .£%(a, b). Hence M C H. For let

f= 23]' Cr 2Z,, C, = constant
k=1

at'ions in the constants Cy whose determinant

then from (3.10) we obtain a system of equ early independent vector functions

is the same as the Gram-deteiminant for tl?eh o
Z,, Z,, ...,Z, and therefore does not vanish.
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Now let v (x) = {vy (x), vo (x)} be a solution of (3.1) and let » (x) satisfy

conditions the initiy)
2 [*] (a): [0],k =0,1,2,3 (3
- . . 'll
then by applying Lagiange’s identity to » (x) and Z, (x) we get )
(f.Z)=(Q W), Z,)=12Z]} + (v, 2(2)).
But Q(Z,) = [0]. also from the conditions (3.11) we have [v, Z ] y=g = 0.
Further, by virture of the conditions (3.7)
| — b1l g=1,2 |
{(f: ZEI-].)! (f! 221)} - { ‘U[‘_']g N 3’ 4 (312)
Now comparing (3.10) and (3.12)
oM (b)) = . k=0, 1,2, 3. - (3.13)

Thus there exists a solution, v (x) € 2, of (3.1) such that (3.11) and (3.13) hold. Simi-
larly there exists a second solution w (x) = {w, (x), w, (x)} of (3.1) satisfying the initial
conditions

P [0]} k=0,1,2,3.

The lemma therefore follows by taking y (x) = v (x) + w (x). Since y(x) satisfies the
stated conditions, belongs to 2 and is the solution of (3.1).

4. Deficiency indices of the operator L,

Let m be the number of lineaily independent square-integrable solutions of LyZ = 22,
/ a complex number and n, the same of L,Z = AZ, Acomplex conjugate of 4. Then
(m,n) is called the deficiency indices of the differential operator L. If {he
coefficients of the differential expression Q(y), by means of which the differential
operator L, was defined, are real, then m = n. Following §2.2 and Naimark?, §17.3
we find the deficiency indices of 1he operator L, to be (8, 8).

5. Self-adjoint extension

uch that its

Let L, be the self-adjoint extension of the matrix differential operator Lg, $ .
haracterises

domain of definition 2, satisfies 2, c 2, c 2. The following theorem ¢
the domain of definition of L, by means of the boundary conditions.

extension L,

Theorem 5.1: The domain of definition 2, of an arbitrary self-adjoint _
or functloﬂs

of the operator L, with deficiency indices (4, /) consists of the set of all vect
¥ (x) € D, which satisfy the conditions

[y!djk]b‘_[y, $rl, =0, k=1,2,...,h (51)
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functions belonging to 2 and determined by
0 2, and for which the relations

(6, Bsls — [@5 Fela = 0 hold for &, j=1, 2,

where & Bay s Pa are certain vector
. which are linearly independent moduy]

s M (5.2)

Conversely, for arbitrary vector functions ¢,, ¢ ' '
' ‘ y Way o0 .y ‘bi bEIonng to 2 which
lincarly independent modulo 2D, and which satisfy the relations (5.2), the setwof a;ﬁ

vector functions y (x) € D which satisfy the conditions (5.1 1S : . .
101 1 " the d
of a self-adjoint extension of the operator L, e ORI Sk G H G

y(x) and ¢, (x) are 2-dimensional column vectors. The proof follo tly i
same way as Naimark?® Th. 4, § 18.1. P ws exactly in the

We are now in a position to prove the following theorem.

Theorem 5.2: Every self-adjoint extension L, of the operator L, is determined .
by linearly independent boundary conditions of the form

1211 M, y¥-1 (a) + é‘l N, yt-1(b) = [0] (5.3)
with
> M MT_, — 5 M, , MT = zz,: N,NZ, — _);; N NT (5.4)
=1 b - =
where M, = [mi], Np=[mh)], s =1, 2; k= 1, 2,3, 4;1=12,...,8&

Conversely, every system of linearly independeni boundary condition_s of the form (5.3)
defines a certain self-adjoint extension L, of the operator L, provided that the 1ela-

tions (5.4) are satisfied.

to the operator L, In this case h=8. Let the

jol ' be given in
dioint extension L, of the operatoir L,
: where ¢, = {Pm duhk =1,

Proof : We apply theorem 5.l
domain of definition 2, of a self-a ‘
the sense of theorem 5.1 by the elements i, @z -+ Ps;

—
We put
{m , mk} =— ¢FM (@) - v
i, mipty = B0 6.9)
{nfl. 5 "fg} = qf';“"k] (b)
(g%, ngpy = — ¢ LM (6)/

k=1,2;¢1=1,2,...,8
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Now the conditions (5.1) and the relation (5.2) can be put in the form (5.3)
(5.4) respectively. Hence the linear independence of the vector functions p ¢> ang
¢ confirm the linear independence of the conditions (5.3) (¢f. Theorem 5. ). L Py ...

?

Conversely, let the linearly independent boundary conditions (5.3) satisfying th
conditions (5.4) be prescribed. By lemma 3.2, there aie clements ¢1s @iy ..., ¢ ip;.;
satisfying the conditions (5.5), but then the conditions (5.3) and (5.4) can ke ‘:"rit.lC"l
in the form (5.1) and (5.2) respectively. Hence the conditions (5.5) separate out thle
domain of definition of a cectain self-adjoint extension of the operator L, Hence the

theorem follows.

The piesent theorem can be generalized as follows.

Every self-adjoint extension L, of the operator L, generated by an r X r matrix diffe.

rential expression with elements depending upon diffcrential coefficients of otder 2,
can be determined by

(i) linearly independent non-separated boundary conditions of the form

3 E, yit-1 (@) + 5 Foy B (b) = [0]
k=1

=]
with

n . o} " ; & B ' .
2 EI Eén-a+1 T Z Eﬂn-l-i-l E:= 32_11 Fa an-l-{-l—_ 2 F:Zn-rl-lFl

=1 =1 =1

and conversely.

" (ii) linearly independent separated boundary conditions of the forn*f

5 G,y (q)=[0] and % HyyEY (b) = [0]
k=1 k=1
with

S HH o1 — X Hyyyy Hf = [0]

=1 £=1
2 G; G:Tn—a-]-L - 2 G:}:n-ﬁ»l G:l: — [0]
s=1 3=1

"
| i - : pr X r matr

and conversely ; where y (x) is r-dimensional column vector, E,, F, are 2 )

and G,, H_are nr X r matrices.

The proof follows by dimensional generalisation of Theorem 5.2,
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6. The operator L, in the singular case
: tor L, as discussed in &
we consider the opera 0 _ In §4. Let us suppose that th -poi
4 s regular and the end-point b is singular. - e Bl TEC

Theorem 6.1: The domain of definition 2, of the operator L, consists
(hose vectol functions y (x) = {y, (x), y, (x)}

(1) v (@) = [0]. A=0,1,2, ..., 2n—1)
(2) =] b) = 0, for vector functions z (x) = {21 (x), 2, (x)}-

_ ptecisely of
belonging to @ which satisfy the following

The proof follows by Naimark? §17.5.

Theorem 6.2: 1f the operator L, has the deficiency indices (4, 4) then for any arbi-
trary vector elements y, z€ 2

vz} (b) = 0. 6.1)

Proof : Let A = [a, ] be a fixed finite interval lying entirely within (a, ). Then
the matrix differential expression ¢ (y) of order 4 is regular in A. In Dp we choose
the vector functions z, = {zy, Zai}s s=1.2,....8 such that
3 = 2 Ko 2,3
Z}J(a)':fsﬁzki } l’;'*k 0.1, 2,

3?} B = 0

Such vector futctions do exist by Lemma 3.2. Beyond the limits of the interval [a, F]
these vector functions are equal to zero, ie.,

by =[0].i=1,2;/= 123 .83 k=0,1,23.

Now by Naimark?, lemma VI of § 17.5, P 71 and Theorem 6.1 the proof follows.

The theorems 5.1 and 5.2 can be restated as

. o -
Theorem 5.1: The domain of definition 2, of an arbitrary self-adjoint extensio
em 5.1:

j f all vector func-
L, of the operator L, with deficiency indices (4, 4) consists of the set ©

tions y(x)e2 which satisfy the conditions,

(6.2)
[y, ds] (@) =0, &k = 1,2,3,4

I 4

pendent modulo 2, and for which the relations

[¢; ¢k] (¢) =0
hold.

(6.3)

1S~ 0O
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Conveisely, for arbitrary vector functions ¢y, ¢, ¢s, ¢, belonging to 9
linearly independent modulo 2, and which satisfy the relations (6.3),
vector functions y (x) € 2 which satisfy the conditions (6.2) 15 the domai
of a self-adjoiut extension of the operator L,.

whi(',h are
thﬂ set Ofiﬂl
n of deﬁnitiou

Theorem 5.2: Every self-adjoint extension L, of the operator L

is d -
by linearly independent boundary conditions of the form g wieimined

g E, y[k—ll (a) = [O]

z (6.4)
with
2 EE = I B E; = [0] (6.5)
=1 8=

and conversely.
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