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ABSTRACT

A method for the design of a linear time invariant system for realizing arbitrarily
specified closed loop poles, via the transfer function approach is presented. The
design technique is compared with that which utilizes ithe state variable approach.
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1. INTRODUCTION

The modern approach to control system design is to use the state
variable techniques. In order to assign aibitrarily specified poles to the
closed loop system through state variable feedback, we require the system
to be completely controllable. In order to generate the state variables, we
require the system to be completely observable. Hence, design by state
varisble method utilizes only the completely controllable and completely
observable subset of the overall state variable equations. Since the transfer
Tunction corresponds to the completely controllable and completely obser-
vable subset of the state variable description, it stands to reason that the
transfer function approach. should also enable us to design the system for
achieving arbitrarily specified closed loop poles. Such a design procedure
enables a nonspecialist (who is unable to comprehend the abstract state
varigble techniques) to appreciate the technique which works with physical
variables of the process.

It is interesting to note that when designing an observer, we specify
the eigenvalues of the observer arbitrarily. Further, it can be recalled
that the introduction of the dynamic observer in the feedback path does
hot affect the stability of the closed loop system. More specifically, the
closed loop poles of the overall system containing the observer in the feed-
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back path (sec Fig. 1) are the required closed loop poles and the poles of
the obscrver [l]. Conventional transfer function approach tells us that
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Fie. 1. State variable feadback.

unfess there is a pole zero cancellation, a feedback loop pole cannot be a
pole of the closed loop. Hence we conclude that all the poles of the observer
get cancelled.

The above observations motivate us to develop a design procedure fo
realize abitraiily specified closed loop poles through the transfer function
approach. Such a design procedure is presented in the present paper with
special reference to a single inputsingle output system. The technique
can be extended to multiple input-multiple output systems [2].

2. DEVELOPMENT OF THE DESIGN PROGEDURE

Let the transfer function of the system whose design is contemplated be

G =55 o

Let the degree of d (s} be (1) and that of g (s) be (n — 1), so that the above
transfer function corresponds to that encountered generally in practice. Let
the feedback design be achieved according to Fig, 2.

Let
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B(s)= 205)
The degrees and coefficients of the polynomials p (s), h(s) and b (s) are
yet to be specified. There is no loss of generality in assuming the coefficients
of the highest powers of (s) in p(s) and d(s) to be upity. The design
objective is to select H (s) and B (s) so that the closed loop of Fig. 2, is
assigned arbitrarily specified eigenvalues. Simple calculations show that
the closed loop transfer funclion is given by
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H{s) G () + B(s) BIGrIC AN O R 10Y.IC) ®
If it is possible to select & (s) and b (s) such that

g )+ b)) = p (k) ©
where & (s} is an arbitrarily specified polynomial, then equation (5) becomes

H()G(s) + B () = (’}((:)) ™
and the closed loop transfer function becomes

,gv(i) _8Wd(sy g z(9 (8)
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We recall that the coefficient of s™ in d (s) is unity. .Hence_jt is sufficient to
require k (5) to be a polynomial of degree (n — 1) vyxth arbitrary FOCﬂicients
so that d{(s)+ k (s) becomes an arbitrarily specified polynomial. Using
this information in equation (6), we can conclude that the degrees of 7 (5),
b(sy and p (5) are (n — 1), (n — 2) and (1 — 1) respectively, when minimum
number of parameters are to be used in H (sy and B (s). With the above
preliminary observations we let

p(s) =5"V+ ppo st 4 L b s+ o )
B(S) = By ™ b e SPP A L IS+ g {10)
B(s) = by s™ % by %0 o+ Bus Do (11
r()=8"+rp "4 ..+ st (12)
where the coefficients p;, ;. b; and #; are yet to be specified. Let
g()=gp s L.+ G5 T B (13)
d(s)=5s% L dp_, ™1 L L ddys - dy (14

where g; and d; are known coefficients.

From the perfoimance specifications, we can arrive at the desired closed
loop characteristic equation, and hence r; are determined from this.

We note that

r(s) = d(s) + k(s). (s
Hence
k (s} = r(s) — d(s)
= kg SV L ks b Ly (16)
where
ki = rs — dj. an

Let us choose the polynomial p (s) such that all its ejgenvalues are in
the left half of complex plane. This requirement is imposed on the poly-
nomial p (s), so that any imperfect cancellation of the poles of & (s) and
B (s) will not significantly affect the transient response of the resulting system.

Design of the feedback network becomes complete with the computa
tion of the coeffirients b; and k; of the polynomial B (8) and H (s).
Tet

Pk =g(s)
=0 L o o 8T8 L+ s+ g, @8)
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We note that since p (s) and ¢ (s) are known polynomials, g (s) can be
evaluated. Using equation (18) in equation (6) we get

1) g (5 + b (yd () = g (s). (19)
Substituting for the various polynomials in equation (19) from equations
(10}, (L1, (12), (13) and (18) and equating the coefficients of like powers
of 5 on both sides, we get the following linear algebraic equation for the
unknown coefficients b; and 7.

d 0 ...00 g 0 ... 0 0 ‘k by 7o
& & -.-00 lg g ...0 0 “ b, 0
dygdng .. &0 gns38na--- 0, 0 ‘ b3 In—s

dyydyy ... dido 8n28n-s -+ &% O [ bng In—

dpydns oo do iy En-18n-2--- 8 & | I i I

1 dpy ... dydy 0 gpna---8& & I, dn
0 1 ...dydy [0 0 ...gs g s An s
0 0 ...l dp |0 O ...Z¢na28n2 @ [no Zom-a
0 0 .01 0 0 ...0 gn, ‘l By Jan—s
T T T T

The determinant of the coefficient matrix is the resultant of the poly-
nomials d(s) and g (s) and is non-zero, if the polynomials d (s) and g (s)
are relatively prime 3. Thercfore equation (20) gives a unique solution
to the parameters b; and A; This completes the design of the closed loop
system for arbitrary assignment of closed loop poles.

3. A NuMoricAL EXAMPLE
Given ;
252
GO =rger =6
Required closed loop characteristic polynomial = (s -+ 65% 4 11s + 6).
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Solution

Assume p (s) = §2 -+ 4s + 20 (arbitrary). Equation (20} for the
above becomes

!
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from which

- - _

by| | —13

B 1 ~105

Thle] 75

hlE 62-5

B 12-5 ]

Hence

—~ (10:55 + 15)
BO)=-wraiian

ft would be interesting to compare this solution with that through state
variable feedback. The observer canonical form for the given transfer
function is written below

—4 1 0 1
k=110 1lx4| 1 u@®
0 6 0. 2

e(®=1{1 0 0]x

Let us seek an observer (2nd order) such that z (f) = [« J] x where z(t)
is given by 7= Dz fo () + ou (D).
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Assume the eigenvalues of D (o be given by s + 4y 4 20 = 0 and let
— 4 1]
D= [~ 20 0

it can be shown that we get the following solution for the observer.

T A R b A B

Further it can be shown that the required state vaiiable feedback which
assigns the required closed loop poles is given by

w(ty=r(t)— v
where

which in terms of the state variable of the observer and the output of the
system IS given by
() = — |12-5 0-5 0-5|[c (s
0= 125 05 0 IR0,
The two fecdback loop transfer function can now be calculated and arc
given by

({; =10-5 05|t —pp [ 31
(=0 L-1e ]
- (10-58 + 15)

TSR A2

and
Vis) —17.5 . . 7 1t 19
e81 =125+ 1005 0511w — ) [ ]
L u(@) =0 6
) 1255 — 175 _ 12552 4 62-5¢ 4 75
=S T T T ST AT 20

4. SUMMARY AND CONCLUSIONS

In this paper it has been shown that the transfer function approach
can give exactly the same results as given by the state variable approach
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for the design of a single input-single output system in order {o realize
arbitrarily specified closed loop poles.

Pearson [4] presents’ a method of solving the same problem. Here
the feedback compensator is excited only by the output of the system.
Further the method requires the specification of (27 — 1) closed loop
poles.

The present paper also requires, though indirectly, the specifications
of (2n — 1) poles, if we take into consideration the arbitrarily selected
(n — 1) poles of the feedback compensator excited by the both input and
output of the given systems.

It would be worthwhile to cxamince which of these methods would
cause less instrumentation problems (by demanding lesser gain terms/coeffi-
cients of the compensator transfer function) before choosing onc in preference
to the other.
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