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ABSTRACT

Au indireet comral problem of the types % = A () x— b (1) & with feedback
S g [0 ) x (H—1 (G Y, is considered.  This problem is more general
than Lurie's prablem, in that, A, b and ¢ are allowed 1o be time varying, also f
cun be nonlinear and time varying. However, in one sense it is more restrictive,
namely, ¢ (ta)fa < 0, as opposed to ¢ (t, a)fa = O in Lurie’s problem. A sufficient
condition for absolute stability is devived.
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1. INTRODUCTION
An indircet control of the follewing type is considered;

Linear part:

=AM x ) —bOE Q) (I a
Nonlinear feedback :

EN = 1t v () x () =S (hE )] (15

where, 418 nxn, b and ¢ are nx/and fand 4 are scalar functions such that
< 0@

b= @

Fle0) =4 (7,0)=0. €

Linear part is input-output stable in the sense that il | £(r) | < H for 1 >0,
{hcn there exists an A depending on H and x (0) such that !lx (1) |< M
for t>0. M can be made as small as desired by choosing sufficiently small
Hand 3| x (0 li. This problem is more general than Lurie’s indirect control
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in that, fistly, 4, & and ¢ have to be invaiiant in Lurie problem;
secondly, in Lurie’s problem f (s, £) can only be of the form pé[i]; 5o
that, under steady state, feedback in Lurie’s problem is linear and time
invariant.

However, in one respect the above system is more restrictive than
Lurie’s. This is so because ¢ {¢, g)/a is not allowed to be equal to zero.

It may be noted that because 4 (f) can be time varying, frequency
domain techniques, such as M. V. Popov method and circle criterion are
not applicable. Other more general results are difficult to apply [2, 3]
The results obtained are similar to Lurie’s sufficient condition for absolute
stgbility which is of the form p >p* [1]. In the more general case under
consideration here, p¢ is replaced by a nonlinear time varying function
f (2, &), so that the condition obtained is of the type:

59 =00 @

where # (t) is known if the transition matrix of the linear part is known.

2. Lemma

Let

@)y = F(2, pr) ©)

represent a scalar functional differential equation, where y; in the argu-
ment of F shows dependence of F on y(S), 0=\t — 4, (1)< S<t. Note
that equation (5) can contain integrals of functions of y within the limits
zero to ¢, Let F be such that y and y are continuous for z >0.

Suppose, there exist continuous, nonincreasing, continuously diffe-
renciable functions Hy (?) and H,(¢), such that for any #,, tp >0,

@) Flta, ye) < Hy (ta), if

y(ta} = Hy(tg), and — H; (S) < ¥ (S), << Hy(S), for Sel (tg), whete
I(t) represents the interval (z— ¢z, ¢)

(i) F(to. 33,) > — Hy (1), if
y{tp) = — Hy (t) and — H, (8) < y (S) < Hy(S), for Sel (tv)-
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Then
— ()< y ()<< Hy(r), for all £ >0

—H 0 < y(S)< H,(0), for SeI(0), and § =

Proof: Let t be the smallest value of r >0 such that y (#) is equal to
Hy(1) or — Hy(z). Let us assume that

y (1) = Hy (1) 6)
and

—H ()< y()< H(t), 1el(t) )
Then, it is necessary that

y(h) = H,y (1). ®
If assumption (6) is true, it follows from condition (i) and equation (5), that

y(6) < Ha (1. 9

Since, inequalities (8) and (9) are contradictory, assumptions (6) and (7)
cannot be true. Similarly, it can be shown that y (#) cannot be equal to
— H,(#). Hence, y (¢) remains strictly bounded by — H, and H,.

3. GENERALIZED LURIE'S INDIRECT CONTROL

Consider the feedback control problem described by equation. (1) and
constraints (2) and (3).

Theorem: If for every H,, O H, < H, there exists an e >0 such
that:

® (— 1y ﬂfﬁ%ﬂﬂ) — [Nk 9 ds= e >0, n=1.2.

0

where k represents the impulse response of the linear part defined
as follows ;

k@ 8)=e ()Xt 8)b(S)

K(atr’—s") =A@ X1, 8); X(S5, S) =1
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(i) Given any 8 >0, a set 1,(8) can be chosen such that,
x (0) en, implics g (1, 1) < & for all 1 >0, where, g{r) is defined a5

g, ) = x;n)ax e (X5 0)X(O) ]
KA{n) ey

Then system (1) is stable in the sense that for any given H,, 0 <H, < B,
there exists a region U, in the (n - 1} dimension state space and positive
number A7 such that (x(0). £(0)) U, implies | (1) | < H, and jjx(1) i
< M for 1 >0.

Proof.—Elimination of x from cquations (1 &) and (1 b) leads to

EN=dicd NXE0x O —F(n é®)+ f k (1, S) £(8)ds)

(10)

Since equation (10) is of the form of equation (5), the above stated Lemma
is applicable. Sufficient condition for |£(f) |< H{s) obtained through
the application of the Lemma are

W =4[, X (1,0)x0)—f (1, H() + f k(t, S)ptS) dSi<H
‘ an

and

EN = [1,d X(1,0)x ©) — f (1. H()
~ [kGS1p(s) as| >~ &
. A a2

for any p(S). such that — H(S)< p ()< H(S), for 0<S< 1. In
equalities (11) and (12) are satisfied for any x(0) ey, if

O In (= D" {2 () — (= 1) (L (— D H@) +

+~f{k(i,S)]H(S)dS}]<fI =1, 2. ©



A Generalized Lurie’s Prohlem 197

it follows from constraint (2) that ¢ (r, @) >0, if « >0. Hence, inequality
(13 is satisfied for H equal to a constant, H,, if

(— D (s (= DMLY > w) -+ H, f [k $)]ds  n=1.2

(14

If conditions (i) and (ii) of the theorem are satisfied, given an H,, one
can find an e >-0 and a set u, such that for any x (0) € u,.

4
(= O ¢ DY — H, / ks S) LS = ¢ >g(t ),

n

n=1,2. (15)

Since, inequalities (14) and (15) are equivalent, it follows that given any H,
one can find a set u, such that x (0) ety and | £(0) | < FH, implies | £(#) |
< H, for t >0. From the assumption of stability of the linear part,
[ £(1} | < H, implies existence of an M such that |l x(7) [| < M. Hence,
the theorem is proved.

4. FExample 1:

Consider a system described by relations (1 @), (1 5), (2) and (3),
wheve A (1) is nxn diagonal matrix, with diagonal elements 4; (£) >0, Tn
this case, impulse responsc & (1, S) is given by

n &
K8 = > at) nen[— [ ki ) )
, : (16)
Choose e, i=1, 2,---, n and H, such that
[5(0) | < eHy, =12, n p
and
1£0) { < H, (18]

Define an upper bound g on the initial condition response as

n

&(t) = H, Z 6 e(r)] CXp[~— f NG a't’] . 19)
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Let us assume that the ¢; and k; are such that g (¢) —0. This system is
stable in H if for every 0 < H,< H, there exists an e >0 such that
i
G%W“M—DHQ>HL[M@SHﬁ+gn:LL(m
o
Lurie’s method and frequency domain methods are not applicable for
this case.
In the special case, where k;, b; and c¢; are constants, and f (7, &) is
linear and time invariant given by pé, the above condtion reduces to

o leshs |
> SR @)

If this condition is satisfied the system is absolutely stable for any ¢ such
that ¢ (¢, a)/a > 0.

It is of interest to investigate the sufficient condition for stability
obtained by Lurie’s method for the special case of time invariant linear
part with ¢ («)}fa<< 0. If one chooses a Liapunov function

V== %' BX + f b (a) da (22)

where o =:¢'x — p¢ and B is such that
— C=AB-+B4d—=—1 23)

where [ is identity matrix, then the condition obtained is same as (21) [1].
By choosing a different C, one may get a better result.

Since, ¢ in Lurie’s method belongs to a wider class as compared to the
present problem, and the condition for stability in the special case by Lurie’s
method is not stronger, obviously, Lurie’s method gives better results for
the special case of the above example. However, the strength of the method
described above primarily lies in that it can be applied to time varying
linear part and nonlinear time varying f in the feedback, to which Lurie’s
method is not applicable.

Example 2: Let
i:pmf+bm§ (24)
E=x—E—4gn (25)
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x(0)=0 (26)
f pydr <(a—1nyfor tza =0 @n
[6()]< 3. (28)

According to the Theorem stated carlier, a sufficicnt condition for stability
is that there exist an H >0 such that for every H,, 0 < Hy< H,

t ¥

H+tape =10 [ o ([ P @ da) dt’ (29)
0 7
From conditions (27} and (28) it is seen that
& &
Hy,|b()] f exp (f p (@ da) at’ << 3H,. (30)
0 it

From inequalities (29) and (30) it is seen that, inequality (29) is satis-
fied if

H, + 1 HY* >3H,. (€1}

Inequality (31) is satisficd for every Hy,< 8. Hence, | £(r) | is bounded

by H, for any pair of initial conditions such that x (0) =0 and ] £(0) |
<H0 << 8.
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