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ABSTRACT

The problem of propagation of E, wave guided by a circular cylindrical non-
aniformly corrugated metallic structure which is considered as an artificial dielectric
medium having co-sinusoidal dielectric constant profile in the direction of propaga-
tion has been formulated in the form of Hill’s equation which has been solved for
the phase constant as a function of the parameters of the corrugated structure.
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1. INTRODUCTION

The characteristics of guided electromagnetic waves in a stratified
dielectric medivra can be determined by formulating the problem in terms
of a pair of linear second-order differential equations with variable co-
cfficients, with one equation for each of two orthogonal polarisations. A
rigorous solution of the problem is possible, if for a given polarisation the
dielectric constant profile is such that the governing differential equation
can be written in a form for which the solution can be expressed in terms
of known functions. Tyras [1] Wait [2] Burman and Gould [3, 4], Gould
and Burman [5] have suggested some dielectric constant profiles for which
the govermning differential equation is amenable to solution in terms of
known functions. The differential equation can also be solved by W.K.B.
and phase integral methods of approximation if the spatial variation of
diclectric comstant is very slow that is small over distances compatable to
the wavelength of the guided wave.

‘Rigorous solution for the propagation characteristics and field distri-
bution of waves guided by a sinusoidally modulated plane reactance surface
has been obtained by Oliner and Hessel [6] who expressed the explicit field
amphtud:es and the determinantal equation for the propagation wave
bumber in the form of a continued fraction which is rapidly covergent for
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all values of modulation. The problem of eleciromagnetic wave Propaga-
tion in sinusoidally stratified dielectric media for the case of H-modes has
been formulated in the form of a Mathieu differential equation and the
dispersion properties and the fields of electromagnetic waves are analysed
in terms of a *“stability ”’ chart by Tamir etel [7]. Propagation charac
teristics of E-waves in a sinusoidally stratified plane dielectric mediuy
have beer studied by Yeh ez al. [8] by formulating the problem in the form
of Hill’s equation. WNumerical computations of the dispersion charac
teristics show that the stability diagrams for Hill’s equation and those for
Mathien’s equation are quite different. Casey [9] has introduced a mnovel
method for determining electromagnetic fields in a plane-stratified medium
by solving the goveiming differential equations foi each polatisation in
terms of Hill’s function. This method is useful for 2 wide range of dielec-
tric constant profile.

The reflection coefficient of electromagnetic waves at a stratified
medium has been obtained by Ronchi [10] by using vaviational technique.
The problem of reflection and transmission of electromagnetic waves
directed at a dielectric slab, the relative permittivity of which varies sym-
netrically, either linearly or exponentially from a maximum value at the
plane of symmetry has been solved by Haddendorst [I1]. The reflection
and transmission coefficients have also been computed for electromagnetic
waves propageting through a dielectric slab, the permittivity of which
decreases symuetrically according to an inverse square law profile from the
middle plane to the slab walls bounded by air by Phillippe [12]. Numerical
methods have been used to study scattering of plane electromagnetic waves
from nonplanar periodic structures by Neurenther and Zaki [13]
Scattering of plane electromagnetic waves from a perfectly conducting sur-
face with a sinusoidal height profile has also been analysed by Zaki and
Weurenther [14] by formulating the problem in the form of integral equation
and solving it by using the method [15] of moments. An exact mathe-
matical procedure for the design of a modulated corrugated surface fo
support a specified group of surface waves has been described by Bolljahn
[16]. The analysis is limited in application to two-dimensional corrugated
surface radiators. The analytical technique developed is however znot
valid for the cylindrical geometry nor for the dielectric slab form of trapped-
wave surface. The analysis does not apply to the case of dielectric structure
as it postulates that there is no energy flow across the interface betwee
the guiding structure and the free-space region above this structure. Bolk
jahn’s technique of designing the surface of a surface wave modulated struc-
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wre may be said to be a basic contribution so far as two-dimensional model
of a corrugated surface is concerned. Tamir and Wang {17], Tamir [18]
4ad Tamir and Wang [19] bave also contributed significantly in the field
of wave propagation over modulated surface.

It appears from the above survey of existing available literature on
propagation of electromagnetic waves in a stratified dielectric medium that
all work so far have been concerned with modulated natural planar diefec-
tric surface except that of Bolljabn. It is also evident that no attempt has
been made so far to study propagation of electromagnetic E,-waves in a
circular cylindrical non-uniformly corrugated structure which is simulated
as an artificial dielectric co-sinusoidally modulated in the direction of
propagation, though the propagation characteristics of E, wave in uni-
formly corrugated metal and dielectric structures have been the subject of

mtense study [20-27].

The object of the present paper is to present a report on the derivation
of an expression for the phase constant of Ej-wave launched in an artificially
simulated co-sinusoidally modulated dielectric medium in the form of
nov-yniformly corrugated circular cylindrical metallic structures. The
study is 2 contribution of the work recently reported by the authors [28]
on the simulation of co-sinusoidally modulated diclectric profile and the
work [20-27] related to uniformly corrugated structures.

2. WavE EQUATION IN A MODULATED DIELECTRIC MEDIUM

Maxwell’s electromagnetic field equations in a source-free, charge-
free, x}on—conducting medium with varying electric permittivity « (z) = €®
e(z) in the direction of propagation are

-

2 oH

VXE=—pue 57 e)]
-

VxH=qe@ L @)

'fbm the field intensity vectors E and H are assumed to have harmonic
tme dependence according to

E= I:?exp (—iwt)
N
H = H exp (—iof) @
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and

& = 8-864 x 10-2farad/meter

1wy == 47 x 1077 henry/meter
performing the Curl operation on (1) and substituting from (2), we obtaj
the following electric vector wave equation in a medium having spai-

ally varying dieleciric constant e (z) in the z-direction and assuming the
medium having constant permeability and is non-conducting

> Y >
VX VXE-—Ik®ec({z)E=0. e

In a similar way we arrive at the following magnetic vector wave equatios

VXVXI?—k‘,?e(z)FI—»—ZEZ()Z)XVXI_;:O )

3. WAVE EQUATION FOR E WAVE IN A SPATIALLY MODULATED
DIELECTRIC MEDIUM

The electric E and magnetic I} field intensity vectors can be expressed
in terms of a scalar quantity ¥ (p, ¢, z) in cylindrical coordinates (p,4,2)
by the following Curl relations

E= L.:Kl‘g) VX VX[ (o DI ®
B = U X[ (o DL 0

where ‘i; denotes umnit vector in the z-direction.
We will deal with the magnetic vector wave equation (5) which after
substituting for 73 from eq. (7) becomes
->
VX UXYXbDh]— k() VX ¥ (09,21
>
e < VXV x{¥ (0.6, )] =0 @
which in cylindrical coordinates reduces to

pop L ozt ez 3z 3z

B, | LW, 2V p
"5’;2g+~ il z ! DE()DWZ—Fk‘JL’s(z) v, =0 &
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which represents the scalar wave equation for E-waves in a non-conducting,

non-magnetic medium having spatially varying dielectric constant.

4, SOLUTION OF THE WAVE EQUATION

Using the method of separation of varjables, the solution of equation
& is obtained as
¥ (p, ¢, 2) = [diJg (kp)} + B Y, (kep)] P12 (2) = O 10)

Where the function @2 (z) satisfies the following second-order
differential equation
& de(z) 1 d 9 e 1,2 —

[@ LD G+t (@ k}]dﬁ (2) =0 (1)
where ko% = w®py € and the radial propagation constant k is independent
of the z-coordinate and is related to the axial phase constant 8 (z) by the
following separation constant equation

k2 B2 = ky? € (2). (12)

5. SOLUTION OF THE WAVE EQUATION FOR A CO-SINUSOIDALLY
MODULATED DIELECTRIC MEDIUM

We will consider E-wave propagation in a medium which has a co-
smsoidal dielectric comstant profile of the form

c@= e (18 cos 27) (3)

wh_ﬁre L denotes the period of modulation in the z-direction and the modu-
lation index 8 satisfies the inequality condition

08 < 1. 14
The unmodulated dielectric constant €° is a function of the radius b, spacing
shetween discs and radius a of the central supporting conductor of an uni-
formly corrugated circular cylindrical metallic structure and is given by [28]

o 205 4- (400 5% — sc)t'2

== »ﬁ(ﬁ.w___)_ (13 a)

where

e 5 2 e Kolyeh) By Geb)
e==T68 [+ 2 R OB GB

Fo (o) = Ty (feg) Y (keab) — ¥, (ko) T (Fegh)
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Fy (kb)Y = Jy (ko) ¥y (keb) — Yo (koa) Ji (keb).
Je=s5-1
t == thickness of discs

7o = radial propagation constant of uniformly corrugated structure,
For a co-sinusoidally stratified dielectric mediom the differential equation
(11) after substituting (13) becomes

° 2mz \)
[;Jj _d{‘“e(l"scos”f)J « 1 d
d-2 dz e (I — 5 cos 2 z:) d=
L (1 —scos TF) — kz}] L2 (z) = 0. (15
Using a new variable ¢ ( instead of the variable z, the above equa

tion (15) can be transformed to

[7‘.’2 d? 1

ntd ° d
Dap~ s e <0 T2 g

o {kg? & (1~ 6 cos 26) — k%}] (1 — 8 cos 2812 Wh2 (&) =0

(16
where
DA = (1 — 5 cos 2612 LD (£) (16
The differential equation (16) can be written in the form
d? 2
[de+ 2 @] wom®=0 an
where
_f 23cos2¢ 33%sin22¢
A = [(1 8cos 2¢) T (1 — 8 cos 28R
koLN\2 ¢ k\2
A i oed 0 &0 —(% 7
'(w)‘(e < 8 cos 2 (k0> }:[ (174}

The function A (£) being an even function can be written in the form

MO =6, +2 % 6, cos 2n¢ (18)

=4
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bstituting equation (18) into equation (17) we obtain the following govern-
ing differential equation for propagation of E-waves in a spatially stratified
artificial dielectric medium having periodicity L

[ Zg 42 z 9, COS 2n§J W,n (&) = 0 (19)

which is the general form of well known Hill’s differential equation. Since
the artificial dielectric medium has been assumed to be periodically modu-
fated the solution of cquation (19)for L% (£) will include not only the
fundamental but also higher order spatial harmonics. Hence using
Floquet’s theorem, the solution for W (£) can be expressed in terms of
forward (n is - ve) and backward (z is — ve) spatial harmonics by

W2 (&) = exp (£i88) 3 Cp (B) exp (+ 2inf) 20)
where 77 = 0 refers to the fundamental.
6. DETERMINATION OF 6, AND #, (n 5% 0)
A(§) in equation (17 @) can be written as
,r“__[foLzo_o i EKN2Y 340, 354
\(g)-‘--»({) {e € SCODZ‘&—(E) } (20 +§a)
+( 25 4 83 _gss) cos 2¢ + (352 +84) cos 4¢
3. 11 385
+(2«S3+§8~) cos 6§+(-8~ 4 - 7)cosgg (175)
Expanding A () in equation (18) into Fourier Cosine series and comparing
with A (£) given by equation (17 5), the following values for 8, and 6, are

obtainedA in terms of the unmodulated (8 == 0) dielectric constant « and the
modulation index § which can be defined by

«S:gm_az_;ﬁn 1)
max T €mn

w2 [ (4] 2

02:22‘4 + %4
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by = 1¢d* + 3 5% @

Since A (€) and hence 8’s are related to 8 and ¢° which are functions of 4, b
and s, therefore, the values of respective 6¢’s depend on the physical para-
meters of the structure, i.e, 6 =f (s b,ad). Hence it may be said that
the following differential equation

<o

[.fl_i_;_aov} 2 Z By cosan] exp (£ i

amy

X 3 Cp(B)exp (28 =0 23

Hw—O%

govern the propagation characteristics of E-waves in a non-uniformly
corrugated circular cylindrical metallic structure which can be simulated [28]
as a spatially modulated artificial dielectric medium,

7. FmrELp COMPONENTS OF FE, WAVE
Substituting equations (16 @) and (20) into equation (10) the solution
for the scalar function ¥ (p, ¢, z) becomes

¥ (.o 2) = (1 — 3 cos 7)1 Jy o) + B ¥, (k)]

~ep(£8F) i Cu B)exp (27 (24

et

The field components for E, wave ate Hy, E, and E, which can be deter-
mined from equations (7) and (6) respectively. Eguation (7) yields

P,
H— -2 @)

Hence using equation (24) in equation (25), we obtain

Anz

e
Hy= (1 ~ 8 cos 7Y [ Ky (ke) 4 BEY, (kp)]

cop (2 8F) i,,c,, @ exp (£ 2 F) (26)

AR O
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Since from eguation (6}

1 [oH, , 1
E= gy 5 5 Hel @7

therefore the axial component of the electric field is given by
12 -4
([—-—Scos I exp(:;:zﬁL

£ = wey e(;.

(4 Jy (kp) + B Y, (kp)l z Cp () exp (i 2fn%z (28)

Am—OT

where the following recurrence relations have been used

, 7, (k)
5 Gep) =Ty (kp) — 202

Since from equation (6)
E LA ©29)

* = wx (2) 3z
the radial component of the electric field is given by .

Ey= oo 4 kI (k) + B Y, U] - exp (=

-1
X [ (1 — 8 cos =— Zﬂz ? z Cq (8) exp (L 2innz/L)

A=—CO

:‘:(l — & cos 2‘2—2)1!2 lzzflg 4+ - lﬁw

Iz 12

x S‘ Cn (B) exp (& 2inmz/L) -+ (1 ~ 8 cos =

z{ DO op (£272) £ 27 0, 9)

x e (+ 21 ] @0)

The field distributions in the stratified artificial dielectric medium given by
the components, E,, E,, and H, can be evaluated by determining g from
the sofution of Hlll’s equation,
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8. CHARACTERISTIC EQUATION FOR B
Since

j’;z [ex‘p (+ 88 °§ Cn (BYexp (£ 21,-"5)]

== 3 (B + 202 Cy (B) X (= iBE) exp (£2in)

equation (23) reduces to

T (B2 Cu(B) oxp (= iBE) exp (£ 2imE)

4 T Bpcos2mE 5 Cy(B)exp (< BE) exp (4 2mf) =0

which. reduces to

[—@+202Catpr+ £ 0 Com®]exp (2087 =0 G
since

exp (£ B0
Hence the governing differential equation (23) for the modulated corru-

gated structure reduces to an infinite number of linear homogeneous alge-
braic eguation in C, as follows

— B+ 22 Ca®) + 5 b Com(B) =0 €
with 0_,, = 0 and ne=...—-2,—1,0,+1, +2....

The set of equations (32) is written in the form of an infinite determinant.
The possibilities of infinite determinant were first brought into notice by
Hill [26] in his researches on Lumnar theory. In order to obtain a non-
trivial solution the determinant must vanish to zero. It is also necessary
that the determinant be convergent. The investigation of convergence of
the infinite determinant is due to Poincare® [30] and by Koch [31].

9. CONVERGENCE OF INFINITE DETERMINANT

Tn order to secure the convergence of the infinite determinant in (32}
the following discussion is considered to be worthwhile. Let the defer
nynant be represented by

Dy = [k, ko, . 4m
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Tf m —co0, the determinant Dy, is said to be convergent if it tends to a deter-
minate limit D. In the determinant D, the elements Ay form the principal
diagonal. The subscripts 7 and k form the rows and column respectively.
Any element Ay is called a diagonal if 7=k or a non-diagonal if /2 k.
The element Ao, o is the origin of the determinant.

According to Koch’s condition of convergence, an infinite determinant
converges, provided the product of the diagonal elements converges absolutely,
and the sum of the non-diagonal elements converges absolutely, 7.e., if I7
diag (D] converges absolutely and also Z non-diag [Dp] converges. If
the diagonal elements of an infinite determinant is denoted by 1 -+ @y and
non-diagonal elements are denoted by aix, (i 5= k), the determinant is

written as

Sl a -1 Ay - i
| dgq, 1+ dg ap .- i
|
| [ (273 1+ ayy
:
PP N

Since S’e | x| is convergent, the infinite product

1. k=00
p= it (1+ F lani)
is also convergent. If we form the products
Pm=17(1—}—20rzk , Fm:ﬂ'(l—l-z faikl)
i=—-m k=—m 1% - ka—m

then it can be shown (32) thet
{Dimip — Do | < Py — Py .

Therefore since Ppy tends to a limit as m — oo, so also Dy, tends to a limit
D and we then say that the infinite determinant

Ml x=—00 ... +
is convergent and has the value D.

In order to secure convergence of eq. (32) divide it by 8, — 4n® which
vields

~@ W CalB) + T O Com (B)

T 0, — an° —
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Which can be written as

E+20°Ca® ~ T brmCnld)

& — 6, =0 &3

10. DETERMINANT OF THE CHARACTERISTIC EQUATION

In order that the coefficients C,, in (33) may not vanish, the determi-
nant of its coefficients must vanish to zero, Hence the definite determi-
nantal eguation is

B> =
1y -2 —1 0 1 2
I
h @_4)“"60 ”“91_ — 8, — Oq — 04
-2 ® -7, 3T T8, E g, Ty,
8 26 -8 — 8, —bs_
-1 256, 2: -8, T, 220, @6,
= — 8, — 6 B2 —8, — 8, — 05
0 07 =4, =4, 0T—4, 07— 4, 0 =4,
———93 _':____92_ “91 <ﬁ+2)2_00 '—"01
1 T3, 278, 2778, 28— 6, =4,
_ 94__ — 8, —0, — 6 (B+42— b
2 =, &,  FF—g, =9, 4527,

Hence the characteristic equation for determining 8 of the modulated
stiucture is given by

Vg =0 (34)

11. EVALUATION OF THE DETERMINANT
Let
A B) = [dm, 5}

where

[
Amn""mz (m9é”)
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(B 27— 0,
Amn =gz 8,

where Amn is only conditionally convergent. Form a new determinant by
dividing the linear homogencous equation
w+2”)zcn“ 2 Opm Cp =0
by (8 + 2m)* — @, to secure convergence. Then the new determinant is
A (B) = [Bm,nl
where
diag [Bm, nl = Bmm =1
and

. — b .
non-diag [Bm, n] = Bm, n :@Tiﬁ%ho , (n5Em)

Hence the new determinant is

Mmo= =2 — 1 0 1 2
g [ ;‘
s 1 — 0, — 9, — 0, —8, |
Y P F- -0, B8 B0, |
11 w01 \il "91 *92 _03 "
R B0 F—2 0 B0 b |
By |
o — 6, -0, i — 8, ~ 8, =
By -4, B — 8, = (8 — 8 BY — v,
) — 0, — 8, — 8, ﬁ[ — 0, i
Br22—0, B+27—0, B+, = B+27—-0, |
L S0 x|

2 1
EFE 0, G0, G0, FrH0,

35

;)‘”’if i,
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The absolute convergence of %8, secures the convergence of [B,, ]
cxcept when B assumes a value such that the denominator of one of the
clement becomes zero.

By definition
- oy v TT (B 4 2m* — 6,
T (B) = T 1 {
7(8) 1(3)”1:1 412——5 i

A=—p

B +2n— v 0B+ Zﬂ -+ v/ )
sz 1(ﬁ)n ia (7;7 : (\/6

= oo l' P8 *21“/50)“ | Byl

T (T
<[ [-C5

(-7
(36)

The new determinant ¥, (8) has a sequence of unity along the main diagonal

flanked by a sequence of the form - _ﬁ)i‘ 5. on both neighbouring
- — Vo

diagonals (=2, 0, — 2, etc)

Since [33]
[1 _ ’;] g

=[T1-G)]

— (B)@; i

-

s
83

therefore substituting for z, the following expressions
(B V) (B — V) 7B
2 ’ : o2

&

equation (36) reduces to

Vi =— ¥ ()8)
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which can be simplified to
z”V o __ bm_»”'p

7By = Vi (B) A"j" 77\/60 e

(37

The determinant V7 (8) involves the determinant v, (8) which is periodic
in § having simple poles at § = — 2n & 4/6, due to off-diagonal elements
(8 + 2m)* ~ (1/0,)%. These are the only poles of V, (p) and since V7, -1
as p — oo the function is bounded at infinity. Substracting the poles

from Y, (8) we get

K@y=v.(6)—-C z (B’;g'fz}t)‘él

a=—00

(o705

1
=@ - 277’0 E [(ﬁ+2n+ Vi) T T 2n—veu>]
38)

where C equals the residue at each of the poles of W/,

-+

. b 2x 2x _ 1
Smcewcotx———»)? T +oa =gt = z Py

Hence the function K(8) can be written as
K@) = V1 (8) — g7 \/,, [ cotw (li+21/."o) — cotn (f? :2!?.0)]
(39

which has no poles for any value of g, so K (8) is analytic for all values of 8.
K{p) is also bounded at B > co. Hence K(8) is a constant (see Appendix
Al As B> oo, V(B) —1 and the second term under bracket in
¢q. (38) becomes zero. Hence K (8)becomes unity. Comsequently, from
¢q. (39) we obtain

Vi) =1+ W— [cotn— (ﬂ+2\£9~0) — cotw(ﬁ -2\/90)]
Hence

V) =— {1+ 35 [cotr (EF,Y00) — ot (E=2



240 S. K. CHATTERIEE ef al.
{sin x (@.Ii‘@;?) st (B_:z_.\@s)}
T TEE R (V)

jsmﬂ(ﬁ—i x/9>sm (ﬁ Vi )}

sin? (+/00/2)

Cr ~:xlz_%ﬂ
t s ) sinen V)

] — sin?(«B/2) Cnm cot ( W;%Q_o

sin? (Tr ;0) 2V

Let A =0, then
JO) =1 2%79» . cot ?Xﬁ’
0

A s

the residue C=1[l — WV (0)] 24%'99 tan "LZ/QD

where the determinant ¥ (0) is given by

T — 8 — 0, — U —f,
U @@ i) @6 &0
— B, — 0y — 8, _— 0

4 (0) =

(40)

400
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which.is independent of B and is convergent. Hence,
; B

sin? 55
2

AB) =1— —H—sinzlg—?ﬂ-

L — 2 @)1 2Y% an 7Y%

it /0
V6, T2
singﬂi
- . 41)
A ©0) i ViR (:

In order that the coefficients Cy, which represent the amplitudes of spatial
harmonics, the determinant A (8) = 0. Hence,

sin? %ﬁ e
AO) = Y/ \/30 42}
which leads to the following expression for S
g= % arc sin [\/ZT(O‘) . sin L‘Zﬁf’] 43)

which characterises the propagation of E, waves in the artificially simulated
co-sinusoidally modulated dielectric medium, since 6, involves the modula-
tion index § which is defined by the ratio of the difference to the sum of the
maximum and minimum values or e (z) which is a f (s, 6, @). The nature of
8 depends on the nature in which the physical parameters s, b or a of the
corrugated structure is modulated. The propagating waves correspond to
real values of 8 which is called the stable solution of the characteristic equa-
tion, V(ﬁ)—O Whereas, complex values of 8 correspond to growing
or damped ‘wavés which correspond to unstablé solution of A (B) =0,
This concept of stability or unstability of modes is in conformity with the
solution of Hill’s equation which, possesses two types of solutions, one of
them being called stable and the other unstable.

12. SorutioN oF A (0)
The fifth order determinant in A (0) can be reduced to the following
. (2 9, 0,
fourth order by adding -4 % Rs t0 Ry, sy e Ry to Ry, o %

42
1ESe—4
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Ry to Ry and 57 by p— Ry to R, where R, represents the respective rows i
(1]
40 a

w1 o B — 0,0,
Sip 1 @y e @
— By — b,0, —_— b5
o0, @-0p T @06
— 850, _ 0y ‘793.2 - 8205
I A e
. by — 0,0, _ 0,
T8, N T,
AQ) =
— b8, 8,  — 0,0, 6,
) 0T, 0T =5,
— b2, . —0,8, 8,
L7 : : | 07— 6,
- 9154 — 93 - 61'93 —_ 92 - 9192
g 28— 8, A 27 8, by
6, —#,
—oryg, At
where . 43a

= (2* — 00) (4* — 6,).
Ay = (0% — 85) (42 — 0,).

Expanding the determinant (43) and neglecting triple product terms such

as 8,8,%8,, etc., involving higher power of 6 than the first A (0) can be further
simplified to

28,2 0,2 2
AO=1+56m05 —za‘,)2 T pro 95) @y
. 26,% 8, 6,2
B oy @0y T L@ =y
20,8.8, 642

T 39 (22 - 90) (4"— 80) (T —6 )(42 - 90) 44
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since @' involve 8 which satisfies the inequality 0<C8< 1. Hence 8 can be
eveluated in teims of 8 which is 2 functior. of the structure parameters.

The study of mode stability is under progress.

13. CoNcCLUSIONS

Tre following conclusions which may be of practical interest may be

drawn.

(i) The surface wave characteristics of a dielectric coated conductor
if the dielectric is simulated by an artificial dielectric can be controlled by
an appropriate modulation of either s, b or a parameter of the line.

(iiy Control of radiation characteristics if the structure is used as an
antenna is also possible by suitable modulation of s, 4, or a parameter.

APPENDIX A.1
The derivative f' (4) of a function f (@) which has isolated singulaii-
ties may be written in the form of a contour integral

—a?

' o _1_ f(Z)
S (@) =5 ﬂg P =
K the contour C is a circle of radius R centered at @ and letting | 7 (2) |
<M by hypothesis, then
o M
@< (55) @R = %

Let R - oo, ie., assume that f (2) is bounded for all vaiues of z, then
f'(@ =0, hence f (@) = constant which is Liouville’s theorem.
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