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Abstract

Here we establish three theorems regarding the number

systems of the type of square-integrable solutions of the differential

d2
1 = dxz + p(x) q (X)
M [g] = 7

q (x) o R

on [0, ©0), @ is the column vector with elements » (x) and the ' '
veal valioed 661 [0, 5% sl ) v (x), coefficient p (x), ¢ (x) and r (x) are

(i) p(x), ¢ (x) and r(x) belong 10 L2 [0, c0)

(i) p(x),¢ (x)and r (x) are replaced by ax®, bxP and cx? respectively; a, b, ¢, @, B, y are real
constants with a, ¢ >0 and a, y > 4 + 2. T

In the last thcorem we prove that the differential svstem
Llpl =[-PW e W] + Qe x) =Ae(x
[0(x,72) @, (0/x, )] — 0= [p(x,4) @ bix, V] (r=12;j=3,9)

iS in the limit-2 case, by imposing certain restrictions on the elements of the 2 x 2 matrices P(x)
and Q@ (x). ¢,(0/x, A), r = 1, 2; @, (b/x, A), j = 3, 4 are the boundary condition vectors at x = 0 and

al x = b respectively.
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L. We discuss the differential expression determined by

_ux)+px)ux)t4 (x) v (x) (D
% ] = [v" (xX)4 7 (x) v (x) + g () 4 (X)

th elements « (x) and v (x). The coefficients

on [0, o0), where ¢ is the col vector Wi e ;
’ ’ @ 1S the column ) :
P (x), g (x) and r (x) are real valued on [0, o) and satisfy the basic conditions, which
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will be specified later in §2. We denowe by v the number of linearly inde

tions belonging to £° [0, o), (the Hiltert space of vector functions wj
square) of the differential system

pendﬁﬂt 30111-
th integrable

M [p] = Ap on [0, c0), where im A# O, 2

It is known that v does not depend on A and that 2 < v < 4 [See Chakravarty? ang
Chakravarty?, Th. 2.1]. M [.] is said to be in the limit — 2, 3 or 4 accordip y

has 2, 3 ot 4 linearly independent solutions in .£2 [0, o0). g as (2)

2. Let 9 be the set of complex-valued vector functions F(x) = {f, (%), /. ()T
(T = Transpose) such that . rJ2

() F(x) is £°[0,00), i | | FT(x) F(x) | dx,

(f (x) is the complex conjugate of F(x).)
(ii) 1% (x), % (x) are absolutely continuous in [0, co)

(iii) f7 )+ 2 () A + g () fo (x) and 5 () + g () /1 (%) + 7 (x) f: ()
belong to L2 [0, c0).

For any two vectors F(x) = {f; (x), /e ()}7 and G (x) = {g; (%), g: ()}, let [FG] ()
denote the bilinear form on 9 defined by

[FG] (x) = f{(x) 8 (x) — & (x) 1 (x) + 17 (x) & (x) — 82 () f2 ().

It follows by the method indicated in Sen Gupta® theorem 5.2. that M[.] is.limir-.?.
at oo if and only if Iim[FG](x) =0 forall F, G belonging to 9. Thus to establish that

=300
M .] is not limit-2 at oo it is sufficient to produce one pair F, G of elements of 9 such

that lim [F G] # O.

2-» 00

Theorem 1: Let a,b,c,a, B,y be real constants with a>0,¢c> 0. Then, if

a>48 4+ 2, y> 484 2, B >0, the differential system
-
Lis + qx@ bxf

dx? (3)
bxB

1S not limit-2.

PROOF : [The method of proof follows Eastham® ‘]
We take F = G and determine F by
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-"j Q, (t) di
fi(x) = Py(x)e v J=1,2
where P;(¥) and Q, (x) are real-valued and wi|y te defined |at (4)
ater.

that A calculation shows

' ol : i1 Qy(x)dx
fIE)1PX) + P () Qy(v)) e

17000 = {PF () 4 2P} (0 Q, (x) + P, (x) 0} (x) — P, (x) 0% (x)) ei“j Q) (x) dx

From these results we oblam [FF](x) = 2i (P,2 Q, + P,
calculations omuitted. 1 3

*(x)+p (.ﬂfi (x) 4 ¢ (x) f5 (x)

Q.) and with details of the

i IlQl (x) dx i JJ 0. (x) dx
={(—0;+p) P+ i(PQ;+2PQ) P} e’ +gP.e’
7 (x) + g () f; (x) + r (x) f2 (x)
:‘q? O (x) dx i f O, (x)dx
= {(— Q2+ r) P, + i (P3Q; + 2P, Q;) Pi}e + gPye’
We choose P;(x) and Q,(x),j =1, 2 such that
—0i+p-=0 and —Qi+r=0 (5)
P:Q, =4 and  P;Q, =B : (6)

By (5) and the results obtained on differentiating (4) we find that

if 0 () dx i | 0w dx
" (x) + p () [, (x) + g (x)fe(¥) = Pre’ +gPe’

i | Q:(x) dx fnl O (x)dx
X))+ g () f, (x) +r()f(x)=Pze ° + gP, e

: ; . we should
In order that F should be in 2, since P;(x), 9, (x), j=1,2 are real-valued, W

have
(1) P,(x) and P,(x) telong to L2 [0. o0)

(2) 4P, and gP, belong to L* [0.0°)
(3) P(x) and P (x) telong toO L* [0, ©0)
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Solving (5) and (6), we find
Py () = {4%p ()", Py (x) = {BYr (x)}*",
Q,(x)={p (x) 2 and Q. (x) = {r (x)}12.

We now retuin to our original differential expression M [.] in which P (X) = gxa
g (x) = bxP and r (x) = cx¥ from which we find )

Py (x) = O (x%%), Py (x) = O (x" "), ¢ (%) P, (x) = O (x-%+F)
g (%) Py (x) = O (x-114+B). P} (x) = O (x-94-%), P} (x) = O (x-W-2)

To satisfy the conditions we should have

a>4f+2 and y>4p+ 2

These establish the truth of the theorem.

In this case we note that (1) is not limit-2 if
) px)<ax* g(x) <bxF and r(x)=cx¥in [X, co) for some X > 0.
(1) p" (x) = O (x*?), ¢" (x) = O (xF-2) and r" (x) = O (x7-2) as x - oo

where a>0, ¢>0, b, a, B, y are real constants with a> 48+ 2 and

Theorem 11 : 1f p (x), g (x) and r (x) belong to L2 [0, o), then the differential system

— U @) +px)ux)+gx)v(x)=0) (7)
— vV X))+ gXux)+rx)vx)=0

1S not limit—4.

PROOF : Let y = {3, (x), ¥, (x)}T be a solution of (7) belonging to .£2[0, o), Eheﬂ
because of the conditions p(x), ¢ (x) and r(x) belong to L2 [0,c0) the functions

i (x) =p(x) y1 (x) + q(x) )z (x)

and
Va(x)=qx)y (x) +r (x) ¥ (x)

are summable, so that the limit
lim p/(x)=yi(xe)+ [y (x)dx, (j=1,2)
g—>o0 zo

exists, Hence the functions yj(x), (j =1, 2) are bounded as x — oo
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Let Uy () = {1, (x), 9, W, (j=1,2,3 4

olutions of the system (7), then the Wrongk
(U Us] [UsUs) — UL [UU) + (U,

) be the four linearly

) independent real
1an of these solutions

U,] [UaUa] = constant# 0,

where [F G] is the bilinear forn: FIG' — GTF' for any two vectors F,G. If U,(x)
(j=1, 2 3. 4) all belong to .£2[0, co) then ' (x), v/ (x)(j=1, 2, 3,4) are bou:'ldeci
a[]_d hence

r r 7
U, Us] = Uyt + 030, — u/ u, — v v, are L2, c0),

so that the function
[U1U2] [U3U4] _ [U],U.'!] [U2U4] + [U1U1] [UEUE] = COnSt&Ht.—,& 0‘

also belongs to L [0, oo), which 18 impossible. Thus all the four solutions are not
402 [05 CK:'!).

3. We now discuss the .L*-classification of the solutions of the differential system
Ligl=[—PXe (0] + 0x)o(x)=2p(x) (8)
where ¢ (x) is the column vector with elements u (x), v (x) and

A p(x) p2(x) (X)) g (x)\ |
Plxy= P: (x) Ps (x))’ Q)= qi(x) ¢ (x)) ’

elements of these matrices are real-valued, continuous and differentiable over [0, 5],
b> 0.

Utilising the Green’s formul.a.. the bilinear concomitant of any two vectors £, G satis-
fying the system (8) turns out to be

[FG] = FT PG’ — G™ PF".

The boundary conditions are given by

[0 (x, D)o, (0/x, D] =0 = [p(x, 4) ¢ bjx, D] r=1,2;j=34) 9)
where ¢ (x, 1) is a solution for the system (8) and

0, (0/x, ) = {x, (O/x, 2), ¥, (O/; A}
and

0, (b/x, ) = {x, (b]x, 1), ¥, (b/%, DY

x.—:oand atx=b>0|

are the boundary condition vectors at
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The Green’s matrix G (b, x, y. 2) = (G (b, x, », 4))
— (Gll (ba X5 Vs ’]) G21 (b- Xy ¥, ))
Gie (b, X, p, 4) Gao (b, X, v, 2)

Details of construction of Green’s matrix can be found in Bhagat! or
Gob.x,v.2)=GT(b.x, ). 2)

- (Wll (x, 2) Vo (X, /1)) (xl (v, /) i (y, 2)
Wi (A e (5, D\ (D) () TE [4, x)

= (x1 (x, 4) Xo (X, £) v (¥, A) W1s (¥, A) , b
W (xw ;) Yo (xw }) Wor (_V.. ;.) llb22 (y" A) ? ye (x‘ ]

in Chak ravarty?

where,
- _ (¥n (x, 20\ _ [@02904) @5 (b/%, 1) — [@e04] ¢4 (b/x, 2)
yr =1(x, 4) Wys (X, A) W (%)
_ 5 (W (x, 2N\ [0104] @4 (b/x, )-)_— [9104] @5 (b/x, 2)
We = V:?. (x-. )-) e W oo (x’ )) — W(’D
and

W (A) = [0:0:] [9:05] — [0104] [9205] + [0105] [9204).

Following Chakravarty?, we can extend the Green’s matrix to the singular case, ie.,
when b — oo.

Definition: The differential expression (8) with (9) is said to be in the limit-2 case
if it has only two linearly independent solutions in .£* [0, co) for all non-real values of
the complex parameter 2.

Let S (1) denote the number of linearly independent £* [0, oo) solutions of the system

(8)-(9).

Result 1: S (1) does not depend on the complex parameter A

Let o (x, 7;) be a non-real solution of (8)-(9) belonging to .£2 [0, c0) for a given
complex 4 = 4;, say.

Then
L[ (x, 21)] = 40 (x, 4)-

We consider

oD
®(x,2) = § GT(x, 3. D) 0 (o) dy,
0
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where A =0 T 1T, T> 0, obviously @ (x, 1) is

not
the result follows. Also 2 S(A) < 4. null.

Now following Chak ravartys

From now oOf we designate the system (8) as the Q-syst |
trom (8) by replacing Q (x) by Q-system and the system obtained

1o (X) 920 (X)

Qn (.\') - G.q (I) /EY) (x)

35 the QO'SYSlem.

Let Sq(4) represent the number of square-integrable linearly independent solutions of
the Q-system and Sq (4) the same for the Qg -system.

Result 2: For the bounded elements of the matrix (Q — Qo)
Sq (A = Sg, (4)

where 42 be a given complex parameter.

Let  (x) = {w, (x),¥. (x)}” be a non-null solution of the Q,-system belonging to
£2[0, c0), then

Lly] — Ay =[—PW)] +Qw=0
=[—P(yW)l + Qv +(Qe— Qv =10

Now,

O(x,2) = | GT(x,5, 2 (Q0) — Q0w () d

satisfies
LO— /0= —(Q— Qyv-

Now following Chakravarty®, Th. 2.2 the result follows.

Therefore, we conclude that the addition of a matrix function Q (x) to )
(1
[— PUY = AU he systems (8)
| the syste
does not alter S (1) for the system (8), i.€- the S () are he same for the sy
and (10).

differential operator associated

ic linear g :
mmetric ¢ definition D of L, is

[0, 00), the domain ©
Then

.We define L, as the minimal closed syz
¥ith (9) in the complex Hilbert space L
the same as discussed in Sen Gupta®.

LyU(x) = [— P() U]



242 PRABIR KUMAR SEN GUPTA

and

Ur(x) = [0],(k =0, 1)

. (11)
the superscript k denotes the k-th derivative.

For simplicity we wiite S for S (4). Let the deficiency indices of L, be (S )
in the case when 4 is replaced by a real number 2,, we denote it by (S,, S,) U;llik and
S, may not be restricted to 2, 3 or 4 and it may vary with ke . ¢ §,

It can be proved following Dunford and Schwartz!, [pt. II, pp. 1398, lemma 9] that
S, < S, to prove S;= § we require the opposite inequality

Se = S. (12)
Let L, be the self-adjoint extension of the operator L,. The condition (11) holds if

(@) 74 is not an eigenvalue of L,
and

(b) /4isnot in the continuous part of the spectrum of the self-adjoint extension L, of L,
[See Naimark8, pp. 42-43, corollaiy 3; also Dunford and Schwartz!, pp. 1398, Corollary
8].

Lemma 1: If

(1) pr(x) >0, p; (x) ps (x) — pi(x) >0
and

(i) lim inf p7* (x) x~2p; ,(x) > K> 0
(P1, 2 (x) = min {p; (x), p; (x)})

Then the continuous part of the spectrum of the operator L, spreads over the interval
[ K, o0).
PROOF: Let ¢ be any arbitrary real number in (0, K) and let X be such that

P2, (x) > (K— &) p, (x) x% in [X, o0).

L. : t
Now let f (x) = (f1(x), f2(x))T be any vector function in Dy whose support is compac
and lies in [x, oo).

. * . . niShes
[The least closed domain outside which a given finite vector function identically va
Is called its support.]
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Then we have
(L,f:f) dx = oj {— (P fi' + Pof ), — (Pofy + Pafz’)fz} dx

== {(— Plflr L= pzfzr)fl + ("- pzfl' ~— Pafgi) f2}m 4
+ 6[ {(F’lfllr I szal)fll 4+ (Paflr b P::fz')j;} dx
= '{ {p1(x) Ifl' (x) ’2 +2p, (x) | £y (%) | | /2 (%) | +
+ ps () [ f2' (x) |2} dx
> [ 5 @@+ @)
= P P 1 | Pz(x)lfz (x)';'dx
> (K — ) ‘]r° X2 )]+ 1f2 (x)])2 dx
> E=9 [ (1 o)+ B

Applying the inequality [Glazman’, pp. 83]

i 4 o0

- I +2 2
fxy dxﬁ( , 1)2fx“ y'*dx

0 o

for any real function y(x)e C'[0, o0),a > — 1.

[See also Eastham®, lemma of § 2].

The lemma now follows from (13) and Glazman® [pp. 34, Th. 28].

We are now in a position to prove the following theorem.

Theorem 111: If
(i) p, (x), ps(x) > —~ p,(x) >0 in [0, co0)
(i) q,(x), j= 1, 2,3 are essentially bounded in [0, o0) and

(i) lim inf x-2 p7 (x) p2., (%) > O

>0

then (8)(9) is in the limit-2 case.
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PrROOF: Since ¢;(x), j = 1, 2, 3 are bounded in [0, co) we onl
(10) to determine the number of £2-solutions of the equation (8)
tions are the same in both the cases.

Y consider the equatiog
-~ The boundary condj-

From (11) we see that L, has no eigenvalues; further if we take 2
conditions (a) and (&) of § 3 are satisfied. Therefore, if S, refers to

[P(x) U ' (x)] =0

0o =10, then the
the equation

(14)
then (I2) holds. We now prove that the equation (14) has two solutions not in 2
[0, c0), ie., S, < 2, then (12) and the inequality S >2 would imply S =2 Let

¢ (x) = (¢1 (x), @, (x))T and ¥ (x) - (¥ (x), w, ()7 be the two solutions of (14) of
which no non-trivial linear combination is .£2 [0, co).

For ¢ (x), we choose ¢ (x) = (I, I)7. Next let X, be such that

P2 () P1(Xo) = P (X) Py (Xo) | 1 (%) P2 (Xo) = p, (1) pu (Xo) 15
AOPN GRS A6 R A EY N1 -

in [X,, 00). These hold by condition (1).

We define y (x) to be the solution of (10) which satisfies the initial conditions
(Wl (Xo)a Ws (Xo)s WIr (Xn) » Wﬂr (XD)) == (05 O: 1: O) (16)

On integrating (14) over the interval (X,, X;) with U (x) = y (x) and using (16) we obtain

P_:*T(x) p1(X,) — ps (f) P2 _(Xo)
P (x) ps (x) — pi (x)

p1(x) py (X4) — py (X) py (Xo)_
p1(X) pa(x) — p; (x)

e, yi' (x), v, (x) > 0 in (Xo, Xy) [by (15)].

vy (x) =

W, (x) =

Thus y (x) is increasing in (X,, X,) and it follows that  (x) is non-null at X, 1P (Xor o)
therefoie, y (x) = oo as x — oo.

: .. : . . - Further
These solutions aie linearly independent and neither 1s square integrable.

: Hence
no non-trivial linear combination of ¢ (x) and w (x) can be square-mtegrable-
the theorem follows.
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