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Abstract 

Here we establish three theorems regarding the number of square-integrable solutions of the differential 
systems of the type 

d2 
+ p (x) 

A/ [9] .= 

(I CO 

on [0, oo), co is the column vector with elements a (x) and v (9, the coefficient p (9, q (9 and r (x) are real valued on [0, oo) and 

(i) p (x), q (x) and r (x) belong to L 2  [0, oo) 

(ii) p (9, q (x) arid r (x) are replaced by a,va, bx/3  and cx7  respectively; a, b, c, x, /I, y are real 
constants with a, c> 0 and z y> 4/i + 2. 

In the last theorem we prove that the differential system 

[9 (x, 2) 

E— P (x) 9' (x)]` -1- Q (x) 9 (x) = 2 9 (x) 

9, (01x, 2)] :— 0 = Ev (x, A) 95 (b1 x, .2)1(r = 1, 2;j = 3, 4) 

is in the limit-2 caw, by imposing certain restrictions on the elements of the 2 x 2 matrices P (x) 
and Q 	Or  (01 x, A), r 	12 2 So, (61 x, A), f = 3, 4 are the boundary condition vectors at x = 0 and 
at x = b respectively. 

Key words : Integrable-square solutions, Deficiency index, Hilbert space, Self-adjoint, Boundary 
condition vector, Green's formula, Bilinear concomitant, Green's matrix, Eigenvalue, spectrum. 

1. We discuss the differential expression determined by 

M[9] 	u" (x)d- p (x) u (9 + (x) t. (91 
v" (x)+ r (x) v (x) q 	u (x) 

0°), where co is the column vector with elements u (9 and 

P (x)  q (x) and r (9 are real valued on [0, 00) and satisfy the 

(0 

v (x). The coefficients 
basic conditions, which 
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will be specified later in § 2. We denote by v the number of linearly independent solu- 
tions belonging to .02 [O, co), (the Hilbert space of vector functions with integrable 
square) of the differential system 

Al {9) =A9 on [0, cc), where im A 0. 
(2) 

It is known that v does not depend on A and that 2 < v < 4 [See Chakravarty 2  and 
Chakravartys, Th. 2.1]. M [.] is said to be in the limit — 2, 3 or 4 according as (2) 
has 2, 3 or 4 linearly independent solutions in .e2 to, 00). 

2. Let 2 be the set of complex-valued vector functions F (x) {A(x),Mx)}t 
(T = Transpose) such that 

00 
(i) F (x) is ..C= [0, co), i.e., 	I FT (x) 17(x)1 dx, 

0 

(i4  (x) is the complex conjugate of F (1).) 

(ii) f; (x), f; (x) are absolutely continuous in [0, co) 

(iii) fl  (x) + p (x) (x) + q (4f2  (x) and f (x) + q (x) A 	+ r (x) f2  (x) 

belong to V [0, 04 

For any two vectors F (x) ={f  (x), f2  (x)YT and G (x) =-- {g 1  (x), g2  (x)}T, let [F G](.) 

denote the bilinear form on ji defined by 

[F Gj (x) = f (x) g 1  (x) - g; (x) (x) +f  (x) g2  (x) g; (x) f2  (x). 

that M [.] is limit-2 
Thus to establish that 

of elements of such 

It follows by the method indicated in Sen Gupta 9  theorem 5.2. 
at 00 if and only if lirn [F G) (x) = 0 for all F, G belonging to 	. 

ft-*co 
M 	is not limit-2 at 00 it is sufficient to produce one pair F, G 

that lirn [1.  G] 	O. 
z400 

a > 0, > 0. Then., if 
Theorem I: 	Ltt 	a, b, c, a, 13, y 	be 	real 	constants 	with 

a > 4/3 + 2, y> 411 + 2, fi > 0, the differential system 

( d2  
dx 2  axa 	

bxg 

d 2  
bxg 

dx 2 + CX7  

is not limit-2. 

PROOF : [The method of proof follows Eastham; 6] 
We take F =-- G and determine F by 

(3) 
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!5 Q (r) dr 
fi  (x) 	p (x) e 	, 	1, 2 

where p (v) and Qi  (x) are real-valued and will be defined later. 
that 
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(4) 
A calculation shows 

ei; (.0 - 	P t; (A) 

4.  

i f  

P (On , 	f  e 

a 
i Qj  (x) dx f;, 

(x 	(x) 	2 /P; (x) Q (x) 	P (x) Q; (x) P (x) Q 2, (4) e n  

From these results we obtain [FT] (x) = 2i (P1 2  Q1  + P2 2  Q2) and with details of the 
calculations omitted, 

71' (x) p (x) A (x) 	(x) .12(x) 

c 	 a 
i 1 Q 1  (x) dx 	i j 122 (x) dx 

--r- f( - 0; + p) P i  + i (PW; -i- 2P;Qi) P7) e ° 	+ q P2  e ° 
fl  (x) (x) -fa q (x) A (x) + r (x)12  (x) 

i f Qt1 (x) dx 	1 Q (x) dx 

r) P2 + (P2Q; + 2P; Q2) ra e 	 e ° 

We choose P (x) and Q (x), j = 1, 2 such that 
• 

and — Cog r =7 0 (5) 

PiQi =-• A 
	and 
	P CI 2  = B . 	 (6) 

By (5) and the results obtained on differentiating (4) we find that 

Qt (x) dx 	ii Qi (x) dx 

f (x) p 	(x) 	(x) fie  (x) 	Ps; e ° 	-FqPg e 

jf Q1 (x) dx 15 42 1  (x) dx 

+qP1 e 

In order that F should be in 2, since P 	(x), = 1,2 are real-valued ,  we should 

have 

(1) P1  (x)and P. (X) belong to 14, 2  [0 00) 

(2) qPi  and qP2  belong to V [0, 00) 

(3) (x) and 1); (x) belong to V (0, 00) 
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Solving (5) and (6), we find 

Pie  (x) = {A 2lp (x)}" 1 , 	/32  (x) --= B2Ir (x)} 114 , 

(x) = {P 00}1:2 	and 
	

Q2 (X) = {r (x)} 112  • 

We now retuin to our original differential expression 	M [.] in which 	p co -. axet  
q (x) — bx1 3  and r (x) = cx 7  from which we find 3 

Pi.  (X) = 0 (X-44), P2 (X) = 0 (r"), q (x) P1  (x)= 0 (x-a14+P) 

q (x) P2 (x) = 0 (x-714  +13). P; (x) =-. 0 (x an-2), 137 (x) = 0 (x-714-2) 

To satisfy the conditions we should have 

a > 4ll + 2 and 
	

y > 4ll ± 2 

These establish the truth of the theorem. 

In this case we note that (1) is not limit-2 if 

(i) P  (x) < axa , q (x) < bxP 	and 	r (x) = cx7 in [X, oo) for some X > O. 

(ii) p" (x) = 0 (x 4-2), q" (x) = 0 (xt3-2) and r" (x) = 0 (x7-2) as x op 

where a> 0, 	c> 0, b, a, ll, y 	are real constants with a> 4/1 -I- 2 and 
y > 4/3 4- 2, fl 	O. 

Theorem II: If p (x), q (x) and r (x) belong to L 2  [0, oo), then the differential system 

u" (x) p (x) u 	q (x) v (x) = 0 
(7) (x) q (x)  u (x) r (x) v (x) = 0 

is not limit-4. 

PROOF : Let y — fy1  (x), y2  (x))T be a solution of (7) belonging to 22 p, 00), then 
because of the conditions p (x), q (x) and r (x) belong 	to 	L2  [0, co) 	the 	functions 

(x) -= P (x) Yi(x) q (x) Y2 (x) 

and 

Y2P  (x) = q(x)y 1 (x) r (x) Y 2(x) 

are summable, so that the limit 

lirn yi' (x) = y; (x0) 	(x) dx, ( =-- 1,2) 
g-,00 	 x„, 

exists. Hence the functions 4  (x), 	= 1, 2) are bounded as x 00, 
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Let 	(x) = 	(x), 	(x)r, ( j 
= 1, 2, 3, 4) be the four linearly independent real Uj  

solutions  of the system (7), then the Wronskiart of these solutions 

[U1921 [U31J4i — [UtU .3] [U2 U4] + [UA] [U2U31 = constante 0, 

where [F GI is the bilinear form FTG' GYP' 
u 1, 2, 3, 4) all belong to .C 2  (0, oo) then ul 
and hence 

for any two vectors F, G. If 111 (x), 
(x), v 	=-- 1, 2, 3, 4) are bounded 

[U, Uk] 	11,l6 + 	- 141 Li, - vii vk  are L2 p, co), 

so that the function 

[U1 U2] EU3U41 	[U193] [U2U4] + [USIA [U2 U3]=--- constant* 0, 

also belongs to L [0, co), which is impossible. Thus all the four solutions 
.02 [0, Do). 

are not 

3. We now discuss the .5 2-classification of the solutions of the differential system 

(8) 

where q (x) is the column vector with elements ii (x), v (x) and 

P (x)==  Pi (X) 

x) 11
P2 (X)) , Q (x) = 

(q 1(x) q 2 (x)\ 

Pz(3(x) 	 kq2  (9 q3  (9 

elements of these matrices are real-valued, continuous and differentiable over [0, b]. 

b > 0. 

Utilising the Green's formula, the bilinear concomitant of any two vectots F, G satis- 

fying the system (8) turns out to be 

q = FT -- GT PP . 

The boundary conditions are given by 
(9) 

where 9 (x, A) is a solution for the system (8) and 

co, (0/x, A) =a= {x, (0/x, 	y, (0/x, A)}T 

and 

(b/x, A) =-- {x1  (b/x, A), yi  (blx,))} p  

are the boundary condition vectors at x 0 and at x 
b > Q 
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The Green's matrix G (b, x, y, 2) e (G ki  (b, x, y, 2)) 

re  (G11  (b, y, A) 
kGit (b, x, ey, A) 

G21(b. x,  y,  ).)\ 
G2., (b. X, y, A)) 

Details of construction of Green's matrix can be found in Bhagat' or in Chakravarty2 
G (b, x, y, A) = GT (b, x, y, A) 

(Wit (x, 
a 

 

(xi  (x, A) 
\JP' (x, 2) 

021 (x, A) \ ( x 1 (j7, A) 

022 (x, A)) \x2  (y, 2) 

x2  (x, 1)\ (Yin (y, )4) 

Y2 (x, AU kJ/iv  (y, A) 

Y1 (Y, )-)\ 
YE x) 

012 (y, .1.)\ 
022 (y, A)) 	Ye (xl b) 

where, 

(x, 2)  = (11111 fr. 2)'[92404 v3 (b/x, 	—  [9293] 	(b/x, ))  

1712 (x, A)) 	 W(2) 

w2  E W2  (x. 2) = 0/21 (X, A)) __[V1V3] § 94(blx,  — [ViVid v3 (b/x, 2)  

\I/122 (x, A)) — 	 HI (A) 

and 

W (A) re' ici921 [93941 — [91C4] [92931 ± [cic3] [c2.94] • 

Following Chakravarty 2, we can extend the Green's matrix to the singular case, i.e., 

when b co. 

Definition: The differential expression (8) with (9) is said to be in the limit-2 case 
if it has only two linearly independent solutions in £ 2  (0, oo) for all non-real values of 

the complex parameter 2. 

Lei S (A) denote the number of linearly independent .,e2  [0, oo) solutions of the system 

(8)49). 

Result 1: S (A) does not depend on the complex parameter A. 

Let q)(x, 2) be a non-real solution of (8)49) belonging to 22  p, 00) for a given 

complex A. = 2 1, say. 

Then 

L [9 (x, 2 1)] = 219 (x, 2 1). 

We consider 	 • 

(1) (x, A)= 
	

GT (x, y, A) (y, A o) dy, 
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here  ). 0. 4- 	> 	
< 

0, obviously (I) (x, A) 
is not null. Now following Chakravartys where 

t  result follows. Also 2 	S (A) < 4. 

From 	n  we designate the system (8) as the Q-system and the system obtained ft" ° 
from (8) by replacing Q (x) by 

Q0 CO - 
q1 (x) 

Vh0 (x) 
q2 0 (4\ 
q3 0 (X)/ 

as the Q0-system. 

Let So  (A) represent the number of square-integrable linearly independent solutions of 
the Q-system and SQ. (A) the same for the Q0-system. 

Result 2: For the bounded elements of the matrix (Q — Q 01! 

SC? (A) re S 0 , (A) 

where A be a given complex parameter. 

Let yr (x) --= {th (x), 1/2 (X) }T 
 

be a non-null solution of the Q 0-system belonging to 
22  ECI)  oo), then 

Id kid — 	[— P 	ogi = 0  

= [— P Oin t  Qw + (Q0— Q) =0 

Now, 

eao 
4)(x, =-- I GT (x, y, (Q (y) —  Q000)Pm Wdy 

9 

satisfies 

LS- ib= — (Q — 

Now following Chakravarty s, Th. 2.2 the result follows. 

Therefore, we conclude that the addition of a matrix function 
Q (x) to 

(10) 

are • he same for the systems (8) 

.We define Lo  as the minimal closed symmetric linear different 
al operator associated 

wai l* (9) in the  complex Hilbert space g2 (o, oo), the domain of definition 0 0  of L9  is 

me same as discussed in Sen Guptal. Then 

Lp  (x) = [- P (x) U'(1' 

[— PUT = AU 

does not alter S (A) for the system (8), i.e., the S (A) 

and (10). 
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and 

LP (x) = [0], (k 	0 , 1) 
(i1) 

the superscript k denotes the k-th derivative. 

For simplicity we write S for S (2). Let the deficiency indices of L 0  be (S, S) and 
in the case when A is replaced by a real number 2 0, we denote it by (45 0, S0), unlike s, so  may not be restricted to 2, 3 or 4 and it may vary with 2 0 . 

It can be proved following Dunford and Schwartz', [pt. 11, PP. 1398, lemma 9)that 
So  < S, to prove S0  = S we require the opposite inequality 

(12) 

Let L, be the self-adjoint extension of the operator L0. The condition (11) holds if 

(a) Ao  is not an eigenvalue of L0  

and 

is not in the continuous part of the spectrum of the self-adjoint extension L. of Lo. 
[See Naimarks, pp. 42-43, corollary 3; also Dunford and Schwartz', pp. 1398, Corollary 
81. 

Lemma 1: If 

(1) (x) > 0, (x) p s  (x) — p: (x) > 0 

and 

(ii) lim inf p,74- (x) x-2  pi, 2 (X) > K> 0 

(Pi, 2 (x)= min {PI (x), P2 (x))) .  

Then the continuous part of the spectrum of the operator La, spreads over the interval 

K, oo). 

PROOF: Let e be any arbitrary real number in (0, K) and let X be such that 

p,2 (X) > (K e) (x) x 2  in [X, oo). 

Now let f (x) = 1  (x), 1 2 (X)) T  be any vector function in D0  whose support is compact 

and lies in (x, co). 

[The least closed domain outside which a given finite vector function identically vanishes 
is called its support.] 
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Then we have 

(L, f )./) dx = {— (hilt p2f2t)f 	(p2f1e p3f2f)f2) dx 
=--: {(— 	P2f 2 1)11 + (— P2f — Psi 21) fdr + 

+ ci?  {(Ptit s  + P212111' + (P2f i f  4-  P31 211.21) dx 

-) S th (x) 	(x) 1 2  + 2p2  (x) 	(x) 1112 °  (X) 1+ 0 

+ PS (X) I /2 (X) 1 2} dx 

r 
-  

Pt (x) 	(x) If (x) I + P2 (X) If 21  (X) I } 2  dx ' 
0 

— 	'xi X2  ( 	(x) I + 2 t  (X) 1) 2  dx 

co 
(K 	e) r  , > (if i(x)I-F if 2 (X) I ) 2  dx. 

0 
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(13) 

• 
Applying the inequality [Glazmani, pp. 83] 

Z 	 00 

f xy2  dx <  4  
( 	1 )2 

f 
xa1-2  y' 2  dx 

a +  
0 	 0 

for any real function y (x) e 	[0, oo), a> 	1- 

[See also Eastham°, lemma of § 2]. 

The lemma now follows from (13) and Glazman l  [pp. 34, Th. 28]. 

We are now in a position to prove the following theorem. 

Theorem HI: If 

(i) pl 	p 3 (x) > 	p 2  (x) > 0 in [0, co) 

(ii) q (x), J 	1, 2, 3 are essentially 

(iii) lim inf x-2  pr (414.2 (x) > 0 z-)00 

bounded in [0, oo) and 

then (419) is in the limit-2 case, 
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PROOF: Since q i (x), = 1, 2, 3 are bounded in [0, 00) we only consider the equati
on  (10) to determine the number of .C 2-solutions of the equation (8). The boundary condi- 

tions are the same in both the cases. 

From (11) we see that L o  has no eigenvalues; further if wt take A 	0, then theo 
conditions (a) and (b) of § 3 are satisfied. Therefore, if ; refers to the equation 

[P (x) U' (x))' = 0 

then (12) holds. We now prove that the equation (14) has two 
[0, oo), i.e., S, < 2, then (12) and the inequality S 	2 would 
9 (x) = (91 (4, 92 (x)) T  and ty (x) 	(Cui (x) ,  CY2 (A)) T  be the two 
which no non-trivial linear combination is £ 2  [0, 00). 

(14) 

solutions not in 22 
imply 	2. Let 

solutions of (14) of 

For 9 (x), we choose q, (X) = (I, 1)T. Next let X0  be such that 

P3 (9 P1 (X0) P2_(x) P2(X0) Pi (x)  P2(X 0) — P2 Cr) pi (x0) > 0  
(l5) h (x) P3 (x) 1):2! (x) 	P (x) P3 (x) 	(x) 

in [X0, co). These hold by condition (i). 

We define yi (x) to be the solution of (10) which satisfies the initial conditions 

(X0)1 172 (X0), 	(A's) t1/2' (X0)) = (0, 0, 1, 0) 	 (16) 

at x= X0. • 

On integrat;ng (14) over the interval (X 0, X1) with U (x) =-- tg (x) and using (16) we obtain 

vii' (x) — P3 (X)  Pi (X0)   P2 (X) P2 (X0) 
P1 (X) P3 (X) ap1(x) 

(x) - P1 (x) P2 (X0) P2 (X) P1 (X0 )  

Pi (X) p,(x) — 142 (x) 

i.e., vi i  (x), 11/:: (x) > 0 in (X0, X1) [by (15)]. 

Thus Iv (x) is increasing in (X0, X1) and it follows that ig (x) is non-null at Xi  in (X0, 04 

therefoie, y/ (x) 	00 as x 	no. 

These solutions ate linearly independent and neither is square integrable. Further 
no non-trivial linear combination of yo (x) and fp (x) can be square-integrable. 

Hence 

the theorem follows. 
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