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ABSTRACT

The flow due 1o the torsional oscillations of a disk in an unbound ed viscous fluid
has been investigated by reducing the problem to a set of dual integral equations.
A formal solution of these eguations is obrained by a method of successive approxi-
mations. An expression for the forque on the disk is calculated.
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1. INTRODUCTION

The slow rotation of axisymmetric bodies in an unbounded fluid has
been studied by Jeffery [1] and he has shown that the solution can also
be obtained by the dual integral cquations method. Ray [2] has studied
the slow rotation of a finite circular disk in an unbounded viscous fluid
by constructing special integral solutions satisfying the boundary condi-
tions. A physical quantity of interest namely the torque acting on the
disk has been calculated.

The rotatory oscillations set up by zxisymmetric bodies in an infinjte
mass of a viscous fluid has been discussed by Kanwal [3] and the results
were given in terms of spheroidal wave functions of complex arguments
whose numerical values are not available. Recently, Kanwal [4] has studied
the slow rotation and rotatory oscillations of axisymmetric bodies in hydro-
dynamics and magnetohydrodynamics and presented the expressions for
torque in various cases by a method due to Shail [5].

_The aim of the present investigation is to study the flow due to torsional
oscillations of finite disk in an unbounded viscous fluid by dual integral
equations method. The problem has been reduced to a set of dual integral
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equations and a formal solution is obtained by a method of successive
approximations due to King [6]. The rotational Reynolds number i
assumed to be small in the analysis. The expression for torque obtained
by this method agrees with the result of Kanwal [4].

2. FORMULATION OF THE PROBLEM

Consider the torsional oscillations of a circular disk of radius *a’in
the plane z == 0, about an axis passing through the centre and normal to
the plane of the disk, in an infinite, incompressible viscous fluid. Neglecting
the quadratic terms of inertia and the secondary flow, the equation of
motion for the primary flow in cylindrical polar coordinates (7, 6, z) reduce
to a single equation for azimuthal velocity given by:

12V 2V , 13V ¥V ¥

var Tk T R T aE (R

where v is the kinematic coefficient of viscosity. The boundary condi-
tions are:
V-0 as r-—>o0, |z]|-—>o0 }

V=0 at r=0 for |a|=0 2

and . .
V= Vyre' for0<r<a and z=0, (1.3
Y0 forr>aandz=0. i)

The condition (I.2) follows from the fact that the fluid is at rest at infinity
and the azimuthal velocity is zero along the axis. The condition (1.4
ensures the continuity of stress across the plane z =0 and r >a.

The solutions of (1.1) satisfying the conditions (1.2) is taken as:
V(r, 2) = e"“"‘f A(p) pes' 2 I, (pr)dp, (1.5
where a; = (p® — iw/v)%. The solution (1.5) satisfies the conditions (1.3)
and (1.4), if the unknown function 4 (p) is a solution of the following
dual integral equations :

f 2D 13, (o) o = an'(0<r<a)

oo (1 '6)
TB@pnEnap=0 r>a,



Torsional Oscillations of a Disk in a Viscous Fluid 261

where

B(p) =0, 4(p)-
Introducing non-dimensional variables defined by r=rfa, 7 = ap,
F(p)=pB() and f (z/a) = F(n), the equations (1.6) reduces to:
f fnz——% Ty Py dn = ki,  0< i< |,

TF@hGhd=0  7>1, a.n

Where k = aVpand 9,2 = wa?/v is the rotational Reynolds number. Now the
problem is to solve the dual integral equations (1.7)for F (). As closed
from solution of (1.7) is not possible, a formal solution is obtained by the
method successive approximations due to King [6].

3. FIRST APPROXIMATION

As a first approximation we solve the following dual integral equations
instead of (1.6),

(ﬂ) Jo P dy=ki, O<r<]1,
(2.1)

o._.,s 0\8

Fy () J, (vF) dp = 0, F>1.

In writing down the solution of (2.1), the following results given for
more general equations considered by Busbridge [7], are useful: For the
system : -

(P f)hppx)dp=g(x), O<x<l
- 2.2
{f(P)Jx(px)dpzo x >1

where f (p) is the unknown function of p and g (x)i is 2 known function
of x, the solution is given by:

1) =GRS FB4 Sea 6) 88 [5Gy 720 —

for a >0 K : Lo 2.3)



262 A. RAMACHANDRA RAO

and
Z_mzp a2l D11 a2
7(p) = I a2) I J,\+a.z(p)ofy 1 — )22 () dy
-+ f wM(L —u )‘“du[ g () (py)*"*02 Insrvaps (V) &)
for @ > — 2 (2.4)
and

—A—1l<a—3%< A+l

Using the above results the solution of (2.1) is obteined as:
Fyy () =2k \/i b2 Ty, (). (2.5)

4. SUCCESSIVE APPROXIMATIONS

The successive approximations for the solutions of (1.7) are obtained
starting with the first approximation in the following way. In equations
(1.7), we take:

F(n) = Fy () + Fa (), (3.1)

where Fy; () satisfies the pair of equations (2.1). Substituting (3.7) in
(1.7) leads to the following pair of equations for the determination of
Fp ():

F
G-W—“l%%z J ) dn =kF — e, (), 0< <<,
3.2
{ Fo(q) Jy(gp) dy =0, P>,
where
. ) .
)= (T:T(J)—)“ Ty CaF) . 03
Let

Fia () = Fpa (n) + Fis (v) G349
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where Fys () is the solution of the pair of equations:

f Ez_;@ Ty Py iy = kP — e (A, 0< 7 < 1,
(3.5)

erz(W) Sy (oF) dy = 0 F > l.l

Subsituting (3.4) in (3.2), Fp; can be obtainedifrom the pair of equations :

f = _Ful) KGR dy =K — en ()~ en (), 0<F<1

l?] 2)2’
T Fus (n) Jy (aP) & = 0, F>1,
(3.6)
where
3.7

00 = [ g Daszs Ji (o) din

Following the same procedure, we finally obtain F(x) as:

F(n) =,’:§1 Fpn (), (3.8)

where Fpq () is to be determined from the pair of equations:
=S n—1
F,

[22D gona =k — > cam®, 0< <1,

¢ = (3.9)

oo .

{ Fon () Jy(qF) dn =0 F>1
and

F,
mn D g pydn,  (I<m<m)  (3.10)

mm (i) = YA NS T ]
S f —im e

is 2 known function of 7. The success of this method mainly depends on
the evaluation of the integrals for the expression emm (7).
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5. SECOND APPROXIMATION
n order to obtain the second approximation Fy, (1), we have to evaluat

ey (A given in (3.3). Writing J;,0 () in terms cosine sine and taking the
first two terms of the expansion for J; (nF), we get,

. & (1) dn
€u (B == - e i @0
where
¥ () = Js (n) sin 9 + e (1) cos 7, @n
dony =2 ke [1 = § 2] ¢
and -
Yoln) = — 2kep[1—Fat]. 4

By putting % = L™ in (4.1), we get

pa imay 7,
ey () = (‘l‘g(ge )_)uza (4.5

The branch points of the integrand in (4.5) now lie on the real axis ard b
following the method given by Awojobi and Grootenhuis [8], the expres-
sion for e () is obtained as:

ENGES “(‘ i’ + 9%"712“) — ke 7'2 i O(nz), (4.6
where ‘ ‘

Ny = 7y €7,

) Putting this  value of €, (#) in (3.5) and making use of the results
givenin (2.4), we obtain the second approximation F,, (n) as:

30wt .
Ful = ko2 {5 0" ) + 2 daa

o )
— G 1V Jas () + 0 ()] . @

Subsequent approximations can be calculated from the equations (3.9%
The expressions for F(x) correct to the 0 (n,%) is given by:

F(n) = Fy () + Fia (). oy
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6. TORQUE ON THE Disk

One of the physically interesting quantity, namely the torque on the
disk (taking into account both sides) is:

a

W
M=—41mf r2[a—i]‘=odr. 5.1
0
Substituting the expressions for V from (1.5) in (5.1), we obtain
. 2 4ip,3
M= Myt (1= %+ 1) 4 0 (), 5.2)
where
M,=_§_2 wVya, (.3)

is the expression for the torque for a steady rotating disk. The expression
for the torque givenin (5.2) agrees with the results obtained by Kanwal
[4} up to the order 7,3, by a different perturbation procedure.
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