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Theflow due to the torsional oscillatiorrs o f  a disk in an unbounded viscousfluid 
has been investigated by reducing the problem to a ser of dual integral equarionr. 
A,formal solution of these equations i,r obtained by a method of successive approxi- 
mariuns. An expression .for the torque on rhe disk is calculat~d. 

Kcy Words: Torsio.la1 oscillations, dual-integral equations, torque 

The slow sotation of axisymmet& bodies in an unbounded nuid has 
been studicd by Jeffery [I] and he has shown that the solution can also 
be obtained by the dual integral equations method. Ray [2] has studied 
the slow rotation of a finite circular disk in an  unbounded viscous fluid 
by constructing special intcgral solutions satisfying the boundary condi- 
tions. A physical quantity of interest namely the torque acting on the 
disk has been calculated. 

The rotatory oscillations set up by zxisymmetric bodies in an infinite 
mass of a viscous fluid has been discussed by Kanwal [3] and the results 
w e  given in terms of spheroidal wave functions of complex arguments 
&me numerical values are not available. Recently, Kanwal[4] has studied 
theslowrotaion and rotatory oscillations of axisymmetric bodies in hydro- 
dpmics and magnetohydrodynamics and presented the expressions for 
torrIue in various cases by a method due to Shail [S]. 

The aim of the present investigation is to study the flow due to torsional 
"illations of finite disk in an  unbounded viscous fluid by dual integral 
eWation~ method. The problem has been reduced to a set of dual integral 



equations and a formal solution is obtained by a method of succ~si\.~ 
approximations due to King 161. The rotational Reynolds number is 
assumed to be small in the analysis. The expression for torque obtained 
by this method agrees with the result of Kanwal [4]. 

Consider the toisional oscillations of a circular disk of radius ' a ' in 
the plane z = 0, about an axis passing through the centre and normal to 
the plane of the disk, in an infinite, incompressible viscous fluid. Neglecting 
the quadratic terms of inertia and the secondary flow, the equation of 
motion for the primary flow in cylindrical polar coordinates (r, 6 ,  z) reduce 
to a single equation for azimuthal velocity given by: 

where v is the kinematic coeEcient of viscosity. The boundary condi- 
tions are: 

V-tO as r - t m .  
V = O  a t  r = O  for j a j > O  (1 2) 

and 
V = r d w t  for 0 c r t a and z = 0 ,  ( I .3 )  

Z=O for r > a a n d z = O .  
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(1 4 

The condition (1.2) follows from the fact that the fluid is a t  rest i?t infinity 
and the azimuthal velocity is zero along the axis. The condition (1.4' 
ensures the continuity of stress across the plane z = 0 and r >a. 

The solutions of (1. I )  satisfying the conditions (1 .2) is taken as : 

? ! ( r , z ) = c i w t 7  A @ ) p ~ ~ s ' ~ ~  J,(pr)dp, (1 4 

where a, = ( p S  - io/v)f. The solution (1.5) satisfies the conditions (1.3) 
and (1.4), if the unknown function A @) is a soluti~n of the folloving 
dual integral equations : 
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Introducing non-dimensional variables defined by r = r/a, q = up, 
f @ ) = ~ B ( p )  and f (y/a) = F ( y ) ,  the eq~!ations (1.6) reduces to :  

Where k = aV, and y12 = wa2/v is the rotational Reynolds number. Now the 
problem is to solve the dual integral equations (1.7) for F(7).  As closed 
from solution of (1 .7) is not possible, a formal solution is obtained by the 
method successive approximations due to King [6]. 

As a first approximation we solve the following dual integral equations 
instead of (1 . 6 ) ,  

In writing down the solution of ( 2 .  I ) ,  the following results  give^. for 
more general equations considered by Busbridge [7], are useful: For the 
system : 

where f (p) is the unknown function of p and g (x )  is a known function 
of *, the solution is given by: 

. . 
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and 

and 

Using the above iewlts the solution of (2.1) is obkined as : 

The successive approximations for the solutions of (1.7) are obtained 
starting with the first approximation in the followmg way. In equations 
(1.7), we take : 

where Fll (,(?I) satisfies the pair of equations (2.1). Substituting (3.7) in 
(1 -7) leads to the following pair of equations for the determination of 
4 1  (11) : 

where 
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>hel.e FZ2 (7) is the solution of the pair of equations : 

where 

Following the same procedure, we finally obtain F(q) as: 

where F,, (7) is to be determined from the pair of equations : 

it a h%vn function of t. The success of this method mainly depends on 
ae mluation of the integrals for the expression rmm (t). 



In order to obtain the second approximation F,, (11, we have to evaluak 
( f )  ziven in (3.3). Writing J,,, ( 7 j f  in terms cosinc sine and taking 

first two terms of the expansion for Jl (OF), we get, 

where + (?I) = $S (7 )  sin o + +C ( T )  cos r ) ,  

and 

By puttin8 = iei": in (4.1), we get 

The branch points of the integrend in  (4.5) now lie on the r e d  axis ard b 
following the method given by Awojobi and Grootenhuis [8], the expres- 
sion for cu (i) is obtained as: 

Putting this value of c,, (r) in (3.5) and making use of the results 
given in (2.4), we obtain the second approximation F2',, (7) as: 

Subsequent approximations can be calculated from the equations (3.9). 
The expressions for F(7)  correct to the 0 (?,4) is given by: , 

FC?) = FLL (7) + FZS (7). (4.8) 
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6. TORQUE ON THE DISK 

One of the physically interestillg quantity, namely the torque on  the 
disk (taking into account both sides) is : 

.=-4- j .qg] "I.. 
en0 

(5.1) 
0 

Substituting the expressions for V from (1  .5)  in (5.11, we obtain 

where 
32 

Me= - L L v 0 a 3 ,  

is the expression for the torque for a steady rotating disk. The expression 
for the torque given in (5.2) agiees with the results obtained by Kanwal 
131 up to the order q23, by a different perturbation procedure. 
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