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Abstract 

In this paper the author applies the theory of transforms developed in Refs. 1 and 2 to study the 
LP-

convergence of the eigenvector expansions associated with the differential system 

(L — 2.) 0 =--- o 

in the finite as well as the singular case, where 

L.-c d
2Idx 2  + p (x) 	 r (x) 	\ 

=-- 
r (x) 	 — d2Idx 2  + q (x)) 

and 4) is a two component column vector. 

A property of transformations of Lib' onto itself is first proved and a suitable inequality established. 
Asymptotic expansions of some vectors are then obtained and a suitable operator defined which leads 
to the LP-convergence in the finite case. Finally some more asymptotic expansions are derived which 
under some specified conditions yield the following: 

Theorem: The eigenvector expansion Oil of a vector j", in the singular case, converges in mean to 
the vector itself. 

Some of the results obtained in this paper are generalisations of those of Rutovitz 3. 

Key words: Transform, LP-convergence, inverse-transformations, dense subset, asymptotic expansions, 
entire functions, contour integral, residue, convergence in mean. 

1. Introduction 

The object of this paper is to apply the theory of transforms developed in Refs. 1 and 2 to 
study the LP-convergence of the eigenvector expansions associated with the differential 
System 

(1, — 1.0 0 = 0 

in the finite [0, 1,] as well as the sigular case  P. 04 where 

L  , (— (1 21c1x 2  + p ix) 	 r (x) 	\ 

r (x) — d2///x2  -i- q (x)l 

and 0 = et, , , 	, 
w kx) = tu (x), v (x)} is a two component column 

a 

vector function of x. 
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In order to avoid the repetition of the preliminaries, we have written this paper as  
an addendum to Ref's. I and 2 and consequently we make free use of symbols, notations 
and results contained therein. 

Let L: and seg be the spaces of column vectors (whose components are real valued 
functions of a real variable) 

f (x) = {Al Li 	and 
	

F (t) = {F11 F2} 

for which 

If tp,b= Max [ SI f, : 1) clA]hIs' < 00 

and 
cc 

1 F, dp (b) = Max [ j 17, I dP" (b, t)]" < oo 

respectively, where p,1  (b, t) (r, s = 1, 2) are as defined in §3 of Ref. I. Furthei, we set 

L P 	L .730 	= 45;0 	'=" .f IP, CO 

and 

1 F, dp = F9 dP (00) 

it being understood that, in the last expression, b-t oo through a suitable sequence. We 
assume that 

1 < p 	2 and 1 I p -1- 1 fq =--: I . 

It follows from the arguments contained in §4 and §9 of Ref. 1 that 

Tbf = {Tib I T26f } 

where 

Trbf (Or (0  I Xl 01/(X)) 

and 

2 
gy, bF = 	bF, %tr. bF) E 

rdi 
.410 #r@ I 	i) V (t), (IX (b, t)) 

-10 

= 	(x, 	F (t), dp 	t)) — w, w, (V (x, t), F 	dp (b, t)) 

define transforms from Li onto meg in one case and from a subset of ..el into Lit in the 
other, where U (x, t) and V (x, t) are as defined in §1 of Ref. 2. Further, if f e LA rtof 

converges in 2 2  to a vector 7" as b -+ 00 and if Fe 2 2, (J.. bF converges in 1. 2  to a vector 
¶5F as w -> co and b -4 00 through a suitable sequence. Tz, and gb  (7-= gee, b) are 

inverse transformations between Li and •eg. 
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Since Or ( 0  Ix, 	( r 	
1, 2) are bounded uniformly for all eigenvalues A, over each to,  bi .  it follows that for h < 00, and at all eigenvalues A 

Tb f 7= Max (4), (0  I Xl  A), 1(x)) 

. CU') 1111,6 

where C (b) depends only on b. 

2. A property of transformations in 14 

Lemma (2.1): Let a column vector 	f be a linear transformation depending 
on  the parameter w from Leg onto itself, such that 

owf 1,, 	C lil y, b, 	 (2.1) 

where C is a constant independent of f and w, and 

If- Owf 	0 	 (2.2) 

as w —4 co on a dense subset of L. Then 

I - O w  f I pj  b —+ 0, as w co 

on Lg: b = co being permissible. 

PROOF 	Let tft  Lg. Then it follows from the definition that for every e > 0, there 

exist vectors It = 01, h2); g=-- {gi, g2}, such that 

f = h g, 

where 

igi„b<e/2( 1  

and 

h - 	b  —* 0 as w 00. 

It follows that there exists Iv o  such that for all w> W0 

If-- Ow f lp, b 	(h 	0,10 g Ovg  L , b 

	

I h 	°rah  110 + I g 	b 	I °tag lp, b 

by Minkowski's inequality. 

i.e., 

Owf -+ f in Lg. 
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3. An inequality 

Lemma (3.1) : Let 

jnto  7) (r, y) =  2b -1  r cos kx cos ky 
Lail) 

and 

b 	g) = IS (1 (y), g (y)) 	b (x, y) dxdy. 
0 0 

Then there exists K (p) depending only on the parameter shown such that 

1 	f, g) 	K(p) 1fL 1
g 

whenever 

f E Lig and g e Lg. 

This lemma is an immediate consequence of that of Rutovitz 3 . 

4. Asymptotic expansions in the finite case 

In what follows we assume that the constants appearing in the boundary conditions 
(1 .3) of Ref. I satisfy the following additional conditions : 

At least two of the ratios a11/a2i  (j= 1, 2, 
b1i/b21  (j = 1, 2, 3, 4) are unequal, say 

3, 4) and also at least two of the ratios 

a12! a22 	(714/(724  and bn/b22 	bi4/b2 .i . 

The results of this section follow exactly in the same way as the corresponding results 
obtained by Titchmarsh 4  and Bhagat5 . We, therefore, enunciate the relevant theorems 
and omit the details of the proof. 

Theorem (4. 1) 	Let 	a x, 	= fir (e x, 	v (eI x, A)} be a solution of (1.1) 
such that 

(e e, )) = {a, y}; 	(e e, A) = ith 6)- 

Let 

.1, 	s 2 , 

A me:  (a fis-1  
as -1 

and 

B= {cos s(x— e), sin s -- 0). 
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Then 

(e x, A) = AB 	s- 	(Y) (e I Y, 00) sin s(x_..y) dy, 

where  Al (x) is the matrix defined in. §5 of Ref. a). 

Theorem (4.2): Let (fi i  (0 I x, A) (j = 1, 2) and 	(b I x, A) (k = 3,4) be the  

darY 	

bowl- 
condition vectors for the system (1 .1). Let 

A s2, 	= + it. 

Then, for 1 s I 	1soI 

4,, (0 1 x, A) =- Ian, am ) cos sx 	0 (erris s 1) 

(ii) 41k I x, 	= Ono bid. cos s (b — 	(el 16-4)11 s I) 	= 1,2; k = 3.41. 

Theorem (4. 3) : Let the conditions of theorem (4.2) be satisfied. Then 

(i) (4), (0 j x, A), 4k (b x, A)] ---= — s (an.ba 	ambra sin sb 	0 fr Irlb ), 

where j 1, 2: r -= 1 when k = 3 and r 2 when k = 4. 

(ii) D (b, A) --= s2  (a12a24 	a14a22) (b12b24  — I 14b2s) sin2  sb 	0 (se21 "). 

We note that [0 i, chi are not identically zero. In fact these are entire functions of 

s of order 1 and so entire functions of A of order 

We also note that D (b, A) 
is not identically zero and that it possesses an infinity of 

zeros. By arguments similar to those of Titchmarsh 4  (p. 19) it follows that the zeros 

of D A) are asymptotic to the zeros of s2 sin2  sb, that is to the points where s = nzfb 

for large 1 s 1 and n. 
For large values of n the eigenvalues are asymptotic to n

2  

It is also easy to see that D (b, 1)0 0 for s 	> To), i.e., for A negative and 

sufficiently large. 

Theorem (4.4) : If 	(b, x, A) be defined by (2.6) of Ref. 1 and G (b, y, A) as in 

2  
(iv) of Ref. 2 and the conditions 

of Theorem (4.2) be satisfied, then for y E (0, X), 

G 	; x, y, = — cos s (b x) cos syls sin sb 0 Wri it A 

G12  (b; x, y, 2,) =Q (e-"' 1 11 A ) G 21  (b; x, y, 

4ad similar expressions for y e (x, bl. 
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5. The matrix hw , b (xl  y) : The operator Ow , b 

We define 

h firl  b (X 4. ) kot  b 	
= 	

( X, Y) 

hs2A (x, \ 
4!b (sr, A ) 

2 2 tc 

r=1 4=1 —21 
(q), (0 I x, t) vr (0 I y, 	dp„ (b, 

(5.1) 

and 

OW, bf (X) = 
0 	* 

b  (y, x)f(y) dy. 	 (5.2) 

Then 

2 	w 

Ow)  b f (x) = E 	0, (0 ! X, 0 (7-b.f. dp, (b, 
r=1 —w' 

gw, b Tbf (X)  

jcf. (3.3) Ref. 11 

It is known from Theorem (4.3) that there exists w = w b  for each b such that D (b. t 
0 0 for t < — w b . For w> wb, let us denote by C the contour considered by Titch- 
marsh' (p. 13) which is symmetrical about the real axis and which corresponds in the 
upper half of the 2-plane to the boundary of the quarter-square in the s-plane 

(0 <<11170 ) 
• 

- 

Vw*  (O<c< 0.77-;), 

where A = s 2, s r---- a ± it and w*  bisects the interval between the greatest eigenvaine 
not exceeding w and the succeeding one. Let y E [0, x). Then 

i 	
G— f 	(b: x, y„ dA 

2n 

(y, A)) 

	

= 	
r 

 27ri 

1 
f Wirur  (0 1 x, 2) + (0 x, 	ui  (0 I y, A) 

-ST/ 
r=1 

{/„Ur  (0 1 X, 11) + X2 (0 I X, An um( 1.3', 2)] 
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1 	 21d 
 

r=2 

R2r  (b. 11) U. (0 I .y. 1.) u 2  (0 1.Yi %HA 

	

2 	2 	10  

	

z 	u, (0 1 x. t) u s  (0 1 y, t)dp„(b, t) 

	

rd 	it-1 —if* 

= 17: 1  0,b cv , v) , 

where O k 	frk, 	is as defined in §2 of Ref. I. 

Similar results hold for contour integrals involving other Go  (b; x, y, A) 	= I, 2) 
and accordingly we obtain 

1 	G (b, x, y, A) dA = 	b  (X 4  y). 	 (5.3) 
27ri 

The case when y e (x, bl can be dealt with in an identical manner. 

Since D (b, A) has the same number of zeros inside the contour C as s sin sb iTheorem 
4.3)1, it follows by using the results of Theorem (4.4), the calculus of residues and (5.3), 

that 

hZ tjx, 	 (x, ± 0 ( Mr" " 1 	Dial), 
	 (5.4) 

where in = [012], the greatest integer not exceeding w' 12, and 

Cpb  (x, y) 	0 
	

J frer's-3 llIA1)1d21 ) . 
	 (5.5) 

0;241 

Again, since 

0(j(e-r 1 i-11  IIA1)1dA1) 

= 0 	
r112 ti-st t 

W112 I y 	x I 	+ 0 (e-67112 I 1-2 1)1 (5.6) 

we obtain 

(r 	1, 2) 
	 (5.7) 

and 	 (5. S) 

hit:lb (X y) -= 0(1), (r, s 	I, 2; r s). 
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6. The LP-convergence in the finite case 

Theorem (6.1) : The eigenvectoi expansion 0,9, 6  f of 
of class Lf, converges in mean to the vector itself, i.e., 

a vector f (x)--= {f 1 , j 

and 

I 0„„b f 1 p ) b 	K (I,  ) b) If 1 pal 

where K (p, b) is independent of the 

(6. 1) 

(6.2) 
vector f (x). 

PROOF Let g (x) = {g 1 , g2} e L. 

Then from (5.2), (5.7), (5.8) and the lemma (3.1), we obtain 

(0 t ,b (x), g (x)) dx 

=--  0 
( I 	(y, x)f (y) dY, g (4) dx 

 0 
bb 

< 0  (1 I (f + f 2gri +f 1g f 2g2) dx dY) + I J„„b(f,g) 

K(p)i if J p, b I g I 421b  
< [Cb 	K (P)] f 37, oi 	0,6 

which is (6.2) by the converse cf Holder's inequality, (cf. Hardy, Littlewood and 
Polye, p. 142). 

Thus 010,b satisfies the condition (2.1) of the lemma (2.1). Further, from the argu- 
ments contained in §4 and §9 of Ref. 1, it follows that (6.1) holds for p = 2. Also 

convergence implies Le-convergence, and LI is dense in Lg 	< p 2). The con- 

dition (2.2) of the lemma (2.1) is, therefoie, satisfied and (6.1) follows. 

7. Asymptotic expansions associated with Oi (0/x.A) 

Let 

(x) 	(

1) (x) 

( 4,0 

; (x)) 
= x (x). 

acei (x) 

a 
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P  We  assume that each element of A7f (x) e L [0, 00) and is a function of bounded varia- tion on  [0, 00). It follows, therefore, that each element of M (x) e L [0, 00) and that 

° 7 pit)1(11\ f; I q (I) dt, T.  I r 	1 di =--- 	(11(1 	x)) 	 (7.1) e g 

in what follows we assume that a nafs * 0 = 1, 2). The analysis carried out below 
may  be easily modified to cover the cases when cz nals  = 0. We put A = $2 and 
assume s to be real. 

Let 
00 

ci  (A) nt ftcn, ef2 ; 	tale. 0)4 ) — 	f AI (y) (0 I y, 2) sin sy dy 
0 

(A) id n, dal) = {an! ap} s -1 	m (y) Of  (0 I y, A) cos sy dy, 
0 

where Of  (0 I x, A) = (14 (0 1 x, A), v i  (0 I  x, A)} (I = 1, 2) are the boundary condition 

vectors at x =-- •. 

By arguments similar to those of Bhagat °, it follows that (i) Ili  (0 I x, A); v i  (0 I x, A) 

are bounded for s > 0, (ii) integials involved in defining c 51  (1), cn  (A), du  (A) and 

d12  (A) converge uniformly, so that these are continuous functions of s for I s I > 0. 

We, therefore, obtain the following lemma from Theorem (4.1). 

Lemma (7 .1) : Let Ai * , denote the ra row of the matrix M. Then 

S 
(i) uf  (0 x, 2) 	n  a cos sx ssi aa  sin sx se' i Mti  01 (0 y, ).) sin s (x — dy 

0 
(7.2) 

= an  cos sx + 0 (s-1), (uniformly in x) 	 (7.3) 

--= cfi  cos sx — dii  sin sx + 0 (1 + xyl 	 (7.4) 

= - sa' ail  sin sx + 0 (s-2) 1  
an = 0 	 (7.5) 

= 0(r1) 

00 v i  (0 i x, A) = as  cos sx—s -' ap  sin sx -4- sr' 1 M*2(.0 Os 0 I .Y, A) 
0 	

. 

x sin s (x — y) dy 	
(7.6) 

--v: a14  cos sx + 0 (s-'), (uniformly in x) 	
(7,7) 
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=-- en  cos sx dn sin sx -F 0 (0 + 

= s-i al. sin sx + 0 (s-2) 
= 0. 

= 0 (s-') 	 (7 .9) 

It may be noted that a12  and an  cannot vanish simultaneously (cf § 4). 

Lemma (7.2): 

(i) 	141 (0 I x, A) = 0 0 + (7.10) 

= 	xan  sin. sx 	0 (( 1 + x)1.0 	 (7.11) 
— r' va0 	- cos SC + 0 ((1 +x)/s2)} a

12 0 (7.12) 
ra 0 01 .04 

--
s 

iv, (0 jx,2) = 0 (1 + x) 	 (7.13) 

= — x an  sin sx 	O ((1 + x)ls) 	 (7.14)  

= 	sal xai3  cos sx 0 (0 4- 4/39} a54  = 0. 	(7.15) 
= 0 (( 1  ± x)Is) 

PROOF: Differentiating (7.2) partially with respect to s, we obtain 

u (0 x, A) = 	xan  sin sx s- i rxa5, cos sx + s-2  ail  sin sx 

— S-2  M * , (y) 4)5  (0 I y, a sin s(x — y) dy 
0 

S-1 S  + r M*1  (y) Oi  (0 I y, (x y) cos s(x—y) dy 

• 3-1  f 	*1  (y) # (0 y A) sin s (x y) dy 	(7.16) 
as 	' 

0 

=(x) 	
a [ I P (Y) 	.Y1 in 	r (.0 	22,(O1Y, A) ]dY) 

0 	 (7.17) 

Similarly from (7.6) 

(x) 
• 

O(5-1  f r 	u (0 I , A) 
as 



ON THE THEORY OF TRANSFORMS (111) 	 217 

+ q ( y) 	v (0 I y,)j1 ] d). 	 (7.18) 

putting 

AT, (x) = Sup 1 

N2 (x) = Sup 

+ 

vi  (0 I ) 1 1 2)1 A I + y) 

using (7.17) and 0.18), we obtain, as s 	00  

x) N 101 — 0 (1 

(1 + X) N2 (X) = (1 

Hence NI (x) ± N2 (X) 0 

+ x) + 0 ((1 	(NI (x) + N2  (x))/4 

+ 	+ O ((1 --I-  X) (Ni (X) + N2 (X))13). 

( 1 ). uniformly in x, as -• 00. 

Since ui  (0 ix, A), v, (0 1 x, A) are linearly independent, we obtain (7.10) and (7.13). 
(7.11) follows from (7.16) by using (7.10) and (7.13). 

Similarly for (7.14). 

Further, when a12 	0, (7.12) follows directly from (7.16). 

A similar analysis yields (7.15) when am  = 0. 

The lemma thus follows. 

Lemma (7.3): 

(i) C5  (A) 	= 0 (1), 	a J., 0 0 

=-- 0 (s-2), an  0 

(ii) Ifc,1  (A) = 0(1), 	ar‘ o 0 

Gii) C ui (A) = 0(r 2), a na 0 0 0 
ds 

--= 0 (s-3). a/2am = 0 

(iv) c12 (A) 	--= 	(1), 	4114 0  
0 (r2), a34  =° 

(v) I le 52  (A) = 0(1), 	a 14 0 0 
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(vi) c (A) = 0 (0), an 054 # 0 
ds 

= 0 (sr-3), anam= 0. 

PROOF: (i), 00, (iv) and (v) ate immediate consequences of the definitions of Cii (2) .) c,2  (A) and the corresponding results of lemma (7.)). 

From the definition of c c!  (2), we obtain 

co 

	

67; (A) = S-2  si 	(y) vi (0 Iy, A) sin sy dy 

0 

— s-- I 
0 

mo (y) 9)1 (0 I  y, )) y cos sy dy 

co 

—s-1  f Ain  (y) 5;91 (0 y, 2) sin sy dy 

0 

= 0 (S-2) ± se' I°  Onpas  (y) an?' (y)) (sin 2  sy cos 2  sy) dy 
0 

by (7.1), (7.3), (7.7), (7.11) and (7.14) if an  aj4 # 0. 

Since p (y), r (y) are functions of bounded variation, we obtain 

d,„ 
Ts. C 	= 0 (r2). 

Similarly, if an  am  = 0, we get 

— 	(A) = 0 (s --3). 
ds 

The relation (iii), therefote, follows. 

A similar analysis yields (vi). 

Lemma (7.4) 

(i) d,1  (A) 
	= 0 (s-1) 

. 1/ein  (A) 
	

0 (s), 	ana = 0 
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ci 
(iii) ifs,d,i (A) 0 (s -  I), a na m 0 0 

0 (s -  2 ), (1,2(1,1 	0 

(iv) 4(A) 

(v) 1/4 (A) 

(vi) d12  (A) 

') 

 

0 

(Ina j4 0 0 

0 (s-3 ), a a J2- 54 == (L 

These re.sults follow as in lemma (7.3) by using the definitions of c/ a  (A) and da  (A). 

8. Asymptotic expansions associated with (K rs  (A)) 

As in Bhagat5, we obtain fairly easily the following expressions for the functions in„ (A) 

(r, s 	1,2) defined in § 6 of Ref. 1: 

2 

hn 	nc, (2..)) = E (elk  + 4)121 (A' + B 2) 
740 	 k.=1 

(8.1) 

(when r 	1, j =-- 2; and when r = 2, j ----- 1) 

and 

Im [urn mi2 (2)) t- 1m [tim m 21  (A)] 

	

1.40 	 7-)41 

	

= 	(ellen 	Cl2C22 dadv 	d 14,2 11 Ai (A 2  + B2), 	 (8.2) 

where 

A = A (A) = c.nen  d21 d32  enc22  d11d22 1 	 (8.3) 

B = B (A) -= (62142 endn clid22 cydn 

It follows quite easily that A (A) and B (A) both cannot vanish for any positive A. If 

anai40 0, we obtain 

A (A) = 0 (1); 11,4 (A) =-- 0 (1); 	A (A) 	0 (s-4) 
(8.4) 

(B (A) = 0 (s- 1);  
ds 

and  if 	-= 0, we obtain 

A (A) 0 (s- 2); dlds A (A)re-- 0 (.5-3); B (A) = 61 	 (8.5) 

(Os B ()) = (3-4); I (A) rz- (s2) 
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where 

allato  anan # 0 

in the last case, by making use of the definitions of the functions co  (A), etc., and their asymptotic expansions. 

Now 

K„ (A) = urn f 	im mr, (fit + iv) dp 
p-3.00 

and hence, for A = s 2, s 0, we get 

K n  (A) --= — 2 I En  (u) du, 
0 (8.6) 

where 

EH (1) = 	frik (12) + dik (12))/(A 2  (12) ± B2  012 )) 
k=1 

(when r= 1, j = 2; when r 2, j =  1). 

Therefore 

2 

2 

E, (u) =  	 (A 2  + 

= 0 (r2) 	if 
	

(112 a540 0 

= (s) 	if 
	au a14  =0 
	

(8. 7) 

by using the relevant results obtained earlier. Similarly 

K12 (A) = K21 (A) 2 • En (u) du = 2 En (Of 
0 

where 

£12 	= 
0:11C21 	Cu C22 ± d11d21 	d1.2d22)/( A 2  + B2) 

= E21 

and 

E, 3  Cu) = E;2  (u) = 0 (s-2) if an  a14 # 0 

= 0 (s) if ale a541 = Os 

The results of §7 and §8 yield, fairly easily, the following: 

• 

(8.8) 
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Lemma  (8 .1): There exists a number s o  > Osuch that the functions c k (A) Cain  (A) e (A). 	(A) d,„„ (A) E„ (A) and d,k  (A) d (A) E„ (A) (f, k, m, n, r, s, = 1, 2) are of bounded variation on (so, co) (A r s2, S real). 

9, LP-convergence in the singular ease 

Let Q be the positive quadrant of the (x, y) plane, R be the closed region of Q bounded 
by the lines 

Y - 
- k 112 X ,  y .= 3 1  f 2  X,  

and 

5= Q 
	

T 	E 	I 0 	cc 113. 	Tr 

(Rutovitz 3, p. 33) 
We define 

11 d  (x, 	 y) 
11„ (V 3 ') = 

( ff 12 	 1I "c1 .24 	y) c,d 

2 	it 

2; 	z f rp, (0 i  .v, t ) 	(0 I .v, t) dp„ (0, 	 (9.1) 
r 	41=1 C 

where p.(0 = Iim p„ (b, 1), (b —4 00 through a suitable sequence). In our subsequent 
be)C0 

studies we closely follow Rutovitz 3  and, therefore, we simply enunciate the results, 

giving only those steps where we differ significantly from him. 

Lemma. (9.1): If f E LP, g e Le, then 

SIR./ (x). g (v9/(x y)] dxdy, 
	[(f (x), g (y))i(x + 1)1 dxdy 

R 

[(1- (x) ,  g (y))/tv 	!)1d.vder =- 0(1.1 . 1, 	). 

Lemma (9.2): If fe ll,  g e Le, and h(i) is a function of bounded variation on 

la, 00,  a > 0, then for c > a 

C 
 Cos 

ff (f(x), g (y ))  f sin 
a 

cos 
xi 	vt h (0 dt dy 

Oaflp ig 
sin 

 

Lemma  (9 .3) : There exists a number c > 
0 such that, for any Iv > c 

11  (1(x), g (y)) 	(x, y) dxdy 	0 ( IfIvigio ),  
if  

where f e Lo, g e Le. 
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PROOF: We show the calculations for I 	(x, y). Writing in full, using (t oo or  Ref. 1 and substituting from (7 .4), (7 .8), (8.4) and (8 .8), we get 

VIO 

Sin  
1 	 [-- { 2  OS SX cos sy — clidn  sin (sx sy) 	sin (x, - 27r 	cil c sx sy 

Jc 

± 0 OW x)) + 0 WO y))} E22 (s) iciica  cos sx cos sy 

e11d21 cos sx sin sy 	1e-21 sin sx cos sy dada  sin sx sin sy 
± 0 (11(1 	x)) ± 0 (1/(1 ± y))} Ei2  (s) 	{cosi'  cos sx cos sy 

cndii cos SX sin sy 	c11d21  sin sx cos sy d21d1 1  sin sx sin sy 
± 0(11(1 	x)) •f 0 (11(1 	y))) En (S) — 	COS SX COS sy 

c21421  sin (sx 	sy) 	4 sin sx sin sy 	0 (1/(1 x)) 	
4 

+ 0 (11(1 	y))) E ll  (.0] ds. 

The requited result for He,,, (x, y) 	now 	follows from lemmas (8.1), (9.1) and (9.2). 
Similarly for the other elements, and the lemma, therefore, follows. 

Lemma (9 .4) : There exists a number c> 0 such that for any w> c and f € LP, gE 

f 	f (x), g (y)) 	(x, y) dxdy 

(cf previous results and Rutovitz 3  pp. 33-35). 

Lemma (9.5) Under the conditions .of lemma (9.4) 

S f 	(x), g (y)) 	(x, y) dxdy = 0 ( f I rt  Ig I 

Finally making use of the lemma (9 .5), Fatou's lemma, lemma (2.1) and following 
closely the analysis of Rutovizt 3, pp. 33-35, we obtain the following: 

Theorem (9 .1): Let I < p 	2, f€ V. Suppose that each element of the matrix 

M (x) e L [0, cc) and (7.1) is satisfied. Then the eigenvector expansion Ow  f of a 

vector f, in the singular case, converges in mean to the vector itself, i.e., 

I Owl — f -+ 0 as w 00, 

where 0. f == lim 	(b --) co through a suitable sequence). Further, there exists 
b-*00 

a constant c and a number C (p) depending only on p, such that 

for all w > c. 
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