on the theory of transforms associated with eigenvectors (111)
g, TIWARI

Department of Mathematics, P.G. Wing of M.B.B. College, Agartala Tripura 799 004. Indi
] » AdNqia.

Received oD July 25, 1978

Abstract

In this paper the author applies the thcory of transforms dey

: ; eloped in Refs. 1 a
1#.convergence of the eigenvector expansions associated with t 5 nd 2 to study the

he differential system

(L—M)¢p=0
in the finite as well as the singular case, where
. (— d2[/dx? + p (x) r(x) )
r(x) — d?ldx2 4 ¢ (x)

and ¢ is a two component column vector.

A property of transformations of L} onto itself is first proved and a suitable inequality established.
Asymptotic expansions of some vectors are then obtained and a suitable operator defined which leads
to the LP-convergence in the finite case. Finally some more asymptotic expansions are derived which
under some specified conditions yield the following:

Theorem: The eigenvector expansion O, f of a vector f, in the singular case, converges in mean (o0
the vector itself.

Some of the results obtained in this paper are generalisations of those of Rutovitz>.

Key words: Transform, LP-convergence, inverse-transformations, dense subset, asymptotic expansions,
entire functions, contour integral, residue, convergence in mean.

1. Introduction

The object of this paper is to apply the theory of transtorms devFloped ifn Refs. l. and 2 _tc;
study the [”-convergence of the eigenvector expansions associated with the differentia

system
1.1
(L—JI)¢p=0 (1.1)
in the finite [0, 5] as well as the sigular case.[0, ©0), where
[ — (— *[dx* + p () r(x) )
” ( : — d*dx? -i- q ()
e function of x
' - - jumn vector functi .
and .qﬁ = ¢ (x) = {u(x), v(x)} is a WO component colu .

L.L.Sc.—¢
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In order to avoid the repetition of the preliminaries, we have written this
an addendum to Refs. 1 and 2 and consequently we make free use of symbols
and results contained therein. ’

paper as
Notationg

Let L§ and .£} be the spaces of columnr vectors (whose components are real valued
functions of a real variable)

fx)={fi,foi} and F@)={F, F}

for which

£ lppp = Max [ f| £, > da]i? < oo

and
oC
| FLdp(b) |, = Max [ |  F, | dp, (b, )] < o0
)
respectively. where p,, (b, 1) (r. s = 1, 2) are as defined in §3 of Ref. 1.  Further, we set
[? = L f’-—:f';u; !.f!n=lu.f|p,m
and

lF,dpl,,:lF,dp(oo)I,,

it being understood that, in the last expression, & — oo through a suitable sequence. We
assume that

l<p<2 and lfp+ ljg=I.

It follows from the arguments contained in §4 and §9 of Ref. 1 that

be= {le f szf}*

where

Tof={$, (0] x, 1), f(x))
and

(Fre oF, Tae, sF) = 5 [ 6,0 x, 1) (F (1), dp, (b, 1)

r=1 -—w

gw, bF
= {(U (x, 1), F(1),dp (b, 1))y — w, w, (¥ (x, 1), F (1), dp (b, 1)) — W, W}

define transforms from L3 onto £ in one case and from a subset of £} into L§ ir the
other, where U (x, 1) and V (x, ) are as defined in §1 of Ref. 2. Further, if fe L% T,/
converges in .£2 to a vector Tf as b — oo and if Fe .£2, <, ,F convergesin L*t0 2 vector
JF as w-» oo and b — oo through a suitable sequence. T, and I, (= S i} AL
inverse transformations between L3 and .C%.
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since ¢, (0] %, 2) (r =1, 2) are bounded unifor
0 pl. it follows that, for b < oo, and at

| T, f1 = Max (¢, Q] x, 4), £(x))
<« COV| 1,

where C (b) depends only on b.

. mly for alj eigenvalues 2, over each
all eigenvalues 2

s A property of transformations in L}

Lemma (2.1): Let a column vector f— O, f be a linear transformation depending
on the parameter w from L} onto itself, such that

| walmbﬁ; Cif|,,1 bs

where C is a constant independent of f and w, and

lf— Orcfl'p,b w0 (22)

as w — co on a dense subset of L. Then

(2.1)

| — Ocflp, s = 0, as W > o0

on L2: b= oo being permissible.

PrOOF: Let fe L& Then it follows from the definition that for every & > 0, there
exist vectors /1 = {h, hy}: g = {& g.}, such that

f=h+g,
where

| g1, 5 < €/2(1 + C)
and

| h— O], , >0 as w— o0

It follows that there exists w, such that for all w > W
[f =0 [l ,=|(h— O +g— 0 lo, »

nd

< | h— O l,,a+lglp,a+|0wglp.a

by Minkowski’s inequality.

lLe.,

wa"""f i.n L‘E.
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3. Anu inequality

Lemma (3.1) : Let

Jm, v (X, ¥) = 2b71 f cos kx cos ky

A=0

and
T (8= T [ (£ 80 i, (x, ) ddy

Then there exists K(p) depending only on the parameter shown such that
| T, s (L ©) | S K(P) | [ls,5 8 o, s,

whenever
fel} and gel}.

This lemma 1s an immediate consequence of that of Rutovitz3.

4. Asymptotic expansions in the finite case

In what follows we assume that the constants appearing in the boundary conditions
(1.3) of Ref. I satisfy the following additional conditions:

At least two of the ratios ayfa; (= 1,2, 3, 4) and also at least two of the ratios
by/bs (j =1, 2, 3, 4) are unequal, say

Qya| Ao # Qy4fG35 ANd  byo[byy # b14/bsy.

The results of this section follow exactly in the same way as the corresponding results
obtained by Titchmarsh® and Bhagat®. We, therefore, enunciate the relevant theorems
and omit the details of the proof.

Theorem (4.1): Let ¢(£]x,2) = {u(&|x,A),v(&|x A)} be a solution of (1.1)
such that

‘,6 (g I g: )'-) — {a: }'}: ¢!(§ | §: }*) — 'lﬁ! 5}
Let

A = §°,
7 (a ﬂrl)
y os”!
and

B = {cos s (x — £), sin s (x — £)].
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Then

x.A)=AB { 5 i ; :
¢ (f l ) g (M (») ¢ (& | ¥, l)) Sin s (x — ¥) dy,
where M (x) is the matrix defined in §5 of Ref. 2.
Theoren (4.2): Let ¢,(0 | x, ) (j=1,2) and ¢, (b|x, 4) (k = 3, 4) be the bo
y v -_— 3 Orun-

dary condition vectors for the system (i.1). Let

=52, §=0TIT.

Then, for |s| =151
@ ¢, 0] x4 = {ap ay} cos sx + 0 (e'™f|s|)

(i) ¢ (0| x, 4) = {bjzs by cos s (b — %) + O3 ls|)(j=12: k=30

Theorem (4.3): Let the conditions of theorem (4.2) be satisfied. Then
(@) [6; (0 ] x, 2, &3 (b | x, D] = — 5 (@ebpe + @by sin sb + 0 (e'™),

where j=1,2: r=1 when k=3 and r = 2 when k = 4.
(ii) D (b._, }.) —_ SE (a12a24 i (114022) (b12b24 = bllbﬂi) Sinz Sb + 0 (Seﬂlflﬁ).

We note that [¢;, ¢] are not identically zero. In fact these are entire functions of
s of order 1 and so entire functions of 4 of order 1.

We also note that D (b, A) is not identically zero and that it possesses an infinity of
zeros. By arguments similar to those of Titchmarsh* (p. 19) 1t fol?ows that the zeros
of D (b, 7) are asymptotic to the zeros of s® sin? sb, that is to the points where ;-_- :m/f
for large | s | and ». For large values of n the eigenvalues are asymptotic to n* X (b2,

It is also easy to see that D (b, A)# 0 for s=ir(r> o)y 1-€ for 7 negative and
sufficiently large.

Theorem (4.4): 1f v, (b, x, 2) b€ defined by (2.6) of Ref. 1 and Cr? (b,‘x,tlsl:)as in
2 (iv) of Ref. 2 and the conditions of Theorem (4.2) be satisfied, then for Jre 15 =5

G,(b;x,y, A) = —COSS (b — X) €OS syfs sin sb + o™ 1A])

G (b: 3, y, 1) = O (71| 2]) = G B3 %7 4

and similar expressions for y € (X, b].'
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5. The matrix Ay, p (x, y) : The operator Ow, b

We define

Faly (x, v) hzy (x, »)

l?w (x: =
545, 5 L2, (x, ») he2s (x, p)

|
M0

2 1 0.0 %007 O] 3,0)dp,, b, 1) 5.1

"
pud

r 3

and

O, f(x) = OI hT , (v, x) f(¥) dy. (5.2)

Then

Ouaf (V= Z [ 6,0 x,0(T.f. dp, (b, 1))

r=1 =-w

= cjw,brbf(x)
[ef. (3.3) Ref. 1.

It is known from Theorem (4.3) that there exists w = w, for each & such that D (b, ¢
# 0 for t < — w,. For w> w,, let us denote by C the contour considered by Titch-
marsh' (p. 13) which is symmetrical about the real axis and which corresponds in the
upper half of the Z-plane to the boundary of the quarter-square in the s-plane

s=\w, +ir 0< r</w,)

where / =52, s =0 + ir and w, bisects the interval between the greatest eigenvalue
not exceeding w and the succeeding one. Let y [0, x). Then

|
2ni

f Gu(b:x, y.A)d/
] -
= T f (w1 (b;x, 4), U(y, A)) dA

27i

! Z f ({1, (0] %, 2) + %, 0 ] %, A} 2 O], 4)

+ {Lu, (0] x, )+ x, (0] x, 2)} 4, (0 | 3, 4]
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l k-
L — ‘) F
= 5. E E 2ri [Ry, (b, m) u, O x, 2,,)u (0] y, 4.,)
r=31

n

213

+ RE’_ (b. n} M, (0 | X )-nl,) U, (0 l)'a }-nb)]

13

I
M.

J v,(0 i x.r)u (0], tydp,, (b, 1)
1 —ir

r=1 &

=5 h:u?b (.1', }')1

where 0, = {Xz.),} is as defined in §2 of Ref. 1.

Similar results hold for contour integrals involving other Gy (b: %, v. 2) (i, j = 1. 2)
and accordingly we obtain

.l.. | G, x.y. Ader=h,,(x ).

2ni

r

(5.3)

The case when y € (x, b] can be dealt with in an identical manner.

Since D (b, A) has the same number of zeros inside the contour C as s sin sb [Theorem
4.3)], it follows by using the results of Theorem (4.4), the calculus of residues and (5. 3),
that

] ik - 4
mo (%, 9) = = Jmp (6 9) T O(f, (e [12])1di]), (5.4)
where m = [w!/?], the greatest integer not exceeding w'?, and
5.5
B (o) =0 ( J (e 121 [4h]) (5.5)
ir;ﬁn

Again, since

O(fem =1/ 2])]dA])

y—-& 1 y-2 56
-0 ((l - 6"'“’”2 { t ) I 0 (8*" 12 '), ( )

wl{2‘y-—xl

we obtain - (5.7)
he s (X, ¥) = — jum» (X y) T o, r="=
e (5.5)

B (e y) = O(1), (rs= 123775
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6. The LP-convergence in the finite case

Theorem (6.1): The eigenvecto: expansion O,

b S of a vector 5
of class Lj converges in mean to the vector itself, i.e., S x)={f v/
hm | Ow,bf_fl ny — 0;
0> 00 | (6.1)
and
IOw,bep,bSK(p:b)lflp,h (62)

where K (p, b) is independent of the vector f (x).
PROOF : Let g(x) = {g,, g,} € L}.
Then from (5.2), (53.7), (5.8) and the lemma (3.1), we obtain
[ (Ocpf (), g () dx
= § (§ a0 0) dr,z () de

<0 (I: Jf(flgl + S8 S8+ fag) dx dy) + | Jus (frg) ]

<le|1.nlg|1,b K(p)[fln,blg‘q,b
S [CO+EWDN| S lo ] 8l

which is (6.2) by the converse cf Holder’s inequality, (¢f. Hardy, Littlewood and
Polya%, p. 142).

Thus O, satisfies the condition (2.1) of the lemma (2.1). Further, from the argu-
ments contained in §4 and §9 of Ref. 1, it follows that (6.1) holds for p = 2. Also

I %-convergence imphes L?-convergence, and L2 is dense in L} (1 <p < 2). The con-
dition (2.2) of the lemma (2.1) is, therefore, satisfied and (6.1) follows.

7. Asymptotic expansions associated with ¢; (0/x.A)
Let

M () = (p - i(x)) — XM (x).
r(x) qx)
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we assume that each elemeni of M (x) e L [0, oo

fon on [0, 00). it follows, therefore. that each) and is a function of bounded varia-

element of M (x)e L [0, oo) and that

T Ip(r)ldr, { |€7(f)df..?|r(r)ldr=0(1/(] + x)) (7.1)

asx-—rOO.

In what follows we assume that a;;a,,# 0 (j= 1, 2). The _
. ; y &) analysis i

may be easily modified to cover the cases when a,a,, =0 3’;1[3 carr;edjout l:elow

assume s to be real. : put A= s and

Let

s &
¢ (A) = (Cirs Cpay 7 tap.a,y — 571§ M), (0], 2)sin sy dy

=0
d, () = {dn. dj2) = {ay ap} st — s { M (y) ¢, (0 | y, 2) cos sy dy,

where ¢; (0 | x, )= {u, 0|x, A), v,(0|x,4)} (j=1,2) are the boundary condition
vectors at x = 0.

By arguments similar to those of Bhagat?®, it follows that (i) % (0 | x, 2); v, (0| x, 2)
are bounded for }s| > 0, (ii) integials involved in defining ¢, (1), ¢ (4), d;; (4) and
d, () converge uniformly, so that these are continuous functions of s for |s| > 0.

We, therefore, obtain the following lemma from Theorem (4.1).

Lemma (1.1): Let M,, denote the r* row of the matrix M. Then

() u, (0 | x, ) = @3 608 5x — 5~ ap sinsx + 51 [ Myy ;0] », sins(x —p)dy

(7.2)
= a;, cos sx + O (s~1), (umformly n Xx) (7.3)
= ¢, COS §X — d,, sin sx + o1+ x)* (7.4)
— — slag,sinsx + 067 } 4y =0 (1.5)
= Q@)
(ii) v,(0 | x, 1) = a,, cossx—s~ 4y sin sx + 57 .[ My () 6,015 4
7.6
% sins(x — Y4y (7.6)
1.7

== gy, COS SX T 0 (s7), (uniformly in x)
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= (4 COS $X — dgysin sx -+ O ((1 + x)7)

(7.8)
= — s lagsin sx + O (s7%) }
; afa — 0.
= (S 1) (79)
It may be noted that a, and g, cannot vamish simultaneously (cf. §4).
Lemma (7.2):
(i) 'D?s u; (0| x, 4 =0( + Xx) (7.10)
= — Xay, sin sx + O ((] 4+ x)|s) (7.11)
= — 57! xa, cos sx + 0 ((14+x)/s?)) 4= 0 .
— 0 ((1 + 2)s) J‘ ;2 1L 02)
(i) 2 0,0]x.2) =0+ (1.13
= — xa;sinsy + O ((1 4+ x)|s) (7.14)
s 1 L -
s~! xa;3 cos sx 4+ O ((1 + x)/s )} "y (7.15
= 0 {(1 + x)/s)
Proor: Differentiating (7.2) partially with respect to s, we obtain
%u, (0] x. ) = — xay, sin sx — 571 xa, cos sx + 572 a; sin sx
— 8572 M ()¢, (0] y, Asins(x — y)dy
+ 571 [ Myr (1) ¢, |3, 2) (x — p)cos s (x — ¥ dr
+ 51 f My (¥) 5?;% O |y, Dsins (x — y)dy et

_— < J J ; .E'.. : d}‘-
—0(x)+0(5 f [lp(y)s—j-u,(Ol),l)l-l-]f‘()’)as'vf(oly*;) ] )n
0 (71

Similarly from (7.6)

) 0 .
D—Eu,(0|x,).):0(x)4o(s—l f [’r(y)-b—}uj(ol.w)l

N
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] ""-")- (7.18)

d
+‘ Q(J’)S';'v,(ﬁ ‘ }r!j‘)

Putting

N, (x) = Sup

0
D'Sff;(()‘}'. A)l/(] + y)

) (OSJ’SX).
N, (x) = Sup . U (O] ¥, "-)‘ (1 + v)

using (7.17) and (7.18), we obtain, as s = oo
(1+XIN () = O + )+ O((1 + x) (N, (x) + N, (x)))s)
(1 4+ x)Ne(x) = Ol +x) + O((1 + x) (N, (x) + Ny (x))]s).

Hence N, (x) + Nz (x) = O (1). uniformly in x, as s — oo,

since #,(0 ] x,2), v, (0| x, 2) are linearly independent, we obtain (7.10) and (7.13).
(1.11) follows from (7.16) by using (7.10) and (7-13).

Similarly for (7.14).
Further, when a,, = 0, (7.12) follows directly from (7.16).

A similar analysis yields (7.15) when a, = 0.

The lemma _thus follows.

Lemma (7.3) :

) e, (D) =0(Q), a.#0
=0(s2), a.=0

() ep () = O(1), au# 0

(ii) jscﬂ () = 0(s?), apa;# 0

= 0 (573). apau= 0

(iv) cpp (1) = O (1) ajg# 0
— 0(5—2)’ aﬂ=0

W) Yepw(?) =0(), au#0
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o d
(vi) = Cre (A) =02, apa,#0
= 0 (57, apa;,,=0.

ProOF: (i), (ii), (iv) and (v) are immediate consequences of the definitions of e (1)
¢;» (A) and the corresponding results of lemma (7.1). 1\,

From the definition of ¢, (1), we obtain

o0

d »
7 Cn (A) == 52 f M, e, O]y, A)sinsydy
0

o0
— 51 _r M*] (J") 0y (0 | Vs )') V COS 8y d_}’
0
i )
=5 [ M) 50,01y, 2) sin sy dy
0

= 0() + 57 [ (aep (3) + ar () (sin? sy — cos? sy) dy
0

by (7.1), (7.3), (7.7), (7.11) and (7.14) if a, a4 # O.

Since pn(y), r (y) are functions of bounded variation, we obtain
d .

p 2 (A) = 0 (s73).

Similarly, if a, a;y =0, we get

d
d'—"s‘ C“ (A) = 0 (.5-3).

The relation (iii), therefore, follows.
A similar analysis yields (vi).

Lemma (7.4) :

©dy () =0
(i) 1/d, (A) =O0(s), apa, =70
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(iii) j—sd,i (A = 0D apa, # 0

O(s?), apu;,-=0
(iv) dp (D) O )

(V) lldﬂ (4) - O (s). a5ty == 0

(vi) %dﬂ (A) =06, apa,#0

== O (5—3)! afﬂa.f-l — 0.

These results follow as in lemma (7.3) by using the definitions of d,, (1) and d,, (A).

8. Asymptotic expansions associated with (K, ()

As in Bhagat®, we obtain fairly easily the following expressions for the functions m,, (1)
(r,s =1, 2) defined in § 6 of Ref. 1:

0
[ ]

Im{limm, (D] = X (ck + di)[22 (42 + B7) (8.1)

T=>0 k=1

(whea r =2 1, j=2; and when r= 2; j= 1)

and
Im [lim my. (2)] = 'm [lim mg; (2)]
T3>0 T=>0
= — (C1Car T CraCe2 T dyydoy + dyod 2V A4 (4* + BY), (8.2)
where
A= A() = ¢y — toytlys — G2 + dude } : (8.3)
B = B ().) — Czldlﬂ —l" clgdgl o Clld-_gﬂ - c22d11 :

‘ itive 4. If
It follows quite easily that A (4) and B (1) both cannot vanish for any positive

aa,# 0, we obtain

/ _ ~2
A =0);: 1A =0(); AN =067 4.5
B(}) = O (s7Y); %B(A) =0

and if g.q,, = 0, we obtain

3
Ay = O (s~): djds A =0 B(h) = Q(S“ )} (8.5)
dids B(D) = O (s7); 1/4 (H = 0 )
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where

aydys — dpnd3# 0

in the last case, by making use of the definitions of the functions €1 (4), etc., and thei
’ ") Cir

asymptotic expansions.

Now

A
K,(A)=tm | —Im m, (- iv)du

y-»0 0

and hence, for A = 5%, 5 >0, we get
K,(A)=—2 [ E;(u)du,
0
where

E; (u) = }:‘,2‘ (ci ®) + dj, (1)) /(A% (u®) + B2 (u?))

k=1

(when r=1, j=2; when r=2, j=1).

(8.6)

Therefore
2
22 [(A'-”-l— B?) (c’,k (—!—(icjk + d;k% dy ) — (¢ -+ djy) (A g}A + B%B)
Eyw= = - (A° + Bo)? -
= 0 (s7?) if  apa,#0
= 0 (s) if  a,a,=0 8.7
by using the relevant results obtained earlier. Similarly
(8.8)

Ko (D) = Kpy () =2 [ Ey () dut = 2 oj E,, (u),

where
Eps (U) = (c11Cpy + Cps Cop + dnaday + dradsg)[(A* + BY)
= Eq; (4)
and
EL(=E,=0(¢? if apau#0

The results of §7 and §8 vield, fairly easily, the following:
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Jemma (8.1): There exists a numbers, >
o > Osuch that the functi
tions ¢, (1) ¢, (1)

El (A). Cix (";") ‘!mn ()'-) E" (I\) and dj ()‘_) d )
b;uﬂdﬁd yariation on (5'0‘ ) (;L :t321 S :ga(l/;-) Erl (A) (}: k, m,n,r,s, =1, 2) are of

g, LP-convergence in the singular case

Let O be the positive quadrant of the (x, | _
by the lines ¥) plane, R be the closed region of Q bounded

— 31-112 v QD 4
y s 3 .\'- "' = 3 ! _1,

and
S=Q—R T E{UOr ic® LI
I = y 5 or 3 < 0 << z] )
(Rutovitz®, p. 33)
We define
Hc; d (Iw J') = Ht}..td (I‘ 'l‘) H;ild (.T, .'l') )
Hp (X ) 122, (x, 3)
2 3 o
> ¥ [ e, 00X, 0T (0N 1)dp, (1) 9.1)
r=1 8=} ¢

where p, (1) = lim p,, (b, 1), (b = o0 through a suitable sequence). In our subsequent

b-»00
studies we closely follow Rutovitz® and, thercfore, we simply enunciate the results,

giving only those steps where we differ significantly from him.

Lemma. (9.1): If feL®, gelLd then
ST ). g (0)ix + v dxdy, I [(f(x), 8 )ix + 1] dxdy
R R

[ 1 1(f(x), gy Dl dedy = O (1 f1, 18 e}
R

d h(t) 15 2 function of bounded variation on

Lemma (9.2): If fel®, geld, an
14, 00), @ > 0, then for ¢ > 4a

COS vy h (1) drdx dy = O(1fl,18le)

. CoS _
ff (/f (x), g (1) fsill Xt o

R

mber ¢ > 0 such that, for any W > C

Lemma (9.3): There exists & nu
| 8 I o )

I 1 (g () Hile (. ) dxdy =0 (1] P

Where felr, gels.
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ProoF: We show the calculations for HY (x, »). Writing in full,
Ref. 1 and substituting from (7.4), (7.8), (8.4) and (8.8), we get

Ve
Hé‘,lﬂ:l (x’ y) f [ {cll COS SX COS Sy — Cll 11 SIII (Sx + Sy) -.I.. d
Ve

+ O (/1 +x)+ O/ +¥)}E, (s) + ¢ €116 cds $X COS 5p
— Cudy COS 85X SIN 5y — dyyCy SIN $X €COS 5y + dyyd,, sin sx sin 5y
+ O(1/(1 + x)) + O (1/)(1 4+ )} Ei, (5) + {€21€11 €OS 5X cOs sy
— Cy1d11 COS 5X SIN Sy — 3y, SiN 5x cOs 5y + dy1d), Sin sx sin sy
+ OL1/(1 + x)) + O (1/(1 + )} Eyy () — {c2, cos sx cos y)
— Cydy Sin (sx 4 sy) + di, sinsxsinsy + O (1/(1 + X))

+ O (1)1 + »))} Ey (5)] ds.

using (7.4) of

11 Sin §X Sin Sy

F]

The requited result for H}%, (x,y) now follows from lemmas (8.1), (9.1) and (9.2),
Similarly for the other elements, and the lemma, therefore, follows. -

Lemma (9.4) : There exists a number ¢ > 0 such that for any w > ¢ and fe L* ge L

5 (S (0,8 0) He (x,2) dxdy = O (171, 181

(cf. previous results and Rutovitz?® pp. 33-35).
Lemma (9.5): Under the conditions .of lemma (9.4)

[ 1(f (1 0) ey (3 3) dxdy = O (1] gl

Finally making use of the lemma (9.5), Fatou's lemma, lemma (2:.1) and following
closely the analysis of Rutovizt®, pp. 33-35, we obtain the following:

f the matrX

Theorem (9.1): Let | < p<< 2, fel?. Suppose that each Rigrent On 0, f of 8

M (x)e L[0,00) and (7.1) is satisfied. Then the gigenvector €xpansio
vector f, in the singular case, converges in mean to the vector itself, i.e.,

| O f —f],—=0 as w— oo,

exists
where wa:: lim Ow,hf (b -3 OO through a suitable sequence)- FUI’thBI', there

3=> 00
a constant ¢ and a number C (p) depending only on p. such that

Iomf'y£C(P)|f',.

for all! w> c.
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