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ABSTRACT

The problems encountered in the study of vibrating systems can be broadly
classified into two main categories of analysis and synthesis. This paper is
concerned with a third category, Viz., given a system and a prescribed set of forces
acting on it, how can the spatial response of the system be altered in a desired mamner
by the application of additional (control) forces? In particular we consider the
problem of controlling the energy of vibration of a driven string over a portion of its
length by applying two control forces. Starting from graphical considerations o
analytical method has been deduced. The results show that a good control is

possible.  The effect of varying the point of application of a single force is then
discussed.
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1. INTRODUCTION

There are mary instarces in which it is desirable to zalter the spatiel
distribution of the amplitude or energy of vibration of a contiruous system
under excitation by a given foice into a form that is more suiteble for the
purpose in hand. One such instznce is the sound pressure distribution
in an zuditorium produced by 2 loudspeaker of 2 public address syster
Even after a careful choice of the radiation characteristic of the loudspeaker,
its position in the hall, etc., it may happen that the energy level at tte
microphone mey be too high to permit the desired gain to be achieved efse-
where in the hell. To avoid the system from goirg into self-oscﬂlaﬁorj,
severel techriques have been tried before,’ ? but we might also ask if it
possible to crezate a region of decreased sound pressure level around the micio-
phone by using an auxiliary set of loudspeakers excited in an appropsisft
manner. In vibration reduction practice and elsewhere it is worthwhile to
consider whether it is simpler to control the vibration amplitude of & Timited
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Vibration Control of Stretched Strings 283

region Tather than attempt to isolate the entire body from vibration.
Therefore, we wish to enquire into the possibility of redistributing the erergy
i a vibrating system by the application of suitable control foices.

Before we attempt to solve such practical control problems, compli-
cated by the varying cheracter of the frequercy of the source, lack of exact
analytical expressions, etc., we must find suiteble methods of controilirg
the energy of vibration in the case of simple systems which are aralytically
tractzble. The vibrating strirg hes served in the pest as an elegant model
for understanding mery pheromere. However, a large part of the presert
theory of a vibrating strinrg deals with the aralysis of its vibratior urder
the action of prescribed forces. We wish to develop nrow methods of
controlling its vibration.

2. FORMULATION OF THE PROBLEM

Corsider a stretched string 4B (Fig. 1) of length / fixed at its erds arnd
acted on by a force F = fef*! at the poirt x = ¢. In the steady state, the
energy of vibration will have a characteristic distribution zlorg its lergth.

juwt
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F16. 1. Stretched string with applied forces.

We desire to alter this distribution in such a way that a relatively larger
teduction is obtained in the energy of 2 certain part CD of the string than
i the rest of the string, (CDY. We seek to achieve this by applying two
control forces M, =myel*® and M, =mye*t at C and D respectively.
To determine sz, and m, 2nd the reductions p ard g that ere possible in
the energies of the two parts CD and (CD), we proceed as follows:

Let Ye(x, ), Yy, (x, 1) and Yy, (x, t) be the steady state response of
tf.te sting to the forces F, M, and M, acting separately. Then, assuming
linear behaviour,

Yo (6, 1) = Y (x, 8) Yo, \X, £} + Yy, (%, 0)
5 the combined response due to the applied and controlling forces. Let
Es\f)and Eopy (f) denote respectively the energies of the parts CD and
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(CDY of the siring when the force F is acting alone. Similarly, let £,
(f; my, mp)and Ecpy- (f 5 my, my) stand for the energies in these two parsg
when the forces F, M; and M, are acting.

Let us first require that

Eepf 5 my, my) <pEep (f) )
and

Eeny (f 51, mg) = g Eepy (f)- )

If we also require that 0 <p <1 and g> p and determine a set of values
my, and m, satisfying these requitements, we would achieve a largr
reduction in the energy in the part CD of the string in comparison to that
affected in the rest of the string.*

The response Y (x,?) due to the force F = fel9t acting at the point
x == ¢ is given by*

i fefwtsin %} -9 w

———————e S — X x < f
W ¢
ewcsm—cfl

!
i
!
{
|
!

Jei¥t sin —‘: £

sine(l—x) x=¢ €]
€wC sin - 1 ¢

where ¢ is the linear mess density and ¢ is the transverse wave-velocity of
the string. Analogous expression can be written for the responses Yg
(x, 1) and Yy, (x, 1) due to forces M, and M, acting at I, and I, respectively
(f ~ My, € > b, etc.).

Now, apart from a constant multiplying factor, the energy of vibre-
tion of a string due to a force acting on it is given by the integral of the
square of the response due to the force. Accordingly we have

Een(f) = S Y2 (x) dx @

Eeny ()= | Y:2(x)dx )
aver (CDY

* While this particular choice of the criterion is Suggested by the feedback problem l‘?f““}

to in the previous section, the formulation is geferal enough to admit other forms

redistribution of energy by a suitable choice of p and ¢.



Vibration Control of Streiched Strings 285

Eep (f; iy, M) = Icu 2 (%) dx 6
Eeny (S s my) = Mt_.f(c D)’J"c2 (x) dx. 16}

Clearly, the integrals (4) and (5) are independent of w2, and m, while (6) and
(7) depend quadratically on m, and m,. For a given value of f, therefore

one can write
Eep (f) =80 ®
Eeoy (f) =ho ®
and

Ex (f; my, ma) =g (my, my)
= guy® -+ G1e MMy + Gaaty® + gumy -+ gomy 4+ go
(10

Eeny (f 5 mys my) = h (my, my)
=Ry ? - By g -+ haemy® - ymy - homy - By
an

where &1, &ig -+ Mui, Mug, - - -, tc. (defined in Appendix A) are functions
of w & I, and I, :

The requirements (1) and (2) imply therefore
g(my, my) < pg ’ ' 312y

b (my, my) = ghy. (13)

3. METHODS OF SOLUTION

The values of m; and m, satisfying (12) and (13) could be obtained
graphically or by using Lagrange multiplier or by the more general tech-
niques of optimization theory. Here we consider the first two methods
2 they provide an intuitive approach to the problem.

3.1. Graphical Solution

The quadratic forms (10) and (11) are positive definite (being energy
functions) and therefore equations g (my, m,) ==a constant and & (my, my)
=4 constant represent ellipses in the my — m, plane (These -ellipses will
heneeforth be called the g-curve and the h-curve respectively). Thus for
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a given value of p andg (0 <p <1 and ¢>> p) the inequalities (12) and
(13) imply that the acceptable values of my ard m, are those that lie inside
the curve g(my, m,) =pg, and outside the curve h(m,, my) =qhy. The
shaded region in Fig. 2 represents these values.

e Y
M n-Curve

2
i p=0-x
- LoD
Admissible

4 region -

Fi6.2. g and k<orves showing the admissible region.

The fact that there is a region in the m, — m, plane means that there
1s actually a large number of possible m, and m, values which meet the
requiremsnt. However, for a given ¢, the point which corresponds to 2
minimum p can be easily obtained from the grephical plot by drawing the
g-curve which just touches the h-curve and noting the corresponding vale
of p.  This minimum value depends vpon the value of &, I, J, and «.

An admissible region in my — m, plare is obtained only when the
g-curve intersects or lies completely outside the h-curve. Otherwise ro
admissible region exists and the value of p may have to be increased of
the value of g decreased to get an admissible region. If the values of p
and ¢ required to get an admissible region are not compatible with the
requirements then more control parameters may have to be introduced.
However, the g- and A-curves do not, in general, lie in a completely arbr
trary manner in the my — m, plane for, these curves must pass through
the origin in the case p =1, g =1. This fact enhances the possibility of
ihe g- and h-curve: intersecting each other for rezsonable values of p and 4.
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3.2, Analytical Method

It was pointed out that, if the g-curve is shrunk as in Fig. 3 till it touches
the h-curve for fixed ¢ then the point of contact P (mz,/, m,’) would correspond
10 2 minimum p. This fact suggests an analytical method of solving the

same problem.

h-Curve

m

FIG. 3. Family of g-ciirves tovching the A-curve at four points of tangency.

In order to find myy, m, and p for a given ¢, the conditions existing at
the common point P are first put in the mathematical form as follows :

(i) The point P must lie on both the g-curve and A-curve, e,

h(m', my)) = qh, 14

g(ml’5 ) = P&y (15)
(i) At P, the g-curve and the A-curve must have the same tangent, i.e.,

28/om | — my

3g/0My {m,—am, 11/omy ey 16)

Ma=m,’ TM=M"

Making use of (10) and (11), the condition (16) can be rewritten explicitly
2

Gy ® 3+ dg my'my 4 oy M52 -1 ayimy + agmy’ -+ ap =0 an
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where

ay =281 fiys — 201 is

s = 4Rys 813 — 411 Goe

@sp =2hyy g1y — 2M08ae

ay =hyp g+ 20 8 — 2y 82 — B g

Qs = gra Mty + 2tan g1 — 203 Gay — Hun 8

ay = hy g — Ity & (18
First the nonlinear simultaneous equations (14) and (17) are solved for m/
and m, by Sylvester’s method.® This leads to four pairs of values for
my,’ and m,’ corresponding to the four possible points of tengency of the
curve k (my, my) = gh, with the family of g-curves, as sketched ont in Fig. 3.
Each of these pairs of values of m," and m,” when substituted in (15) leads
to a different value of p. The smallest value obtained for p determines the
maximum possible reduction in the energy of the part CD of the string.

The corresponding values of m,” and m, give the control forces required
at C and D.

Similar arguments can be construed for the case where the energy over
CD is specified (i.e., p is given) and the energy of the remaining part is to
be maximized.

The Lagrange multiplier technigue: The above problem can be put in
the format of a constrained minimization problem as follows:

Minimize g (my, my) under constraint
h (my, my) = ghy. (19)
An application of Lagrange multiplier technique leads to
2gfomy, - A dkfamy =0 (20)
2g/3my 4 A2h/om, =0 e))]

where Ais the Lagrange multiplier. The optimum values of »y and m; e
obtained by solving equations (19), (20) and (21) for my, m, and A Elimi-
nating A, we get again equation (16).

3.3, Exumple

The method is now illustrated with a numerical exemple. With
{ =1, £ =01/, wljc=40-0, | =0-85, [, =0-95/, F=1 and ¢ =2
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the pairs of values of my’ and my’ satisfying (14) and (17) are determined.
Using these in (15) the minimum value of p is found. Equations (14), (15)
and (17) now become respectively

0-042 m, 2 — 0-209 mymy, - 0-359 my® 4 0-108 m, — 0-443 m,

— 0272 =0 22
0-0136 my? -+ 0-0244 mym, + 0-0338 m,* — 0-0389 my

—0:0350 m, -+ (1 — p)0-0278 =0 23)
0-0077 my® — 0-0138 mym, ~- 0-0316 m,2 — 0-0038 1,

— 0-0526 n2, -~ 0-0209 =0. 29

The solution of (22) and (24) leads to

w143 6-26] —0-76 — 510

[m;] “[~ 0-01J4, [3‘05 ) [ 1-42 ] [_ 1.02] @3
The pair of values of 7;” and m,” when substituted in (23) leads to the
values of p equal to 0-001, 35-64, 2-07 and 27-97 respectively. The pair

m' =1-43 and m, = — 0-01 actually reduce the energy in the desired part
of the string to almost zero value.

4. ConNTRrOL USING A SINGLE FORCE

Since the required degree of control cannot always be achieved by vary-
ing m, and m, only, the effect of changing the points of application of forces
is studied by considering a single control force whose magnitude and m
position b can be chosen suitably.

As before we compute the energy of the parts CD and (CDY due to
the applied force f acting at £ and the control force m acting at b and write
Eep =g (m, b)
Eopy =h(m, b).
We now require the minimoum value of g (m, 5) under constraint
k (m, b) = gh,. (26)
The functions g (m, b) and /& (m, b) are given in Appendix B, and are seen
to be quadratics in m for a given value of b.

Application of Lagrange multiplier technique for this case leads to
e solution of transcendental equations which is not straight-forward.
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A grephicel analysis in m — b plane is not straight-forward since 4
becomes complex for certzin values of b. Therefore, we seek real values o
m and b satisfying

i (m, b) = qi, n
and
g (i, by =pg, (28

The commeon root between (27) and (28) for suiteble value of # would achieve
the required degree of control. To consider this possibility, we let b
vary in small steps and search for roots that are as nearly equal as possible.
Table I lists the roots in the region 0-10 << b << 0-85 at intervals of 0-01,

TaBLE T

Average velue of m from the roots of the eqns (27) and (28)

No. b Roots of gquation Roots of equation Average
(28) @n . valueofm
1 0-40 0-622 and -—2-397 —2-626 and —2-630 —2-53
2 0-48 2-154 and —0-551 2-204 and  2-204 2-179
3 056 0-502 and  1-967 —1-903 and —1-904  —1-935
4 0-64 1-820 and —0-465 1-680 and 1-680 1-750
5 0-85 1-560 and —4-148 1-430 and 1-429 1-500

Actual plotting of encrgy distribution diegrams show that it is rot very
sensitive to m1, but depends strongly on the point of application 6. This
fact enhances the value of this method because an approximate m selected
from this method gives good results. In fact, it turns out that with &
single force the energy reduction takes place over the entire length from &
to [ instead of over the portion CD only (as was the case when two control
forces weie available). This is because the standing wave patterns formed
by the two forces so adjust themselves that a cancellation of energy takes
place from 5 to ! while some augmentation takes place from 0 to b. A
promising modification of this result may be applied to the reduction of the
transmission of sounds of particular frequencies in ventilation ducts.  Sinee
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the m and b valuss calculated are applicable to only one frequency, that
particular frequency component will be largely eliminated although the
other frequency components will still be present.

5. CONCLUSIONS

We can expect much better control for the case of two control forces
whose positions and magnitudes are adjustable. However, for such a
formulation, the equations become very much complicated and the problem
becomes one of mirimizing a nonlinear function of several variables under
a ronlinear covstraint. Such problems cannot be solved by any of the
methods suggested so far and more sophisticated techniques have to be
used.
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APPENDIX A

Energy Expressions for the Two-Variable Case
I Is F
f Yot (%) dx = f [W sin (wglc) sin {w (] — X)jc}
5 3

+ mﬁ"@?ﬁ)— sip (wh/e) sir { (I — 1)/}

+ sin {w (I — 1y)/c} sin (wx/c)]2 dx

my
ewc sin (wlfc)

=g ® + Gty + gaat® + Sty + gate T g‘(’

Al)
where (assuming F = 1)
&u = KB, sin? (o}, /c)
8w = KBysin? {w (I — 1,)/c}
&1z =2K B, sin (wlfc)sin {w (I — I)/c}
LiSc—4

(A2)
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g1 =2KB, sin (wé/c) sin {wh/c)
8z =2KBgsin {wéfc)sin{w(l — L)/c}
2o = KB, sin? (wé/c)
and
1 1 2
K =3 [ ewc sin (w[/c)]
_ _sinf2a( —Lyd  sinQw(l— L)
Br=(—h)+ 2wjc : ’ 2w é :
7 sin (2ewly/c) sin 2wk fc)
By =(l, — L) — Jwre -+ 2w/cj (A%
i ] — 21, i — 21
5, =Sielo20)d _ sinfeld = 2/ q, - bycos (i)
L] Iy F i N
J oo = [ [ sn oo (20~ S
2 2 . . ) R
== Lo- (Ad)
Similarly ‘ '

¢ .. .
iy, V£ () =2K ! [sin{w (I —€)/c}sin (wX/c)
t1e B2} .

-y sin {o(l — L)} sin {03/c)

+ mysin {w (I — L)jc} sin (w x0)]* dx
+ ZKj [sin (w&d) sin {w( — x)/c}

-+ my sin {w (/ — L)/c} sin (wx/c)

+ mysin {1 — 1)/} sin (wx/c)]*dx
2K | Isin Coteysin (ol — 9y}

+ iy $in. (why/c) sin {e (! e

+ my sin (wly/c) sin {w (I — x)/c]? dx

=huarms® + gy + hagimy® -+ Iny -+ by ¥ (”A-5 )
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by =KDy + Dyysin?{w(l— L)/e} + Dysin® (ol /c)]
hyy =2KUD, + Dysin {w(l — I)/c}sit {w (! — L)/c}
-+ Dysin (wlyyc) sin (wly/e)]
b =KDy + Do) sin? {@(/ — I)[c} + Dysin? (why/c)]
by == 2K[Dysin {w(l — §)fc}sin {w (§ — L)/c}
-+ Dy sin (wéfe) sin (wh/c) + Dy sin (wgfc)sin {o(l — LR
by =2K[ Dy sin { (I — e} sin {o(/ — 1)c} + Dasin (wtfc)
% sin {w{{ — L)fe} + Dssin (wé/c) sin (wh/e)]
by =K[Dysin? {w(] — Hle} 4 (D; + Ds) sin? (wf/c)] (A6)

D, — ¢ — SN Qo)

-~ Rele)” a

o — £ S Qwkfe)  sin Qutle) -
Domth =6 = 550007+ aage
b g g S Re( — ¢
Dy =(1—1) T Bele ,
b, = el — 20jc _ sin (o0~ 20)ic}

4 2wl T o e

— i — £ cos(wlfe) . R (A7)

il — &y SROU~ L) sinRa— 8 [d -
Dy =h —H+ 2wfc. - ¢ 2aife ) ’

e, PR dx =2K"  Isin {o @ — e} sitt (@x/0)}* v
( 3) ?

—f{qugf'lV[SiI.?: (wf/c) Sil‘l :{w'(l ___ x)/c}]z d;c
+ ZK:;' sin (alf/t)S]n {w(l — x) P dx

=, (A8)
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AppPENDIX B
Energy Expressions for the Case of Single Control Force
%
g(m, b) = J Ye? (x) dx

=(B sin? wbc) m® - (B sir. wé/csin wbfc) m

-+ Bsin? wf/c
where
—r sin 2wl — L)/c}  sir 2wl — L)/c}
B w=(ly — k) + TEGE o e S Be U2 h)e
€0 = J Ye2(x)dx = KB sin? (wf /)
where

_1 1 2
K=3 [m]
Similarly,
him, B) = I yet)dx
1)
= [k, (b) sin® { (I — B)fc} + Ky (B) sin® (wb]c)] m?

(B2

(B3}

2 [y (BY sim { o (I — BY/c}-Key (B) sins (wgc) sint (wbfelim

+ ko (B)
where

k) = [b— S50

@ =5 [0~ 0+ RCol -l ol bye}

> ; [(I —1)— sin 2w (] — 12)/(:}]

2wfc

ks () =1 sin {0 (1~ £/c) [¢- 512%67_5/6)]

+ 3 sin (/o) Lol = 20) chﬁ)/f}_ - s_in,i%%/%Z@lﬁ

— (b — £)cos (wl/c)]

{

£z
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sin (%w,,f/f)]

ko (B) :%sinz fw( — f)/C}[f = oale)

sin? (w80 5 (6 — 9

where

1

w

s

n

_sin 2o(l — b)lc}

Zale
_sinf2 “Z’g/}fl‘—}— + ks (6)] (B3)
hy= [ Yei(x)dx =K[Dysin®{w( — §ic)
il
+ (D, + D) sin? (wé/e)] (86)
p, — ¢ — i 2wc)
D, =(—1)— 5 i,//;{z}["}
Dy =(h— & 51 g/,;.v_ﬁ)/{f} - 611{2‘35/ = 8/g ®7)
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