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Abstract 

The lbw of sezoad order fluid between two rotating porous discs is studied. The equations of 
motions are solved by a regular perturbation method for small Reynolds number. The effects of the 
viscoelasticity parameter, cross-viscosity parameter of the fluid, suction/injection parameter and 
rotation parameter on the velocity components, pressure distribution and skin friction have been 
discussed numerically and compared with Newtonian fluid case. 
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Introduction 

The viscous laminar flow between porous discs has recently been studied by several 
authors. Elkouhl -3  obtained solutions of laminar flow between non-rotating and 
rotating porous discs with equal suction and injection. Narayana and Rudraiah 4  
studied the steady axisymmetric flow of a viscous incompressible fluid between two co- 
axial dice-‘, On rotating and the other stationary, with. uniform suction at the stationary 
disc. Wang5  studied the symmetric viscous flow between two rotating porous discs 
with moderate rotation. The results were compared with those from numerical 
integration.. In this paper we extend the problem of Wang 5 , to the flow of second 
order fluid between two rotating porous discs. 

The model of the second order fluid as suggested by Coleman and No!!' is used 
in, the present analysis. The constitutive equations of an incompressible second order 
fluid arc 

to = — pgij  + 01  A u  + 02.84j  + 03 Aric Akp (1)  

11 41 =  VI, I ± Vhi , (2) 
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FIG. 1. The physical model. 

and 
Bi;  = ai , 	a,, + 	v; + v„,,i  v s 	 (3) 

where ro  is the Stress tensor, g, ig the metric tensor, ai  
and velocity vectors, O p  02, 03 are the fluid parameters, p 
denotes covariant differentiation. The solution of 6. 8 
cetane at. 30° C behaves as a second order fluid and 
On  02 and 03 have been determined experimentally by 
Markovitzs. 	. . 

and vi  are the acceleration 
is the pressure and comma 
per cent polyisobutylene in 
the values of the constants 

Viarkovitz and Brown' and 

2. Equations of motion 

consider two coaxial porous diScs situated at Z = ± L and rotating with the save 
angular velocity as shown irt fig. 1. Fluid is withdrawn from both discs with veloci tY 
w. As3uming that the gap with 2 L is small compared to the diameter of the discs ,  
the.end effects are .neglected. The flow field is symmetric about the Z 

- 	•• 	- - • .2. 	 • 	
=-- 0 plane and 

the Z-axis. 	 • 

„ The incompressible axisymmetric equations of motion and continuity cquation in  
cylindrical polar coordinates are 

o 
pc:it* 	w .31t 	=__ _?p 	 ± ?Tr: ± 

	

Z 	r 	-er 	 "()z 
irr 	TOO 



(13) 
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(5) 

• 
	

(6) 

(4) 
where Du  are the stresc. components, p is the density and u, v, w are the velocity 
components in the directions r, 0, z respectively. The boundary conditions are 

Z = L, tr = 0, = r 	= ± W. 	 (8) 

3. Solution of the problem 

Utilizing the symmetry of the problem, we define 

u 	(q) WIL, v = rg(q) WIL, W= — 2f (1) W 

p= pr 2  AW 212L 2  + 	Q(q) + pP 0) 	 (9) 

where q = ZIL, p is the modified pressure and A is a constant to be determined. 
Equations (4)—(7), using (9), give 

ft" RU 12.KR(f"' + ftv + 2g ' 1) 

SR(r 2  + 2 is f" + 3g' 1 ) + AR = 0 
	

(1 0) 

or, after differentiating once we have 	 •• 

Pv + 2R (if I" + gg') — KR Of 	+ 2fiftv 

+ 2ffy + 8 gi gip — RS Of f " 1  

gff 2R(f .' g fg1 )+ 2KR(f" g' 

W 2  
Q(q) = (2v2 + v3)— 	+ 

+ 2f ' fiv + 6 g' gif) = 0, 

--f1")+2SR(f"g' — is C)=0, 

-4 P (q) = 2W2 P — 2v1 W + f ' IL + v W (4ff+ 16f 2)/L2  

+ 143 111; + B 

where v1  = çbjp, v2 = 02IP, v3= 

(14) 

R = pWL,I# L  is the cross-flow Reynolds number (for suction case R is positive), 

K = 020 Les  is the dimensionless viscoelasticity parameter, and S = #3IpL 2  is the 
dimensionless cross-viscosity parameter. 

• • • • 

The constant B is determined from the pressure at the disc. The boundary condi- 
tions (8) are reduced to 

f (1) f (0) = = f ff (0), f (1) = 	1/2, 	 (15) 
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and 
g' (0) =e 0, g (I) = 12 

Th.: equations (11) and (12) 
with boundary conditions (1 
parameter R is very small. 
small parameter R : 

06) 
are two simultaneous non-linear differential equ ati ons  

15) and (16). We assume that the suction/injection 
Then I (q) and g (q) can be expanded in terms of th e  

f (n) = fo + RA + R'f2 + • • • 

and 	
07) 

g (q) = g 	+ R'g2+ 	 08) 
Equations (11) and (12) using (17) and (18), we have 

 fr 	 (19) J o — 

fit + 2 (f fo"' + g 0 g os) K @fog' fo" + 2f o' f 

+ 2f 	+ 8 got  go#  ) S (4lotion ' + 2 fot 	+ 6 g 0 1 g0") = 02 	(20) 
+ 2  Ui fog  " +fell"' + go gi' + gigot) — KW .  o ff  fin' 
+ 4f3 n f0" + 2/01 f ii + 2/11(tu + 2/ oil + 2/31; 

' + 8 go' gin + 8 gj: go ") — S Wo n  A m  + 4f 3. °  fon  
+ 2fot fr 2ft' 	+ 6 got girt' + 6 	g o") = 0, 	 (21) 

go" = 0, 	 (22) 
- 2 (J.' go  — fo  go) + 2K (pf off g o' — g 01 ") + 2.S' (foif g o' — foi g ot) = 0, 

(23) and 

g2" — 2 (fo' + go  — ft, go t 	gi) + 2K (foil 	+ 	g o' 
f 	fig o'n) + 2.5 (fo  tit + fi " go' — fot 	gin = 0. (24) 

The corresponding boundary conditions are 

MO) = bit (0) = 0 = fot (1), f„ (1) = — 1/2; 

a 	A = (0) = 0 = (1) = A (l) ; 
f2. (0) = f2" (0) = 0 = f2' (1) = f2 (1) ; 	• 	 (25) 

a 

(0) = 0 = (I) ; 
•• 

and 

g2' (0) = 0 = g2(1). 	 (26)  

The solutions of the equations (19)424) with (25) and (26) arc 
A.= 1/4q — 3/4i. 	 - 	 (27) 
ft = 1/1120 /7  + 3/160 /5  — 39/1120 + 19/1120 + (K+ 5)(3140 115  

(2.8) — 3/20 /3  + 3/40 I), 
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12 = 3/246400 Tin  1/3360 + 531/235200 — 51/16800 /5  

+ 443/1034880 q 3  + 137/215600 + P  (- 1/840 q1 + 1/40 /5  

— 13/280 + 19/840 ti) + K2  (54/840 n7  — 189/600 q5  

+ 1836/4200 q3  -- 261/1400 + KS (20711680 17  62V1200 

— 5589/8400 /3  — 759/2800 + s2 (99/1680 1? — 243/1200 i3 

+ 1917/8400 / 3  — 237/2800 + K(— 517/282240 /9  

+ 819/29400 ti 7  — 1011/11200 /5  + 18397/176400 13  

— 18839/470400 q) + S(— 11/6720 /9  + 141/5600 /7  

—87/1400 /5  ± 929/16800 — 187/11200 q), 	 (29) 

go = Ii, 	 (30) 

gt  = (118 174  — 3/4 q2 + 5/8), 	 (31) 
g2  = [ 3/2240 + 1/80 — 111/3360 /4  — 253/560 12  

+ 3183/6720 + K(1140 — 3/40 i' + 3/40 ,j2 — 1/40) 

+ (1120 its — 3/40 q4 + 6/5 12  - 47/40)]. 	 (32) 

After f (1) is known, the constant A is determined by 

A = if' a)  — P 2  — f"' (j) /R + K (2 fit — f it; + 400/2 

+ S (ft )  + 3gt)). (33) 

When K = 0 = S, the solutions for f (q) and g (ri) reduce to those obtained by Wangs 
who studied the symmetric viscous flow between two rotating porous discs with moderate 
rotation.. When k = 0 = 3, /) = 0, the solution for f (i) reduces to those obtained 
by Elkouhl, who studied the small Reynolds number flow between two non-rotating 
porous discs. 

4. Pressure distribution 

The pressure on either disc is 

w 2  [ A p (r, 1) p (no) = Pri 	+ (2K + (ft + gl)] 0.2  4). 	(34) 

where r o  is a certain distance in radial direction. 
The dimensionless pressure coefficient is 

p*  p(r ,1) p (r o, 1) ( L\ 2  
Pw 2  0 

F27 	a . 	3 	207 v 	117 v 	p  ( 	151 	34 jz . 	1719 y  

LB /12 	20 n  20 n n  Va  5390 B P'  175 n2  

	

2313 	594 2  13288 K  . 298 s) 
S — 

	

1 75 	175 	—7r50 	250 
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447 	, ( 6 	106 K.  _a_ 17 	1809 K3 	5490 in  
4- R2  { 2--r-6930 	35 	35 	r 35 L 	175 	 S 

3573 , 	108 
AS' + 	S 3  - 

175 	175 

99181 K 	4036 ell 
80850 	26950 sd i ej 

30711 	14054 	156 
K - 

175 
S' 

3675 	1225 

- /-2 /r1,. 
(35) 

5. Skin friction 

The dirmasioliless skin friction coefficient is 

r (L\ 
=re  •pit?! r0  j (36) 

05 05 

k, 	 te 
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Fro. .2. Normal velocity distribution. 	
Plc. 3. Normal velocity distribution. 
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Hence, skin friction coefficient at ?I --= 1 is 
	• 

0 = — [2fIR + 4K( .1 f”— fr) — (4 Si' fff)1(--rr-31 = + 1 	. 	(37) 

9 	21 	6 	447 	12 . 
= — L3/R + 3_5 + 3  . K+ S+ R( 134—t-r5 + T5 13 2  

2754 . ' 846 	72 ., 	2927 	2 ) . 	. 

	

+ -3-m-Ki  + IT5 KS — 1775  S- + 2940  K + 35  S . 	 ,.., 

844 	68 	2916 . 	414 	558  
+ Kke ( -- + -- /1 2  -- - K2  — - KS + 	-  

2695 	35 . 	525 	175 	175 

1003 y .i.  373 v\-  1 ( r \ 	 (38). 
+ 3675 a i  175 'Zi V o) ' 

where ir is the sheer Stress at the disc. 
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6. Discussion 

In this paper the problem of steady laminar flow of an incompressible second order 
fluid between two rotating porous discs has been studied. The basic equations have 

• 
been solved by the perturbation method in which the suction/injection parameter is 
taken, as the small peztrturbation parameter. From (17) and (18) it is found that the 
maximum value of R < 2.30 for Newtonian case and that for non-Newtonian case 

It C. 2.45. Also, in the present analysis two discs rotating with the same angular 
velocity in the same sense have been considered. 
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FIG. 12. Radial velocity distribution. 	 Ftc. 13. Radial velocity distribution. 
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The normal velocity distribution f (I) is shown in figs. 2 to 5. The normal velocity 
* Increases towards the plate from q = 0 to q = 1. The magnitude of the normal 

velocity increases with the increasing value of suction parameter R and decreases 

with the iacreasing value of rotation parameter p when K and S are constants. The 
magnitude of the normal velocity increases with the decreasing value of K when 

suction parameters R, /3 and S are constants ; also, it increases with the increasing 
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value of S when suction parameters R, 11 and K are constants. But the behavi our  
1  the magnitude of the normal velocity is reverse in the case of injection param eter  °R  

The magnitude of the normal velocity decreases more with the increasing value of 8  

when injection parameters R, K and S are constants. The magnitude of the norm al-I 
velocity in the case of non-Newtonian fluid is less in comparison with the Newtonian 

fluid case 
with various values of suction parameter R and rotation parameter if when- 

K and S are fixed, but it is greater in 	comparison to the Newtonian fluid case with 

the decreasing value of K. 

The azimuthal velocity distribution g (I) is shown in figs. 6 to 9. The azimuth al 
velocity decreases towards the plate from j = 0 to = 1 in both Newtonian and 
non-Newtonian fluids for suction parameter R. But the behaviour of the azimuthal 
velocity is opposite in the case of injection parameter R. The magnitude of the  
azimuthal velocity of non-Newtonian fluid is less iii comparison with Newtonian 
fluid. The azimuthal velocity increases with the increasing value of ji when it is  
constant in both the fluids. The magnitude of the azimuthal velocity of non-Newtonian 
fluid increases with the decreasing value of K when R, S and /I are constants and 
the magnitude is less when compared to Newtonian case. But the magnitude of the 
azimuthal velocity of non-Newtonian fluid decreases with the increasing value of S 
when R, K and fl are constants. 

In figs. 10 to 13, the radial velocity distribution is shown. The radial velocity, in 
suction case, increases towards the plate from I = 0 to q = 1. The magnitude of the 
radial velocity of Newtonian and non-Newtonian fluid decreases with the increasing 
value of suction parameter R when K, S and /I are constants. Also, the magnitude 
of the radial velocity of Newtonian and non-Newtonian fluid increases with the 
increasing value of rotation parameter /I, when R, K and S are constants. 

In the case of injection parameter R, the magnitude of the radial velocity of 
Newtonian fluid increases with the increasing value of 13 but increases with the 
increasing value of R (injection) when /3 is constant. In non-Newtonian fluid case, the 
magnitude of the radial velocity increases with the decreasing value of K when 
injection parameters R, S and fl are constants, but decreases with the increasing value 
of S when injection parameters R, K and $ are constants. Also, the magnitude of 
the radial velocity increases with the increasing value of f/ when injection parameter 
R, K and S are constants for both the fluids. 

Pressure distribution on the either disc is shown in fig. 14 and compared wit!! 
Newtonian fluid. It may be seen that in the case of injection, the magnitude ot 
pressure in non-Newtonian case is less than that in Newtonian case while in the 
case of suction this phenomenon is reversed. The magnitude of pressure decreases with 
increast in injection parameter R when other parameters are fixed, but oPlxi sitt i  behaviour in the case of suction. 



SECOND ORDER FLUID FLOW BETWEEN POROUS DISCS 

- 

13 

a.  NEWTONIAN 

NON-NEW 1or4 IA r■ 

20 
S. p 

FIG. 14. Pressure distribution on either disc against rfro. 

R 

0-1 

: 0 -  1 

0 .  5 

0 - 5 

-O .  1 

-0* 1 

-0 .  5 

-0 -  5 

0 0 Ow 5 I 

—Ow 1 0 . 2 0 . 5 II 

0 0 0 . 5 III 

—0 .  

0 

1 0'Z 

0 

Ow 5 

O .  5 

IV 

V 

— 0 .  1 0 .  2 0 .  5 VI 

0 0 0* 5 VII 

—0 . 1 0 . 2 Ow 5 VIII 

In fig. 15 coefficient of skin friction at the disc 	= 1 is plotted against 00 . 

In the case of injection, the megnitude of this coefficient for non-Newtonian fluid is 
larger than that for Newtonian fluid and vice versa for suction. The magnitude of 
coefficient of skin, friction also decreases with increase in injection parameter 1? when 
other parameters are fixed but behaviour is opposite in the case of suction. 

- 
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FIG. 1 5. Coefficient of skin friction at the disc q =-- 1, against dr o. 
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