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Abstract

The flow of szcond order fluid betwzen two rotating porous discs is studied. The equations of
motions are solved by a regular perturbation method for small Reynolds number. The effects of the
viscoelasticity parameter, cross-viscosity parameter of the fluid, suction/injection parameter and
rotation parameter on the velocity components, pressure distribution and skin friction have been
discussed numerically and compared with Newtonian fluid case,

Key words : Porous, moderate rotation, viscoelasticity, cross-viscosity.

1. Introduction

The viscous laminar flow between porous discs has recently been studied by several
authors. Elkouh'-® obtained solutions of laminar flow between non-rotating and
rotating porous discs with equal suction and injection. Narayana and Rudraiah*
studied the steady axisymmetric flow of a viscous incompressible fluid between two co-
axial discs, one rotating and the other stationary, with uniform suction at the stationary
disc. Wang’ studied the symmetric viscous flow between two rotating porous discs
with moderate rotation. The results were compared with those from numerical
integration. In this paper we extend the problem of Wang5, to the flow of second
order fluid bstween two rotating porous discs.

The model of the second order fluid as suggested by Coleman and Noll® is used
in the present analysis. The constitutive equations of an incompressible second order

fluid are

Ty = — P8y T+ ¢51 Ay + ¢.B,; + ‘353 A¥ Agj §))
Ag=vy,,+ v, (2)
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FiG. 1. The physical model.
and
B” = a‘-,,- + al; { + v“,i v’}" + vm,’- v";' (3J

where 7,; is the stress tensor, gy i the metric tensor, a; and v, are the acceleration
and velocity vectors, ¢, ¢., @3 are the fluid parameters, p is the pressure and commd
denotes covariant differentiation. The solution of 6-8 per cent polyisobutylene is
cetane at 30°C behaves as a second order fluid and the values of the constants

¢, ¢, and ¢; have been determined experimentally by Markovitz and Brown’ and
Markovitz:. iwa pp B

2. -Equations of motion

Consider two coaxial porous discs situated at Z = + L and rotating with the same

angular velocity as shown in fig. 1. Fluid is withdrawn from both discs with veloct
W. Assuming that the gap with 2 L is small compared to the diameter of the dist

the.end effects are neglected. The flow field is symmetric about the Z = 0 plane a0
the Z-axis. . ... .. ... il L :

.. The incompressible axisymmetric cquations of motion and continuity cquation
lemdncal polar coordinates arc

pkub_i‘ 3 W 2 u‘-!) _ _p 4 L 2Tz L T = 00
or 02 r Ar Nr Az ; »



SECOND ORDER FLUID FLOW BETWEEN POROUS DISCS 3

uv dTrd d102 Tro

p(;-—+w Tt )=y Yo T (5)
: _ Dp 0Trz | d%Tzz | Uz | .
()R e

and

QU 1 QW .
w7 T 70 (7

where 1, are the stress components, p 1S the density and u, v, w are the velocity
components in the directions r, @, z respectively. The boundary conditions are

Z=+Lu=0,v=rQ, w=1% W, | (8)

3. Solution of the problem

Utilizing the symmetry of the problem, we define
u=rf'(MWIL, v=rg) WIL, W= -2f (n) W
p=—prr AW} 2L* + pr* Q () + pP (1) %)
where n = Z[L, p is the modified pressure and A4 is a constant to be determined.
Equatioas (4)~(7), using (9), give
f = RU™ = 2ff" = 83 = 2KR(f"* + ff* + 2g"%)
-SR(U"4+2f'f"+38%)+ AR =0 (10)
or, after differentiating once we have -_
%+ 2R(T + gg) — KRGS S + 2f" f°
+2ff°+ 8g'g") - RS """ +2f'f*+ 6g'g")=0, (1)
g"—2R(f"g -—fg') +2KR(f"g - fg')+ 2SR(f"g' - f'g)=0, (12

Q('f) = (2"’: + Va) Um + (13)
Py = — 2W3Sf* =20 W + ['|L + v, W2 (4ff" + 16f)L*
+ ldv f*|L* + B | (14)

where v, = @,/p, v. = ¢ulp, V3 = @3/p,

R =pWL|$, is the crosi-flow Reynolds number (for suction case R 1s positive),
K = ¢,/p L* is the dimensionless viscoelasticity parameter, and § = ¢3/pL* is the

dimensionless cross-viscosity parameter.
The constant B is determined from the pressure at the disc. The boundary condi-
tions (8) are reduced to

M =f0@=0=,"), f () =~ 12 (15)
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and
'©) =0,g()=2LW=/ U |
e equa.gtic()?l)s (ll)ga(ﬂ‘} (12) are two simultaneous non-linear differentijal equatinnl

3 d (16). We assume that the suctionfipjey;
.t boundary conditions (15) an : JCtiog
:;:: m;er R is very small. Then f{(n) and g (7) can be expanded in terms of the

small parameter R :
f(”)=f0+Rfl.+R£f‘!.+"'$ | (1
and |
g () =g+ Rey + Rgi+ ..o
Equations (11) and (12) using (17) and (18), we have
fi=b (19
fio g 2(fofs" + 8080) — K@ Jo" + 2f o [V
+2f fo+ 886 8 ) — S(4ﬁ]”foffr +2f'fir+ 6g ! g,") = 0, (20)
fo+2(fife " +fofi""+ 88 +88)-KW@fJ [
+ A4 f 20 ST 2SS 2 o1+ 2SS
"+ 880 8"+ 88 8") — S(4f0”f1'” + 4f1" '

1y

2/ P+ 2L S+ 6g 8" + 68, g,") =0, Q1)
g =0, (22)
8" = 2(fd' g0 — f08) + 2K(fo" 80 — fogd') + 25(f," 84’ — [’ g,7) =0,
and &

& —2(fy g+ fi'g ~ Jo8d — fog) + ZK(fn" g + "8
- fo ng - [180") + ZS(fomgll‘r + /1" 8 — fo g - A g) =0 (4

The corresponding boundary conditions are

fo(0) = f¢" (0) =0=f) (l)afu (1) = — 1/2 ;

LHO=L"Oy=0=/"(D)=f();

ﬂ_.(O) = f,’ (0) =0=1 (l) = £ (1) ; ' (29

8§ (0) =0, go(1) =p;

g,/ 0 =0= g (1
and

g (0) = 0 = g, (1), a | 8
Tt-1¢ solutions of the equations (19)  °
T fa=an — 34y, oo

h= 1“120177 + 3/160 0 — 39/1120 n + 19“120’7 + (K + 'S)(3/40-’15 '
= 320 + 340 p), (28)

-(24) with (25) and (26) are
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fo = 3/246400 g1t — 1/3360 n° + 531/235200 57 — 51/16800 x5
+ 443/1034880 n* + 137/215600 n + B> (— 1/840 57 + 1/40 x5
— 13/280 4® + 19/840 1) + K> (54/840 17 — 189/600 z5
1+ 1836/4200 * — 261/1400 n) + KS (207/1680 7 — 621/1200 #5
_ 5589/8400 7° — 759/2800 ) + S* (99/1680 n7 — 243/1200 45
+ 1917/8400 n* — 237/2800 ) + K (— 517/282240 p°
+ 819/29400 57 — 1011/11200 > + 18397/176400 42
— 18839/470400 n) + S (— 11/6720 #° + 141/5600 7

— 87/1400 75 + 929/16800 4* — 187/11200 ), (29)
g = P, (30)
g = pQ/8n* — 3f4n* + 5[8), (31)

g, = B [— 3/2240n® + 1/80 7% — 111/3360 n* — 253/560 »*
+ 3183/6720 + K (1/40 n¢ — 3/40 n* + 3/40 n* — 1/40)
+ S(1/20 n® — 3/40n" + 6/5n° — 47/40)]. (32)
After f (n) is known, the constant 4 is determined by
A=f"y =B —f"w/R+ KQSf} — fa + 48%)2
+ S + 38 (33)
When K = 0 = S, the solutions for f () and g () reduce to those obtained by Wang?
who studied the symmeatric viscous flow between two rotating porous discs with moderate
rotation. When kK =0 =S, # = 0, the solution for f () reduces to those obtained

by Elkouh', who studied the small Reynolds number flow between two non-rotating
porous discs.

4. Pressure distribution

The pressure on either disc is

LE
where r, iS a cortain distance in radial direction.
The dimensionless pressure coefficient is

p* = P =0 (re, 1) (,:E-)
% pw* To

27 .3 207 117 (_1;1__;»}_,_,_17192
=[_§"5“‘ ""ﬁ““ﬁﬁ‘K"fﬁ‘K+R 5390 355 175K

2313 594 13288 298 S) '

; A . ; "
p(r, 1) — p(run) ..M 5 + QK+ S)(JE, + g?,,,)] (r: —r3). (34)

~ 75 KS— 755" — 7350 X~ 2%
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- 0550 X - 2599 S}] = rir (3

8. Skin friction
The dimensionless skin [riction coefficient is

i '..r o T " L) ‘
(' Fpwi\r, (36)
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Hence, skin friction coefficient at 7 =1 1is
I 1 4 I ! i r
- R+ ARG - - @S (B)n =0 6D
o 9 21 447 12
== | 3R+ 35+ 5 K+ S R\za7s * 35/
2754 ., ' 846 12 2927 2
t o5k +'17_5KS 1755+ 2940K+355)
5 { 844 68 2916 414 558
Bl TP L e 0 e e KS e 75 g
+ KR 5egs+ 358" — 535 K~ 3851 173
1003 ., 373 ( -
8
T 3gs Kt 17s S)] r.,) a5

where 7 is the sheer stress at the disc.
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Fig. 6. Azimuthal velocity distribution, FIG. 7. Azimuthal velocity distribution.
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6. Discussion
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In this paper the problem of steady laminar flow of an incompressible second order

I

. fluid between two rotating porous discs has been studied. The basic equations have
" been solved by the perturbation method in which the suction/injection parameter is

taken ag the small pzrturbation parameter. From (17) and (I8) it is found that the

maximum value of R < 230 for Newtonian case and that for non-Newtonian case
R < 2'45. Algo, in the present analysis two discs rotating with the same angular

-velocity in the same sense have been considered.
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The normal velocity distribution f () is shown in figs. 2 to 5. The normal velocity
Increases towards the plate from n =0 to n=1. The magnitude of thc. normal
velocity increases with the increasing value of suction parameter R and decreases
with the increasing value of rotation parameter § when K and S are constants. The
magnitude of the normal velocity increases with the decreasing value of K when

Suction parameters R, f and S are constants ; also, it increases with the increasing
|
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when suction parameters R, pand K _arc constants. 'B.ut }he behay; our g
of the normal velocity is reverse in the case of injection Paramete; ,
e of the normal velocity decreases more with the Increasing valye of §
when injection parameters R, K z_md S are constaflts. The {nagmt}lde of the g otg
velocity in the case of non—Newtoman_ﬂuld is less in comparison with the Newton,,
fuid case with various values of suction parameter R and rotation parameter g yp,
K and S are fixed, but it is greater in comparison to the Newtonian fluid cage With

the decreasing value of K.

The azimuthal velocity distribution g (#) is shown in ﬁgs". 6 to 9. The azimuty
velocity decreases towards the plate fromn7=0ton =1 In ‘_both Newtonian gy
non-Newtonian fluids for suction parameter R. But the behaviour of the azimyp,

velocity is opposite in the case of 1njection param_eter R. The magnitude of
azimuthal velocity of non-Newtonian fluid is less In comparison Wwith Newtonjy
Auid. The azimuthal velocity increases with the increasing value of B when R g
constant in both the fluids. The magnitude of the azimuthal velocity of non-Newtonigy
fluid increases with the decreasing value of XK when R, S and f are constants ang
the magnaitude is less when compared to Newtonian case. But the magnitude of the
azimuthal velocity of mon-Newtonian fluid decreases with the increasing value of §

when R, K and f§ are constants.

value of S
the magnitude
The magnitud

In figs. 10 to 13, the radial velocity distribution is shown. The radial velocity, in
suctioa case, incrzasss towards the plate from n = 0 to # = 1. The magnitude of the
radial velocity of Newtoniaa and non-Newtonian fluid decreases with the increasing
valug of suction parameter R when K, S and f are constants. Also, the magnitude
of the radial velocity of Newtonian and non-Newtonian fluid increases with the
increasing value of rotation parameter f, when R, K and S are constants.

In the case of injection parameter R, the magnitude of the radial velocity of
Newtonian fluid increases with the increasing value of § but jncreases with the
increasing value of R (injectior) when f 1s constant. In non-Newtonian fluid case, the
magaitude of the radial velocity increases with the decreasing value of K whe
injection parameters R, S and f are constants, but decreases with the increasing valu
of § when injection parameters R, K and f are constants. Also, the magnitude of

the radial velocity increases with the jncreasing value of B when injection paramelef
R, K and S are constants for both the fluids.

Presal}re dis&tribution on the either disc is shown in fig. 14 and compared with
NEWT-OT“&_“ fuid. Tt may be seen that in the case of injection, the magaitude of
pressure m-nou-Newtonian case is less than that in Newtonia; case while in thf
case of suction this phenomenon is reversed. The magnitude of pressure decreases witl

InCreass in injection parameter R when, other parameters are fixed, but 0Pf"°’5i'[c

behaviour in the case of suction. l
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In fig. 15 coefficient of skin friction at the disc # =1 1s plotted against rjr,.
In the case of injection, the megnitude of this coeflicient for non-Newtonian fluid is
larger than that for Newtonian fluid and vice versa for suction. The magnitude of
coefficient of skin friction also decrcases with increase in injection paramcter R when

other parameters are fixed but behaviour is opposite in the case of suction.
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Fig. 15. Coefficient of skin friction
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