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Distributed Function Computation over Fields and 
Rings via Linear Compression of Sources

K. Vinodh1, V. Lalitha1, N. Prakash1, P. Vijay Kumar1 AND S. Sandeep  
Pradhan2

Abstract | The setting considered in this paper is one of distributed function computation. More 
specifically, there is a collection of N sources possessing correlated information and a destination 
that would like to acquire a specific linear combination of the N sources. We address both 
the case when the common alphabet of the sources is a finite field and the case when it is a 
finite, commutative principal ideal ring with identity. The goal is to minimize the total amount of 
information needed to be transmitted by the N sources while enabling reliable recovery at the 
destination of the linear combination sought. One means of achieving this goal is for each of 
the sources to compress all the information it possesses and transmit this to the receiver. The 
Slepian-Wolf theorem of information theory governs the minimum rate at which each source must 
transmit while enabling all data to be reliably recovered at the receiver. However, recovering all 
the data at the destination is often wasteful of resources since the destination is only interested in 
computing a specific linear combination. An alternative explored here is one in which each source 
is compressed using a common linear mapping and then transmitted to the destination which 
then proceeds to use linearity to directly recover the needed linear combination. The article is part 
review and presents in part, new results. The portion of the paper that deals with finite fields is 
previously known material, while that dealing with rings is mostly new. 

Attempting to find the best linear map that will enable function computation forces us to 
consider the linear compression of source. While in the finite field case, it is known that a 
source can be linearly compressed down to its entropy, it turns out that the same does not hold 
in the case of rings. An explanation for this curious interplay between algebra and information 
theory is also provided in this paper.
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I. INTRODUCTION
We consider a distributed function computation problem in which there are multiple 
spatially separated sources of data, and a destination, which is interested in comput-
ing a deterministic function of these distributed sources. The goal is to determine 
how to efficiently compress (encode) these sources such that the receiver can reli-
ably compute the function, given the compressed data from all the sources. Such dis-
tributed function computation problems occur in many engineering systems such as 
sensor networks [1], distributed video coding applications [2] and wireless cellular 
communication. A typical example could be that many different sensors in an area 
observe correlated readings of a parameter of interest like temperature and a central 
node is interested in finding out just the average of all these observations.
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readings of a parameter of interest like temperature and a central node is interested in
finding out just the average of all these observations.

One simple strategy for compression is one in which every source encodes its own
data into binary digits (bits) and transmits these bits to the receiver. The receiver then
as a first step decompresses these bits to recover the data of all the sources and then
computes the function of interest from this data. This strategy thus incurs a data rate
needed to communicate all the source data, even though the receiver is only interested
in a function of these sources. Such a strategy could sometimes be wasteful of resources.
In many cases, it is possible to design compression schemes which allow the receiver
to directly recover the function of interest, instead of having to recover the individual
sources [3]. For example, if the function of interest is a linear combination of the
various sources, it turns out that linear maps when used for compression, will allow the
receiver to directly recover the linear combination of interest [4] [5]. We will explain
this using an example.

Let (X ,Y ) be a pair of binary sources located in different geographical locations.
When we say a source X , we mean the following. There is a sequence of discrete
random variables X1,X2, . . . such that ∀i > 1, Xi is independent of X1, . . .Xi−1. For the
case when there is pair of sources (X ,Y ), we will mean that there is a sequence of
discrete random variables(X1,Y1),(X2,Y2) . . . such that ∀i > 1, (Xi,Yi) is independent
of (X1,Y1), . . .(Xi−1,Yi−1). The random variables (Xi,Yi) are identically distributed
according to a distribution PXY . Such a source is called a discrete memoryless source
(DMS). The output of the source X and Y is a realization of these random variables. A
binary source is one which takes values from the finite field F2. Let the destination be
interested in computing the modulo two sum of the sources, Zi = Xi +Yi mod 2. The
encoder corresponding to each source operates on blocks of n−length output of the
source and uses a matrix to carry out the compression as follows. Every n−length
output of the source x = (x1, . . .xn) is multiplied by a k×n matrix A over the field F2 to
obtain Ax. The encoder corresponding to Y also does a similar operation. The resulting
k−length vectors Ax and Ay are presented to the receiver. If k = αn,0 ≤ α ≤ 1 then
α may be viewed as a crude measure of the amount of compression taking place at
each encoder. The receiver will compute Ax+Ay mod 2 to obtain Az and then finds an
estimate of Z1, . . . ,Zn from Az. If the matrix A is chosen properly then the estimate of
{Zi} will be reliable. Thus we would have computed the sum of the sources without
actually recovering any of the individual sources. In this paper we will consider such
schemes in more detail and analyze the maximum amount of compression that can
take place in the encoders.

In Section II, we elaborate on the system model that will be used for function
computation, where the function is assumed to be a linear combination of the various
sources. A brief introduction to various information theoretic concepts relevant to
this paper, such as notions of entropy, typical sets and also the problem of source
compression, distributed source compression, is presented in Appendix A. For more
details, the reader is referred to [6]. In Section III we discuss a system model for
point-point source compression under linear encoders. This system model will be
derived from the system model for the function computation problem. The point-point
source compression problem for the case when the alphabet of the source is a finite
field Fq, where q is a power of prime is discussed in Section V. The cases when the
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Fig. 1. System model for function computation

alphabets are the ring Zpr (the ring of integers modulo pr, p a prime and r ≥ 1), chain
rings and principal ideal rings are respectively discussed in Sections VI, VII and VIII.

II. SYSTEM MODEL FOR FUNCTION COMPUTATION

Consider the distributed source compression problem (See Fig 1) involving N correlated
but memoryless sources and a receiver that is only interested in reliably computing
a function of the sources. Let X(1),X(2), . . . ,X(N) denote the random variables (r.v.)
corresponding to the N sources. We assume that all the r.v. have the same finite alphabet
A. The alphabet A will be assumed to be a finite field or a finite commutative principal
ideal ring with identity, which we will simply denote as PIR. Let Xn(i) denote the
random variables corresponding to an n−length output sequence of the ith source and let
x(i) denote a realization of Xn(i), i = 1, . . . ,N. The sequence of r.v. (Xn(1), . . . ,Xn(N))
is assumed to be independent and identically distributed (i.i.d.) ∼ PX(1)X(2)...X(N). The
receiver is interested in computing the linear combination X of the source outputs,
where X = ∑N

i=1α(i)X(i), α(i) ∈A. In this article, we will denote the realization of
random variable Xn by bold face x.

Encoder : The encoding is carried out using an A− module homomorphism, φ (n),

φ (n) : An −→ M ,(1)

where the co-domain M is an A−module. If M=Ak, then φ (n) will be replaced by
the matrix A(n) corresponding to the homomorphism, where A(n) ∈ Mk×n(A), the set
of k×n matrices over A . In this case, the output of the ith encoder is A(n)Xn(i), left
multiplication by the matrix A(n). Note that we use the same A− linear map φ (n) for
all encoders. For notational convenience, we shall use φ , A in place of φ (n), A(n) when
there is no ambiguity.

Receiver : Since the function of interest corresponds to a linear combination of the
sources, the first step taken by the receiver is to take linear combination of the outputs
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of the encoders to obtain
N

∑
i=1

α(i)φ(Xn(i))
(a)
= φ


N

∑
i=1

α(i)Xn(i)



= φ(Xn) ,(2)

where (a) follows since φ is A−linear. Thus the input to the decoder is φ(Xn). Given
φ(Xn), the decoder is expected to output a reliable estimate, X̂n, of Xn. An error occurs
if X̂n = Xn. We will use P(n)

e to denote the probability of error, averaged over all source
symbols i.e., P(n)

e = P(X̂n = Xn), the probability of the event X̂n = Xn.

Rate: The rate of any encoder, in bits per symbol, is given by

R(n) =
log2 |Im(φ (n))|

n
,(3)

where |Im(φ (n))| denotes the cardinality of the image of φ (n). Note that the rate R(n)

per encoder translates to a sum rate of NR(n) for the whole system. The objective of
the system is to allow for reliable recovery of Xn, with as small sum rate as possible.
This notion is quantified below.

Achievability : A rate R, per encoder, is said to be achievable, if there exists a sequence
of A−linear maps {φ (n)} such that

lim
n→∞

R(n) = R and lim
n→∞

P(n)
e = 0.(4)

We define the term achievable rate region to be the closure of the set of all achievable
rates.

III. AN EQUIVALENT SYSTEM MODEL

Since we assume that the first step in the receiver is to form the linear combination
φ(Xn) from the various encoder outputs, as far as the decoder is concerned, one can
consider an equivalent system model (see Fig. 2) in which a source directly outputs
the linear combinations Xn i.i.d. ∼ PX where

PX(x) = ∑
(x(1),...,x(N)) : ∑N

i=1α(i)x(i)=x

PX(1)...X(N)(x(1), . . . ,x(N)) ,(5)

and is encoded by the map φ .

Linear encoder Decoder

Fig. 2. Equivalent single source system model

It is clear that for a fixed encoder φ , the probability of error in recovering Xn in the
original system is same as the probability of error in recovering Xn in the equivalent
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system. Hence from now on, we shall only consider this equivalent system for probability
of error analysis. Note that an achievable rate R in the equivalent system translates to
a sum rate NR in the original system.

IV. SUMMARY OF THE RESULTS

The goal in the rest of the document is to characterize achievable rate regions for this
equivalent system for various choices of the alphabet A.

1) We will start with the simplest case when the alphabet A is the finite field Fq,
where q = pr, for some prime p and r ∈ N+. We will review the well known
result [7], [8] which states that a source X whose alphabet is a finite field can
be compressed down to its entropy, H(X), using a linear encoder. It should be
noted that this is also the optimal compression rate for the source X using any
encoder, not necessarily linear.

2) The second alphabet that we consider is the ring Zpr . Surprisingly, unlike in
the case of fields, we will see here that compression down to entropy is not
always possible using linear encoders. For example, consider the case when
p = 2 and r = 2 i.e., the ring Z4. Then, it turns out that the achievable rate
region R = max{H(X),2H(X |[X ]1} where [X ]1 = X mod 2. We will first review
the achievability part of the result for the ring Zpr [5]. We then prove a converse
[9] where we show that the presence of non-trivial ideals in Zpr is the reason
for the suboptimality of compression under linear encoders.

3) Finally, we consider the case when the alphabet is any PIR. Using the decom-
position theorem for PIRs, which states that any PIR is isomorphic to a direct
product of chain rings, we will see that characterizing rate regions for chain
rings and their direct products amount to characterizing rate regions for PIRs.
Chain rings are rings in which all the ideals form a chain by set inclusion. It
turns out that the characterization of the rate region for chain rings can be carried
out along similar lines as for the ring Zpr . The similarity comes in due to the
fact that both rings allow for component-wise expansion of elements in them.
Whereas, in the case of the ring Zpr , every element has a p−ary expansion, in
chain rings, every element has a θ−ary expansion, where θ is a generator of
the maximal ideal of the chain ring. The characterization of the rate region for a
general finite ring remains unsolved.

The characterization of the rate region in all the cases involves two steps. In the first
step, we show the achievability of a region R, i.e., for every R ∈ R, we show the
existence of a sequence of A−linear maps {An} satisfying (4) under a typical set
decoder, which is explained below. A typical set corresponding to a source X , denoted
by A(n)

ε (X), roughly speaking, is the set of all n−length realizations of the source
whose empirical frequencies are close to its symbol probabilities. For example, if X
is a binary source with P(0) = 1

4 and P(1) = 3
4 , then the typical set is the set of all

n−length binary sequences whose ratio of the number of zeros to n is close to 1
4 . This

set is called the typical set because we expect the output of the source to be only such
sequences. A typical set decoder (in this paper) is a decoder which upon receiving a
k−length vector searches for a unique typical sequence among the set of all source
sequences which when multiplied by the encoder matrix results in this k−length vector.
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If a such a sequence exists it is declared to be the source sequence, else an error is
declared.

In the second step, we will prove a converse to this achievability, meaning that no
rate point outside this region is achievable. The converse will be independent of any
particular decoding method.

V. LINEAR COMPRESSION OVER FINITE FIELDS

In this section, we consider the case when the alphabet A is the finite field Fq. The
achievable rate region is characterized by the following theorem.

Theorem 1. For the source X drawn i.i.d. ∼PX and whose alphabet is Fq, the achievable
rate region under linear encoding is given by

R ≥ H(X) .(6)

Proof: The achievability part is shown by a random coding argument by averaging
over the set of all linear encoders of the form

A(n) : Fn
q −→ Fk

q ,(7)

where A(n) is assumed to be a realization of the random matrix A(n), distributed
uniformly on the ensemble Mk×n(Fq). In this process, we calculate the probability
of error P(n)

e averaged over the source symbols and also over all realizations of the
random matrix A(n). We show that if we assume k as a function of n, say k(n), such
that

k(n)
n

log(q)> H(X) ,(8)

then P(n)
e → 0. This will prove the existence of a particular sequence of matrix encoders

{A(n)} in the ensemble of all sequences of encoders which achieve the rate H(X).

The decoder will be assumed to be a typical set decoder 1. Assuming that the transmitted
sequence is x, the receiver will make an error when any one of the following events
occur:

E1 : x /∈ An
ε(X)(9)

E2 : ∃y ∈ An
ε(X) such that y = x and Ay = Ax(10)

The average probability of error P(n)
e is then given by

P(n)
e = P(E1 ∪E2)(11)

≤ P(E1)+P(E2) .(12)

1For definitions and other facts regarding typical sets used in this proof, please refer Appendix A
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For a fixed ε , the probability that an element is not typical can be made arbitrarily
small by choosing a large n, i.e, P(E1)≤ δn with δn

n→∞−→ 0. Now,

P(E2) = ∑
x∈An

ε (X)

P(x) ∑
y=x

y∈An
ε (X)

P(Ay = Ax)(13)

:= ∑
x∈An

ε (X)

P(x)∆(x) .(14)

Noting that A is uniform over Mk×n(Fq), we can write ∆(x) as

∆(x) = q−nk ∑
y:y−x=0
y∈An

ε (X)

∑
A∈Mk×n(Fq):

A(y−x)=0

1 .(15)

We shall now compute ∑A∈Mk×n(Fq):
A(y−x)=0

1. Let A = [t1 . . . tn] where ti are the columns of the

matrix A. Let z = y−x and z = [z1 . . .zn]
t . Since z = y−x = 0, there exists a z j ∈ F∗

q.
Thus the condition Az = 0 would demand that

tj = z−1
j ∑

i= j
tizi .(16)

Hence the number of ways to choose A such that Az = 0 is same as the number of
choices of the columns of A, excluding the column ti. Thus we get

∑
A∈Mk×n(Fq):

A(y−x)=0

1 = qk(n−1) .(17)

Using this in (15), we get

∆(x) = q−nk ∑
y:y−x=0
y∈An

ε (X)

qk(n−1)(18)

≤ q−k|An
ε(X)| .(19)

Substituting the above upper bound on ∆(x) in (14) we get,

P(E2) ≤ q−k|An
ε(X)| ∑

x∈An
ε (X)

P(x)(20)

≤ q−k|An
ε(X)| .(21)

Now, since we know that |An
ε(X)| ≤ 2n(1+ε)H(X), we get

P(E2) ≤ q−k2(1+ε)nH(X) .(22)

Hence, substituting the upper bound on P(E1) and P(E2) in (12) we get,

P(n)
e ≤ δn +2−n{ k

n logq−(1+ε)H(X)} .(23)

Hence, if k
n logq > H(X)+εH(X) then P(n)

e → 0 as n →∞. Since, R(n) = log |Im(A(n))|
n ≤

k
n logq, the achievability part of the theorem follows.

The converse follows from standard information theoretic arguments [6]. As noted
previously, linear encoders indeed achieve optimal compression when the source alphabet
is a finite field. 
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A. Computation of modulo two sum of two binary sources [4]

We will now apply the results of the compression of finite fields to the function
computation problem described in Section II (also, see Fig 1) and show the rate benefits
compared to the Slepian-Wolf encoding.

Consider an example where N = 2 and X(1) and X(2) are binary random variables i.e.,
A= F2. Let the receiver be interested in computing the linear combination X = X(1)+
X(2). Assume the sources to have joint distribution given by P(0,0) = P(1,1) = p/2,
P(0,1) = P(1,0) = (1− p)/2, 0 < p < 1/2. The distribution of X is then given by
P(0) = p and P(1) = 1− p. Hence, H(X) =−p log p−(1− p) log(1− p) := h(p). Thus,
if we use the matrix A in the encoder according to the distribution of X then the rate
of each encoder will be h(p) bits, giving a total sum rate of 2h(p) bits. However, if
we resort to the method of recovering both X(1) and X(2) at the receiver and then
compute X(1)+X(2) (which is the Slepian-Wolf encoder) then the sum rate incurred
will be H(X(1),X(2)) = 1+h(p) bits. It can be shown that 2h(p) is less than 1+h(p)
if 0 < p < 1

2 .

VI. LINEAR COMPRESSION OVER THE RING Zpr

In this section we consider the case when linear compression has to be done over
the source alphabet A= Zpr . As it turns out, the ideals of Zpr play a major role in
determining its compressibility using linear encoders. We therefore highlight a few
quick facts regarding the ideal structure of Zpr .

The ideals of Zpr are piZpr ,0 ≤ i ≤ r. The ideal piZpr is isomorphic to Zpr−i . The
quotient ring Zpr/piZpr , comprised of the cosets of piZpr in Zpr , is isomorphic to Zpi

and hence, we will identify Zpi with the coset representatives of Zpr/piZpr .

As in the system model, X ∼ PX denotes the source random variable, defined over
Zpr . Define a new random variable, [X ]i = X mod pi and let P[X ]i denote the induced
distribution on [X ]i. For example, if the ring is Z4, then [X ]1 ∼ (PX(0)+PX(2),PX(1)+
PX(3)). Note that X and [X ]i are jointly distributed according to

(24) PX ,[X ]i(x,y) =


PX(x) if y = x mod pi ,

0 else .

Also, if a sequence x ∈ piZn
pr\pi+1Zn

pr we denote it as pi||x.

Theorem 2. [5] [9] For the source X drawn i.i.d. ∼ PX and whose alphabet is Zpr ,
the achievable rate region under linear encoding is given by

R ≥ max
0≤i<r


r

r− i


H(X |[X ]i) .(25)

We will need the following two lemmas to prove the achievability part of this theorem.

Lemma 3. Let z ∈ Zn
pr and pi||z. Then,

(26) |{A ∈ Mk×n(Zpr) : Az = 0}|= pr(n−1)k pik, 0 ≤ i ≤ r .
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Proof: Please see Appendix B 

Lemma 4. Consider a sequence y ∈ An
ε([X ]i) and let Cy = y+ piZn

pr be a coset of
piZn

pr . Then, An
ε(X) ∩ Cy = An

ε(X |y).

Proof: We only give a proof sketch here. A detailed proof is presented in Appendix C.
Consider a sequence x that is typical and belongs to the coset Cy. Since y = x mod pi

is a deterministic function of x, if x is likely to occur then y is also likely to occur
i.e., x and y are jointly typical. Now, consider a sequence x that is jointly typical with
y, which means x is also typical. Also, since the cosets of piZn

pr are disjoint, x cannot
be jointly typical with any y = y and hence x ∈Cy.



Corollary 5. Consider a sequence x ∈ An
ε(X). Then

|x+ piZn
pr\pi+1Zn

pr ∩An
ε(X)| ≤ 2nH(X |[X ]i)(1+ε) .

Proof: The left hand side can be upper bounded as

|x+ piZn
pr\pi+1Zn

pr ∩An
ε(X)| ≤ |x+ piZn

pr ∩An
ε(X)| .

Now, let y ∈ An
ε([X ]i) be the representative for the coset x+ piZn

pr . Thus

|x+ piZn
pr\pi+1Zn

pr ∩An
ε(X)| ≤ |y+ piZn

pr ∩An
ε(X)|

(a)
= |An

ε(X |y)|
≤ 2nH(X |[X ]i)(1+ε) .(27)

where (a) follows from Lemma 4 and the last inequality follows from the upper bound
on the size of the conditional typical set.



Achievability of Theorem 2

As in Section VI, the achievability part is once again shown by a random coding
argument. The averaging is done over the set of all linear encoders of the form

A(n) : Zn
pr −→ Zk

pr ,(28)

where A(n) is assumed to be a realization of the random matrix A(n), distributed
uniformly on the ensemble Mk×n(Zpr). The decoder will also be a typical set decoder.
Error events can be defined in the same way as in the field case and the average
probability of error in decoding can be upper bounded as

P(n)
e ≤ δn + ∑

x∈An
ε (X)

P(x) ∑
y=x

y∈An
ε (X)

P(Ay = Ax)

= δn + ∑
x∈An

ε (X)

P(x)∆(x) ,(29)
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where,

∆(x) =
r−1

∑
i=0

∑
y=x

y∈An
ε (X)

pi||(y−x)

P(A(y−x) = 0) .(30)

Using the fact that A(n) is distributed uniformly on the ensemble Mk×n(Zpr) and
applying Lemma 3, we get

∆(x) =
r−1

∑
i=0

p−(r−i)k ∑
y=x

y∈An
ε (X)

pi||(y−x)

1

≤
r−1

∑
i=0

p−(r−i)k|x+ piZn
pr\pi+1Zn

pr ∩An
ε(X)| .

Applying Corollary 5 to the above equation and substituting the resulting expression in
(29) we get,

P(n)
e ≤ δn +

r−1

∑
i=0

p−(r−i)k2nH(X |[X ]i)(1+ε) .(31)

Thus if, k
n log pr >

� r
r−i


H(X |[X ]i)(1+ ε), 0 ≤ i < r, then P(n)

e → 0 as n → ∞.

Since, R(n) = log |Im(A(n))|
n ≤ k

n log pr, the achievable part of the theorem follows.

Converse of Theorem 2

We will show that if for any sequence of linear encoders {A(n)} of the form given by

A(n) : Zn
pr −→ Zk

pr ,(32)

and decoders {D(n)}, the average probability of error P(n)
e → 0, then

lim
n→∞

k
n

log pr ≥ max
0≤i<r


r

r− i


H(X |[X ]i) .(33)

The converse thus assumes that the co-domain M=Zk
pr and that the rate of the encoder

is given by k
n log(pr). The proof with these assumptions will help us in highlighting

the fact that the presence of non-trivial ideals is the reason for suboptimality of linear
compression over rings. A rigorous proof without these assumptions will be presented
in the next section when we discuss linear compressibility of chain rings, of which the
ring Zpr is a special case. Note that we do not make any assumption on the nature of
the decoder.

Consider the sub-module piZn
pr of Zn

pr . Any vector x ∈ Zn
pr can be written as

x = x mod pi + pix0

= [x]i + pix0 ,(34)
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where x0 ∈ Zn
pr . Thus

A(n)(x) = A(n)([x]i)+A(n)(pix0) .(35)

Now, consider a second system, as shown in Fig. 3 which is derived from the original
system. The new system also has Xn as the source output, but it only encodes piXn

0 ,

+ +
-

+

Encoder Decoder

Side Information

Fig. 3. An alternate system that aids in the proof of Theorem 2

where Xn = [X ]ni + piXn
0 . The encoding is carried out using the restricted map A(n)

i ,
where

A(n)
i = A(n)

piZn
pr

: piZn
pr −→ Zk

pr .(36)

At the receiver the missing information [X ]ni is given as a side information, so that
together with the encoded output the receiver could first form the sum

A(n)(Xn) = A(n)([X ]ni )+A(n)(piXn
0 ) .(37)

Now supposing that we use the decoder D(n) in this system, then Xn can be reliably
decoded by this new system as well. But for this to be true, the theorem of source
coding with side information (see Appendix A) says that rate of the system must be
higher than the entropy of the source output conditioned on the side information, i.e.,

lim
n→∞

1
n

log
Im(A(n)

i )
≥ H(X |[X ]i) .(38)

Now, let I be any ideal of Zpr . Since A is Zpr−linear, A(In)⊆ Ik. Applying this to the
ideal piZpr , we get

A(piZn
pr) ⊆ piZk

pr .(39)

Since A(piZn
pr) = Ai(piZn

pr),
Ai(piZn

pr)
 ≤ |piZk

pr | = p(r−i)k. Using this inequality in
(38) we get,

lim
n→∞

k
n

log pr ≥


r
r− i


H(X |[X ]i) .(40)

Since the above sequence of arguments in the converse can be carried out for every
i ∈ {0, . . . ,r−1}, the converse follows.
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VII. LINEAR COMPRESSION OVER CHAIN RINGS

In this section we consider the case when linear compression has to be done when the
source alphabet A is a chain ring. We start with a brief introduction to chain rings.

Ring A will be called a chain ring if all ideals of the ring form a chain. Thus, if
M denotes the maximal ideal of the ring, then all ideals are included in the chain
M ⊇ M2 ⊇ . . .. Following are some properties of chain rings, which we will call upon
during the sequel. For details, the reader is referred to [10] [11] [12].

(P.1) A ring is a chain ring if and only if it is a local principal ideal ring. A ring is
called local if it has a unique maximal ideal.

(P.2) The characteristic of the ring is a power of prime; denote it by pm.
(P.3) The maximal ideal, M, is exactly the set of nil-potent elements of the ring.

Let θ denote its generator (such a generator exists as the ring is a PIR) and
β its nil-potency index. Thus the chain of ideals in the ring is (θ) ⊇ (θ)2 ⊇
. . .(θ)β−1 ⊇ (θ)β = (0).

(P.4) For any a ∈A,∃! i such that a = uθ i, 0 ≤ i ≤ β , where u is a unit.
(P.5) There is a unique subring S of A such that S is isomorphic to the Galois ring

GR(pm,r) for some r. Also A = S⊕ Sθ ⊕ . . .⊕ Sθ l−1 is an S− module direct
sum, where l is such that p = uθ l for some unit u. Recall that the Galois ring
GR(pm,r) is defined as the ring Zpm [x]/( f (x)) where f (x) ∈ Zpm [x] is a monic
polynomial of degree r and is irreducible modulo p.

(P.6) The quotient A/M is isomorphic to the Galois field Fq, where q = pr. Let V
denote a set of coset representatives of M in A. Then ∀a ∈A,∃! a0, . . .aβ−1 ∈V
such that a = ∑β−1

i=0 aiθ i. Thus |(θ j)|= |V |β− j = qβ− j.

Examples of chain rings

1) Galois rings are well known examples of chain rings. It is known [11] that a ring
S is isomorphic to GR(pm,r) if and only if S is a chain ring of characteristic pm

whose maximal ideal is pS. As special cases, Galois rings include GR(pm,1)=Zpr

and GR(p,r) = Fpr .
2) Our second example is the ring A = Z[i]/4Z[i] ∼= Z4[i], where 1+ i2 = 0. The

only maximal ideal is generated by θ = 1+ i, with β = 4. If expressed in the
form as given in (P.5), A= Z4 ⊕Z4(1+ i) as a Z4 module.

3) Our last example is the ring A= Z[ω]/3Z[ω]∼= Z3[ω], where 1+ω +ω2 = 0.
M = (1+2ω), β = 2,A= Z3 ⊕Z3(1+2ω).

Theorem 6. Consider a source X drawn i.i.d. ∼ PX whose alphabet is the chain ring
A. Let M = (θ) denote the maximal ideal of A and let β be its nilpotency index. The
achievable rate region under A−module homomorphic encoding is given by

R ≥ max
0≤i<β


β

β − i


H(X |[X ]i) ,(41)

where [X ]i = X mod θ i,0 ≤ i < β .
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Remark 1. The rate region in the Theorem 6, when specialized to the case when A is
the ring Zpr leads to Theorem 2.

Before we proceed to the proof of Theorem 6 we first state a lemma that will be used
in calculating the average probability of error.

Lemma 7. Let z ∈An. Let θ i||z i.e., z ∈ θ iAn\θ i+1An. Then,

(42) |{A ∈ Mk×n(A) : Az = 0}|= qikqβk(n−1) , 0 ≤ i ≤ β .

Proof: The proof is similar to the proof of Lemma 3. While in Lemma 3 we used the
fact that every element in Zpr has a unique p−ary expansion, herein for a chain ring,
we should use the fact every element has a unique θ−ary expansion (due to Property
(P.6)). 

Achievability of Theorem 6

Proceeding along the same lines as those in the Zpr case, we get

P(n)
e ≤ δn + ∑

x∈An
ε (X)

P(x) ∑
y=x

y∈An
ε (X)

P(Ay = Ax)

:= ∑
x∈An

ε (X)

P(x)∆(x) .(43)

Now,

∆(x) =
β−1

∑
i=0

∑
y=x

y∈An
ε (X)

θ i||(y−x)

P(A(y−x) = 0)(44)

(a)
=

β−1

∑
i=0

q−(β−i)k ∑
y=x

y∈An
ε (X)

θ i||(y−x)

1 ,(45)

where (a) follows from Lemma 7.

Similar to Corollary 5, it can be shown that

|{y : θ i||(y−x),y ∈ An
ε(X)}| ≤ 2nH(X |[X ]i)(1+ε).

Substituting the above expression in (45), we get an upper bound on the probability of
error as

P(n)
e ≤ δn +

β−1

∑
i=0

q−(β−i)k2nH(X |[X ]i)(1+ε) .(46)
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Thus if, k
n logqβ >


β

β−i


H(X |[X ]i), 0 ≤ i < β , then P(n)

e → 0 as n → ∞. Since,

R(n) = log |Im(A(n))|
n ≤ k

n logqβ , the achievable part of the theorem follows.

Converse of Theorem 6

We will show that any sequence of A−module homomorphisms {φ (n)} of the form
given in (1), for which P(n)

e → 0, must satisfy

(47) lim
n→∞

R(n) ≥


β
β − i


H(X |[X ]i), 0 ≤ i < β .

Let φ (n)
i denote the restriction of φ (n) to the ideal θ iAn of An and let R(n)

i be the rate
of the restriction, i.e.,

(48) R(n)
i =

log(|Im(φ (n)
i )|)

n
.

A necessary condition on R(n)
i , which follows from arguments similar to those that led

to (38), is given by

(49) lim
n→∞

R(n)
i ≥ H(X |[X ]i) .

The following lemma, derived from algebraic arguments, will relate the rates R(n) and
R(n)

i .

Lemma 8. For any n and 0 ≤ i < β we have,

log(|Ker(φ (n))|) ≤


β
β − i


log(|Ker(φ (n)

i )|) .

Proof: We drop the superscript on φ (n) and φ (n)
i for convenience. Clearly Ker(φ) is

finitely generated and let (t1, t2, . . . , t) be a set of generators, where tj ∈An, 1 ≤ j ≤ .
Equivalently, Ker(φ) is the column space of the matrix S = [t1t2 . . . t]. Let us denote
the column space of S by Col(S). Now Ker(φi) = Col(S)∩θ iAn.

Let S̄ be the image of S under any elementary row or column transformation. It is easy
to show the following equalities.

|Col(S)| = |Col(S̄)|(50)
|Col(S)∩θ iAn| = |Col(S̄)∩θ iAn| .(51)

i.e., |Ker(φ)| and |Ker(φi)| remain invariant to elementary row and column transforma-
tions.

Also due to Property (P.4), we know that every element in the matrix S is of the form
uθ j for some j, 0 ≤ j ≤ β , and unit u. With this, it can be shown that after a series of
elementary row and column operations, the matrix S can be transformed to the form
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(52)




I0
θ I1

. . .
θ β−1Iθβ−1

0β×β
0n−×




,

where ∑β
k=0 k = . Then we have,

|Ker(φ)| = q0β+1(β−1)+...+i(β−i)+i+1(β−i−1)+...β−1

|Ker(φi)| = q0(β−i)+1(β−i)+...+i(β−i)+i+1(β−i−1)+...β−1 .

The Lemma now follows by taking logarithm on both sides and comparing the terms.


Corollary 9.

(53) R(n) ≥


β
β − i


R(n)

i .

Proof: For any homomorphism ψ : M → N, we have |Im(ψ)||Ker(ψ)| = |M|. When
applied to the maps φ and φi, this gives

|Im(φ)||Ker(φ)| = qβn(54)

|Im(φi)||Ker(φi)| = q(β−i)n .(55)

The corollary follows by substituting the above two equations in the definition of rates
Rn and R(n)

i . 

Now, using the relation of rates given by Corollary 9 in (49), we get

lim
n→∞

R(n) ≥


β
β − i


H(X |[X ]i) .(56)

Since the above sequence of arguments in the converse can be carried out for every
i ∈ {0, . . . ,β −1}, the converse follows.

VIII. LINEAR COMPRESSION OVER PRINCIPAL IDEAL RINGS

Theorem 10. [10] Let A be a PIR. Then A decomposes as direct product of finite
chain rings. Further, the decomposition is unique upto ordering.

Let A ∼= A1 × . . .×At be the direct product decomposition of the PIR A as per
Theorem 10, where Ai,∀ i are chain rings. Thus finding the achievable rate region of
A−module homomorphisms of An is same as characterizing achievable rate region
for A1 × . . .×At−module homomorphisms of An

1 × . . .×An
t . Hence without loss of
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generality, we shall assume that A=A1 × . . .×At . Note that scalar multiplication in
the A1 × . . .×At−module An

1 × . . .×An
t is defined as

(α1, . . . ,αt)◦ (a1, . . . ,at) = (α1a1, . . . ,αtat), ai ∈An
i , αi ∈Ai, ∀i .(57)

In what follows, we will assume A=A1×A2. Extension to more number of components
will follow in a straight forward manner.

The random variable on the source will be denoted by X = (X1,X2). Let Mk = (θk)
denote the maximal ideal of Ak and βk denote the nil-potency index of Mk, k =
1,2. Let [X ]i, j = ([X1]i, [X2] j) denote the derived random variable on the quotient
A1 ×A2/Mi

1 ×M j
2, 0 ≤ i ≤ β1, 0 ≤ j ≤ β2. The rate region is characterized by the

following theorem.

Theorem 11. Consider a source X = (X1,X2) drawn i.i.d. ∼PX =PX1,X2 whose alphabet
is the principal ideal ring A=A1 ×A2. The achievable rate region under A−module
homomorphic encoding is given by

R =


R1 +R2 |


β1 − i
β1


R1 +


β2 − j
β2


R2 ≥ H(X |[X ]i, j),0 ≤ i ≤ β1, 0 ≤ j ≤ β2


.

Achievability of Theorem 11

Consider the A1 and A2−module homomorphisms, A1 and A2, respectively, as follows.

A1 : An
1 →A

k1
1 , A2 : An

2 →A
k2
2 .(58)

Thus A1 ∈ Mk×n(A1) and A2 ∈ Mk×n(A2). Use these maps to construct the A1 ×A2
module homomorphism A as follows.

A : An
1 ×An

2 −→ A
k1
1 ×A

k2
2

(x1,x2)  (A1x1,A2x2) ,(59)

where the scalar multiplication in the A1 ×A2−module A
k1
1 ×A

k2
2 is defined as

(α1,α2)◦ (a1,a2) = (α1a1,α2a2), a1 ∈A
k1
1 , a2 ∈A

k2
2 ,α1 ∈A1, α2 ∈A2 .(60)

The achievability uses a random coding argument by averaging over set of all A−module
homomorphisms of the form given in (59). Assuming that the source transmits (x1,x2),
the decoder searches for a unique (x̂1, x̂2) ∈ A(n)

ε (X1,X2) such that A1x̂1 = A1x1 and
A2x̂2 = A2x2. The following lemma is the analogue of Corollary 5, for the direct product
of chain rings.

Lemma 12. For any (x1,x2) ∈ A(n)
ε (X1,X2), we have

A(n)
ε (X1,X2) ∩ (x1,x2)+θ i

1A
n
1 ×θ j

2A
n
2

 ≤ 2nH(X |[X ]i, j)(1+ε),(61)

0 ≤ i ≤ β1, 0 ≤ j ≤ β2 .
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Using the above lemma, calculation of the average probability of error now could be
done in the same way as was done in section VII for the single component case. 

Converse of Theorem 11

Let φ (n) : A(n)
1 ×A

(n)
2 →M be a sequence of A1 ×A2−module homomorphisms that

achieves a rate R. We will show that R ∈ R, where R is as defined in Theorem 11.
Define the component maps φ (n)

1 and φ (n)
2 as follows.

φ (n)
1 = φ (n)|

A
(n)
1 ×0

φ (n)
2 = φ (n)|

0×A
(n)
2

.(62)

Now, consider the ideal Di, j = θ i
1A

(n)
1 ×θ j

2A
(n)
2 of A(n)

1 ×A
(n)
2 and let ψ(n) denote the

restriction of φ (n) to Di, j, i.e;

ψ(n) = φ (n)|Di, j : Di, j −→M(63)

Also define the component maps ψ(n)
1 and ψ(n)

2 as follows.

ψ(n)
1 = ψ(n)|

θ i
1A

(n)
1 ×0

ψ(n)
2 = ψ(n)|

0×θ j
2A

(n)
2

.(64)

By applying Lemma 8 and Corollary 9 to the component maps ψ(n)
1 and ψ(n)

2 , we get

(65) R(n)
ψ1 ≤


β1 − i

β1


R(n)

φ1
, R(n)

ψ2 ≤


β2 − j
β2


R(n)

φ2
.

These equations, along with the fact that R(n)
ψ1 +R(n)

ψ2 ≥ R(n)
ψ gives


β1 − i

β1


R(n)

φ1
+


β2 − j

β2


R(n)

φ2
≥ R(n)

ψ .(66)

Similar to what was shown in (49), the rate R(n)
ψ can be shown to be constrained as

lim
n→∞

R(n)
ψ ≥ H(X |[X ]i, j) .(67)

Combining the above two equations, we get


β1 − i
β1


R1 +


β2 − j

β2


R2 ≥ H(X |[X ]i, j),(68)

where R1 = limn→∞ R(n)
φ1

and R2 = limn→∞ R(n)
φ2

The converse could now be completed by observing the following algebraic fact.
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Lemma 13.

R(n) = R(n)
φ1

+R(n)
φ2
, ∀n .(69)

Proof: By assumption, A(n) : A(n)
1 ×A

(n)
2 →M is an A1×A2− module homomorphism

and thus by definition of a module homomorphism, the co-domain M is an A1 ×
A2−module. Define the sets M1 and M2 as follows.

M1 = {(a1,0).m, ∀ a1 ∈A1, m ∈M}
M2 = {(0,a2).m, ∀ a2 ∈A2, m ∈M} .(70)

Clearly M1 and M2 are submodules of M and further, it can be checked that M is the
internal direct sum of M1 and M2, i.e; M=M1 ⊕M2. The Lemma now follows by
checking that Im(φ (n)

1 )⊆M1 and Im(φ (n)
2 )⊆M2. 

The converse now follows by combining (68) and Lemma 13.
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APPENDIX A
PRIMER ON INFORMATION THEORY

The goal of this section is to introduce basic concepts in information theory like notions
of entropy and typical sets. We will also see how these concepts naturally arise in
various source compression problems.

A. Entropy

Consider a discrete random variable(r.v.) X , having distribution PX on a set A. The set
A will be referred to as the alphabet of the r.v. X . Entropy of X , denoted by H(X), is
defined as

(71) H(X) = ∑
x∈A

PX(x) log2
1

PX(x)
.

H(X) could be considered as a measure of the amount of uncertainty in the r.v. X .
The log is to the base 2 and the unit of entropy will be bits. It can be checked that
0 ≤ H(X)≤ |A|. H(X) = 0, iff the distribution PX has the form

(72) PX(x)


= 1 if x = x0

= 0 if x = x0 ,

i.e; there is no randomness in X . In a similar manner, H(X) = |A| iff PX is uniform
over the alphabet A.

The notion of entropy extends to a collection of random variables as well, wherein we
measure the overall uncertainty of the collection of random variables. For example, for
a pair of random variables (X ,Y ) having the alphabet A×B, the joint entropy H(X ,Y )
of the pair (X ,Y ) is defined as

(73) H(X ,Y ) = ∑
(x,y)∈A×B

PXY (x,y) log
1

PXY (x,y)
.

For the pair H(X ,Y ), one could also ask for the entropy of X given the event Y = y.
This is denoted by H(X |Y = y) and defined as

(74) H(X |Y = y) = ∑
x∈A

PX |Y (x|y) log
1

PX |Y (x|y)
.

Further, one averages H(X |Y = y) over the conditioning random variable Y to obtain
the conditional entropy H(X |Y ), i.e;

H(X |Y ) = ∑
y∈B

PY (y)H(X |Y = y)

= ∑
(x,y)∈A×B

PXY (x,y) log
1

PX |Y (x|y)
.(75)

It is easy to verify that joint and conditional entropy of the pair (X ,Y ) are related as

(76) H(X ,Y ) = H(X)+H(Y |X) = H(Y )+H(X |Y ) .
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B. Typical Sequences

Let Xn = X1,X2, . . .Xn be n independent random variables, identically distributed
according to PX . Let x = (x1,x2, . . .xn) denote a realization of Xn. We are interested in
the predicting the realizations of Xn which are most likely to occur. It turns out that
for large n, these are exactly those sequences whose empirical symbol frequencies are
close to the actual distribution PX . Such sequences will be called typical sequences
and their collection, the typical set. More formally, let N(a|x) denote the number of
occurrences of the symbol a in the realization x. The typical set corresponding to the
random variable X is given by

A(n)
ε (X) =


x :


N(a|x)

n
−PX(a)

≤ εPX(a),∀a ∈A


.(77)

Some important properties of the typical set are stated next[13].

(P. 1)

(78) P(A(n)
ε (X)) ≥ 1−δn ,

where δn → 0 as n → ∞
(P. 2) For any x ∈ A(n)

ε (X),

(79) 2−(1+ε)nH(X) ≤ P(x)≤ 2−(1−ε)nH(X) .

(P. 3)

(80) (1−δn)2(1−ε)nH(X) ≤ |A(n)
ε (X)| ≤ 2(1+ε)nH(X) .

The concept of typical sets and typical sequences extends to collection of random
variables as well. In the case of a pair of r.v.s (X ,Y ), the joint typical set corresponding
to the pair (X ,Y ) is defined as

A(n)
ε (X ,Y ) =


x :


N(a,b|x,y)

n
−PXY (a,b)

≤ εPXY (a,b),∀(a,b) ∈A×B


.(81)

We also need the notion of a conditional typical set. The conditional typical set An
ε(X |y)

is defined as the set of all sequences x which are jointly typical given the given
realization of Y n = y; i.e;

A(n)
ε (X |y) =


x : (x,y) ∈ A(n)

ε (X ,Y )


.(82)

Properties similar to (78)-(80) could be written for both joint and conditional typical
sets. The analogue of (80) give us the following upper bound on the size of the
conditional typical set

(83) |A(n)
ε (X |y)| ≤ 2(1+ε)nH(X |Y ) .

This will be used in proving various theorems in the main text.
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Encoder Decoder

Fig. 4. System model for point-to-point source compression

C. Point-to-Point Source Compression

Consider a system in which a source outputs a sequence of i.i.d. random variables
X1,X2, . . . distributed according to PX . The goal is to compress the output of the source
by an encoder in such a manner that given the output of the encoder, one can decode
the actual source reliably. This system is shown in Fig 4.

We will restrict our attention to block encoders. A block encoder assigns an index
i ∈ {1,2, . . . ,2nR} to every block of n−length source output. R is the rate of the encoder
in bits per symbol. Clearly R = log |A| bits suffice to encode the source such that
reliable decoding is possible. But if we relax our requirement that we only need the
probability of decoding error be made arbitrarily small, better compression rates can
be achieved. To see how this is possible, note that by Property (P.1) of typical sets, for
large n, the source output is typical with very high probability. Thus the encoder can
restrict its attention to the typical set and ensure that every sequence in the typical set
gets a distinct index. Then by Property (P.3), the number of encoder indices is upper
bounded by 2(1+ε)nH(X). Given the encoder output, the decoder now searches for a
typical sequence having the corresponding index. An error occurs at the decoder only
when the original source sequence itself is not typical. Since the probability of this can
be made arbitrarily small by choosing a large enough block length n, we have thus
achieved almost lossless compression at a rate R = (1+ ε)H(X). Put in another way,
almost lossless compression at any rate R > H(X) is possible. Conversely, it can also
be shown by information theoretic arguments that lossless compression at any rate less
than H(X) is not possible.

D. Source Compression with Side Information

Consider the same problem as above, wherein we need to compress and communicate
a source X to a decoder, but now assume that the decoder also has access to another
random variable Y , where (X ,Y ) are jointly distributed according to PXY (see Fig 5).
This problem is called as source coding with side information at the decoder. Intuitively,

Encoder Decoder

Fig. 5. System model for source compression with side information

decoder knows something about X when Y is made available and hence we may expect
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that we will need a rate less than H(X) for lossless compression. Indeed this turns out
to be true and it can be shown that compression at any rate higher than H(X |Y ) is
possible. To see how this is true, given the realization Y n = y, it can be shown that
the probability of conditional typical set of X is almost 1 (analogous to (78)). Thus
the decoder can restrict its attention to the conditional typical set of X , whose size is
approximately 2nH(X |Y ) (analogous to (80)). If for a moment we assume that the source
also knew the realization Y n = y, then the source only needs to encode the set A(n)

ε (X |y)
and thus a rate of H(X |Y ) can be achieved. The surprising thing that can be shown
is that even when the source does not access to Y n, this rate could be achieved. This
is shown by using a random coding argument, wherein at the encoder we randomly
assign indices to the source outputs. One can then show that the probability that two
source sequences which are both jointly typical with Y n = yn becomes almost nil, as
long as the rate of the encoder is higher than H(X |Y ). Note that this argument will
only prove the existence of an encoder which achieves compression at a rate H(X |Y ).
A converse could also be proved using information theoretic arguments which says
that compression at any rate less than H(X |Y ) is not possible.

E. Distributed Source Compression

Consider two sources (X ,Y ) with joint distribution PXY , which are spatially separated.
Both sources are compressed separately by different encoders. The decoder is interested
to recovering the pair (X ,Y ), in an almost lossless manner. The system is shown in
Fig 6.

Encoder

Decoder

Encoder

Fig. 6. System model for distributed source compression

The problem is referred to as the Slepian-Wolf source coding problem of two sources.
The rate region in this case is given by

R1 ≥ H(X |Y )
R2 ≥ H(Y |X)

R1 +R2 ≥ H(X ,Y ) .(84)

Observe from the last of the inequalities that a sum rate of the joint entropy of the
pair (X ,Y ) is achievable even though the sources are encoded separately. This is made
possible by designing the encoders in such a manner that will allow the decoder to
utilize the correlation properties between the two sources, while decoding. We will
illustrate this by the following example. Assume that (X ,Y ) are temperature recordings
in two nearby places both of which need to be communicated to a weather station.
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Let us further assume that Y is either X or X +1. An optimal encoding strategy in
this case is to allow the first encoder to compress X at a rate H(X) and let the second
encoder sends only one bit; 0 if Y is even and 1 if Y is odd. At the decoder, we first
recover X , since H(X) bits suffice to recover X almost losslessly. Clearly, now Y can
also be recovered given its parity and X .

APPENDIX B
PROOF OF LEMMA 3

Let [a1,a2, . . . ,an] be some row of A. Note that ai ∈ Zpr . Let z = [z1, . . . ,zn]
t . If z = 0,

then pr||z. Hence, for every matrix A, we have Az = 0 and the statement of Lemma
follows easily for this case. Now, consider the case when z = 0. Since pi||z we can
write z = pi[w1, . . . ,wn]

t , where w j ∈Z∗
pr for some 1 ≤ j ≤ n. Without loss of generality

let us assume w1 ∈ Z∗
pr . Hence,

[a1, . . . ,an]pi[w1, . . . ,wn]
t = 0

pi
n

∑
j=1

a jw j = 0

pia1 = (w1)
−1

n

∑
j=2

a jw j .(85)

Since a1 ∈ Zpr there is a unique p-ary expansion for a1 as follows.

(86) a1 =
r−1

∑
=0

a1p ,

for some a1 ∈ Zp. Substituting the p−ary expansion of a1 in (85) we get,

(87)
r−i−1

∑
=0

a1p+i = (w1)
−1

n

∑
j=2

a jw j .

From the above equation we see that for a given z we can freely choose {w j}n
j=2 and

{a1}r−1
=r−i (the choice of which determines {a1}r−i−1

=0 ). Since, t1 ∈ Zp,w j ∈ Zpr and
each row of the matrix A can be chosen independently we have (pr(n−1)pi)k choices
for the matrix A. Hence, the lemma follows.

APPENDIX C
PROOF OF LEMMA 4

We will first show that

An
ε(X) ∩ Cy ⊆ An

ε(X |y) .(88)

Let x ∈ An
ε(X) ∩ Cy. Say x = (x1, . . . ,xn) and y = (y1, . . . ,yn). Since x ∈Cy we have

xk mod pi = yk,1 ≤ k ≤ n. Then, for any a ∈ Zpr ,b ∈ Zpi ,

N(a,b|x,y) =


N(a|x), a mod pi = b
0, a mod pi = b

,(89)
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P(a,b) =


P(a), a mod pi = b
0, a mod pi = b

.(90)

If a mod pi = b, 
N(a,b|x,y)

n
−P(a,b)


(a)
=


N(a|x)

n
−P(a)


(b)
≤ εP(a)(91)
(c)
= εP(a,b) .(92)

If a mod pi = b, 
N(a,b|x,y)

n
−P(a,b)


(a)
= |0−0|(93)

(b)
= ε.0(94)
(c)
= εP(a,b) ,(95)

where (a) follows from (89) and (90), (b) follows from (77) and the assumption that
x ∈ An

ε(X) and (c) follows from (90). Hence from (92) and (95) and from the definition
of typical sets we have x ∈ An

ε(X |y).

We will now show that An
ε(X |y) ⊆ An

ε(X) ∩ Cy. Let x ∈ An
ε(X |y). Then, (x,y) ∈

An
ε(X , [X ]i). Thus, x ∈ An

ε(X). Say x = (x1, . . . ,xn) and y = (y1, . . . ,yn). We claim,
x ∈Cy. Since, if it is not true then for some k,1 ≤ k ≤ n, xk mod pi = yk. Hence,

N(xk,yk|x,y) ≥ 1 .(96)

However, since (x,y) ∈ An
ε(X , [X ]i), from we have,


N(xk,yk|x,y)

n
−P(xk,yk)

 ≤ εP(xk,yk) .(97)

Since xk mod pi = yk, from (90) we get

P(xk,yk) = 0 .(98)

Substituting (98) in (97) we get N(xk,yk|x,y) = 0 which contradicts (96). Hence, x ∈Cy.
We have shown that if x ∈ An

ε(X |y) then x ∈Cy and x ∈ An
ε(X) i.e.,

An
ε(X |y) ⊆ An

ε(X) ∩ Cy .(99)

Hence, from (88) and (99), the statement of the Lemma follows. 
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