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Abstract

Applications of recently discovered asymmetric dihydroxylation (ADH) of alkenes 1n synthetic organic chemistry
have been described. ADH reaction has been successfuily implemented in the synthesis of several natural products,
drugs and drug intermediates. It has also been utilized in kinetic resolution and double diastereoselections in a

few cases.
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L, Introduction

During 80s much attention was focussed on the asymmetric catalytic reactions’. Stereoselective
oxidation is one of the major goals in organic chemistry. Discovery of Sharpless catalytic
asymmetric epoxidation is a landmark in the oxidation chemistry, which utilizes allylic
alcohols as substrates?. However, stereoselective oxidation of unfunctionalized olefins is a
much tougher goal to achieve, especially in a catalytic fashion. In 1988, once again, a major
breakthrough in the successful oxidation of unfunctionalized alkenes to diols was reported by
Sharpless and co-workers®. Since the discovery of ADH reaction, a number of new chiral
ligands and reaction conditions have been developed for the continuous improvement of
enantioselective oxidation of alkenes(Chart 1). In 1992, we have compiled literature through
19914 however, during the last two years, more emphasis has been laid on the application
of this novel reaction. The present paper will cover literature up to November 1993 and this
review should be treated as complementary to the previously published one*.

2, Applications
2.1. Stereoselective syntheses of natural products

One of the earliest applications of asymmetric dihydroxylation strategy has been reported by
Tomioka et al® for the synthesis of anthracycline antibiotics, though the reaction was carried
out using stoichiometric amount of chiral auxiliary and osmium tetroxide. A very expeditious

* For correspondence.
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synthesis of anthracycline was achieved using asymmetric dihydroxylation reaction as a key
step to introduce the chirality in the molecule (Scheme 1).
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Kelly and co-workers® have generated the B ring diol in the planned synthesis of
pradimicinone vie ADH reaction (Scheme 2).
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Cooper and Salomon’ synthesized the pentacyclic intermediate from readily available
ribofuranoside which is finally used in the synthesis of antitumor agent Halichondrin B
(Scheme 3).
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An inverse approach to achieve diastereoselective dihydroxylation was carried out by
Arjona et al® by using chiral substrates and osmium tetroxide with NMO as co-oxidant. They
have prepared myo-inositols from Conduritol B acetate using dihydroxylation as the key step
(eqn 1).
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Myo-inositol has been a useful synthetic target due to well-documented biological
activities of its derivatives®. Similar approach has been adopted by Honda and co-workers!®
to synthesize monocrotaline, a natural product, which is a 11-membered alkaloid.

The macrocyclic lactone is made up of two parts, necine base, retronecine and
monocrotalic acid (Scheme 4)., Monocrotalic acid was synthesized by dihydroxylation of
chiral pyrones.



ASYMMETRIC DIHYDROXYLATION CHEMISTRY 313

Ho OH Wy, oH RO OR!
) - A‘\\ X\‘ N + 0 o
" \%o [m—— I 4, P
g iy =
| retronecine |

0 = OH
oy °© OH
z R=R=H
\]/ R+R = CHy
N monocrotaiic acid

i
Monacrotaling ‘

ScHEME 4.

Similarly, Ireland ef @/'! have prepared chiral epoxide via diol prepared by Sharpless
asymmetric dihydroxylation method. The epoxide was finally used in the synthesis of
FK-506. Ikemoto and Schreiber'? used ADH method for preparing polyols from the
corresponding olefins in the synthesis of Hikizimycin, an antibelmiatic agent. Kim and
Sharpless' prepared B-lactams from 2,3-dihydroxyesters via cyclic sulfites (Scheme 5).
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Zhou and co-workers'* have examined several substrates under ADH conditions for the
synthesis of the plant growth regulators, brassinolide and its analogues, such as homobrassinolide,
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epibrassinolide, etc. The critical step in this synthesis is the generation of the required
stereochemistry at 22 and 23 position of the steroidal side chain which can be achicved by
choosing the proper chiral auxiliary (i.e., DHQD-CLB, dihydroquinine-p-chlorobenzoate).
More recently, Brosa and co-workers'> obtained an improved ratio of the desired
stereoisomers, 2.6:1 by using dihydroquinidine-9-0-(9'-phenanthryl)ether (DHQD-PHN) as a
chiral ligand and N-methylmorpholine-N-oxide as co-oxidant.

Brassinolide

McMorris and Patil'® used an alternative route to synthesize 24-epibrassinolide from
ergosterol using ADH reaction. The ratio of 22(R), 23(R} diol increased greatly by using
DPHQD-CLB in ~BuOH/H,O with K3Fe(CN)—K,CO; as co-oxidant and even better
selectivity was observed using bisdihydroquinidiny-9-O-phthalazine, DHQD»-PHAL(10:1) in
favour of the desired diol. Santiago and Soderquist'” and Turpin and Weigel'® almost
simultaneously used asymmetric dihydroxylation as the key step in a short and elegant
synthesis of (S) (-)frontalin, the aggregation pheromone of southern pine beetle, although the
approaches were slightly different as shown in Schemes 6 and 7.
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A similar skeleton of 7,7-dimethyl-6,8-dioxabicyclo[3.2.1Joctane which is a constituent of
a volatile aroma of beer was synthesized by Sharpless er al' (Scheme 8a). Sharpless and
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Br

Scuame 7.

co-workers'® also used ADH reaction towards a general approach for quick entry to seversi
Y-lactones in high enantiomeric purity and applied this for a short synthesis of (=) and (+)-
muricatacin, an acetogenin derivative that shows some cytotoxicity on human tumor cells
{Scheme 8b).
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Keinan er a/*® have used ADH reaction for the synthesis of all the four isomers of
disparlure, a sex attractant emitted by the female Gypsy moth, Porthetria dispar. The active
pheromone is (+)-(7R,88)-cis—7,8-epoxy-2-methyloctadecane which plays a significant role
in the pest control. Here they report a convergent synthesis of all the possible isomers
(Scheme 9),

Bennani and Sharpless® have achieved the synthesis of (+)-coriolic acid in which the
resultant diol, obtained by ADH reaction of the desired f,y-unsaturated amide, undergoes
dehydration to fumnish y-hydroxy-o,B-unsaturated amide, which is finally transformed to (+)-
coriolic acid (Scheme 10).

Crispino and Sharpless® reported the synthesis of juvenile hormone (III) in three steps
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from methyl farnesoate using selective dihydroxylaiion followed by conversion of diol to
epoxide (Scheme 11).
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2.2. Drugs and drug intermediates

In Section 2.1, we have laid emphasis on the syuthesis of several natural products and antibiotics
which are biologically active and relevant molecules. In this section, we shall focus our attention
on the synthesis of drug and drug intermediates. For example, Watson and co-workers® reported
the first example of asymmetric dihydroxylation strategy towards the synthesis of a potent
vasedialating agent, {(+)-(25,35)-cis-diltiazem hydrochloride (Scheme 12). The diol was converted
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either into cis-epoxide or haloacetate which was then reacted with aminothiophenol to furnish
threo-(28,3S)thioether, a crucial intermediate in the synthesis of diltiazem.

Rama Rao er al ** have prepared optically active(S)-propranolol using ADH reaction of -
naphthyl allyl ether, followed by conversion of diol to epoxide(Scheme 13). The epoxide was
then converted nto (S)-propranclol by a conventional method, i.e., by treatment with

isopropy! amine.
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Asymmetric synthesis of chloramphenicol has also been reported from the same research
group® using both asymmetric epoxidation strategy as well as asymmetric dihydroxylation
methodology with ethyl p-nitrocinnamate (Scheme 14),
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Sharpless and co-workers® have recently synthesized (R -camitine and (R }y-amino-B-hydroxybutyric
acid (GABOB) which have potential usefulness as pharmaceuticals, GABOB is an
antiepileptic and hypotensive drug and (R)-carnitine is a vitamin-like compound (Vitamin
Br), which is responsible for regulating the transport of long-chain fatty acids through
mitochondrial membrane. Both these important class of compounds can be synthesized from
a common intermedite (Scheme 15).
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2.3. Double diastereoselection and kinetic resolution

The concept of double diastereoselection?” was introduced for ever-increasing demand of
higher selectivity in stereoselective reactions. In asymmetric dihydroxylation of olefins also,
the stereoselective outcome of the reactions get affected by the presence of a pre-existing
chiral information in the substrate. This concept is usually exploited in kinetic resolution of
a substrate using a chiral ligand. In matched cases where the chirality information of the
reagent and substrate act synergitically, a higher order of stereoselectivity is usually observed.
In contrast, if they exert their influence in opposite directions (mismatched cases) poor
diastereoselectivity usually results. All the enzymatic or reagent-initiated kinetic resolutions
are artifacts of this phenomenon and the extent of kinetic resolution depends on how best
the match pair works synergitically and with what rate the reaction occurs. Annunziata et al %
used this concept in asymmetric dihydroxylation of y-chirality-substituted ¢,B-unsaturated
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esters using DHQD-CLB as a chiral ligand in ADH reaction leading to >45:1 selectivity in
favour of anti-diastereoselection (Scheme 16).

Sharpless and co-workers?3 have also reported an enhanced diastereoselectivity in the
presence of an alkaloid derivative. For example, in the absence of DHQD-CLB, both
substrates 1 and 2 showed poor diastereofacial bias, i.e, 2.1:1 (for 1) and 1:1.1 (for 2),
whereas in the presence of DHQD~CLB, they furnished 76 and 52% de, respectively (Scheme
17). More recently, the use of (DHQD)»-PHAL enhanced the ratio of major isomers up to
39:1.
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Ward and Procter® and Panek and Zhang® independently carried out double asymmetric
induction using chiral allylsilanes. Initially, these authors carried out asymmetric dihydroxylation
of anti-allylsilanes using various co-oxidants (Scheme 18),
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Using double stereodifferentiation method with DHQD-CLB for a matched pair and
DHQ-CLB for a mismatched pair, the selectivity observed was 91:9 and 43:57, respectively.

These lactones are used as key intermediates in the synthesis of baciphelacin, an antiviral,
antileukemic antibiotic.
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Gurjar and Mainkar® carried out asymmetric dihydroxylation of ally] D-glucopyranoside
using DHQD-CLB and DHQ-CLB derivative to prepare chiral glycerol derivatives (Scheme

19).
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In the absence of a chiral auxiliary, the ratio of diasterecomers (A:B) was found to be
65:35, which improved to 75:25 in the presence of DHQD~CLB, whereas the ratio decreased
to 56:44 in the presence of DHQ-CLB, thus the former being 4 matched case and the latter
a mismatched one. We have also carried out kinetic resolution of several racemic allylic
acetates using (DHQD),-TP (bisdihydroquinidiny] terephthalate) and (DHQ)—TP as chiral
auxiliaries by osmium-catalyzed asymmetric dihydroxylation reaction®. We observed that
kinetic resolution of substrates is very much substituent dependent. Usually the ADH reaction
of aromatic olefins show beneficial effect in determining the stereochemical bias; however,
we observed that 1-acetoxy-1-cyclohexyl-3-phenyl-2-propene which has only one aromatic
substituent attached to C=C bond showed the highest selectivity factor (S=25) leading to efficient
kinetic resolution, whereas I,3-diphenyl-3-acetoxylprop-1-ene exhibited the poorest kinetic
resolution (Scheme 20). Tuterestingly, both the substrates are sterically nearly identical;
however, the electronic nature of 1a and Ib plays a significant role in the large difference in
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kinetic resolution of 1a and 1b, These findings have been rationalized in terms of a model

shown in Fig. 1 which suggests that 7 stacking interaction plays an important role in
governing the facial selectivities of ADH reaction.

More recently, VanNienwenhze and Sharpless® have reported the kinetic resolution of #-
butyl cyclohexene derivative (Scheme 21) using (DHQD)-PHAL or (DHQ)>-PHAL as chiral

§
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auxiliary. The maximum selectivity factor (S) was 32.0 using (DHQD),-PHAL as the
catalyst.
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Annunziata ef a/* have carried out asymmetric dihydroxylation of racemic 4-(2-styryl)-
azetidin-2-one and found that syn vs anti attack on the azetidin-2-one ranges between 50:50
and 60:40; however, % ee of syn and anti products was achieved to a respectable level of
selectivity (ca 80-94% ee). These authors attributed the poor diastercoselection in kinetic
resolution of azetidin-2-one to the equat facility of attack by osmium reagent in the tansition
state (Scheme 22).

SCHEME 22.

2.7. Stereoselective transformation of diols

After the pioneering discovery of the catalytic asymmetric dihydroxylation of alkenes by
Sharpless and co-workers, it was mandatory to demonstrate fhe utilities of these diols in
synthetic organic chemistry. Gao and Sharpless¥, during the synthetic elaboration of these
optically pure diols, discovered the usefulness of cyclic sulfate esters of 1,2-diols and
reported stereoselective Lransformation of these diols to several other functional groups by a
number of nucleophiles (Scheme 23).

The emerging utilities of cyclic suifates and sulfites have been reviewed extensively®
which gives a corplete account up to July 1992 and hence this topic will not be covered
in this review. Apart from cyclic sulfates, we have demonstrated® the usefulness of cyelic
sulfites themselves as useful synthons for converting diols into several amino alcohols, and
aziridines (Scheme 24).

During the last one year, a few more applications of cyclic sulfite and cyclic sulfate
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chemistry have been reported which only will be highlighted. For example, Kang et al
have converted unsaturated vinylic diols to allylic cyclic carbonates, sulfites or sulfates and
carried out nucleophilic attack at the allylic carbon using several organocuprate or Pd (0)-
catalysed nucleophilic addition reaction affording high yields of optically active allylic
alcohols (Scheme 25).
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More recently, Ko and Malik?' have reported the synthesis of carbohydrates and related
polyhydroxylated compounds employing asymmetric dihydroxylation followed by cyclic
sulfate chemistry (Scheme 26).
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Sharpless et al*? have converted diols into trans-epoxides via monotosylate/bromohydrin
(Scheme 27).
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Xu and Sharpless* have prepared oxazolidine-2-one by treating vinylic diols with
tosylisocyanate in the prescnce of a catalytic amount of Pd(O) in refluxing THF (Scheme 28).
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The most interesting feature of this transformation is the refention of configuration at both
the stereogenic centers and this offers a good method for the preparation of cis amino
Icohols. Tida and [taya* treated several 1,2-diols with oxalyl chloride to furnish a mixture
of cyclic carbonate and 1.4-dioxan-2,3-diones. The ratio of carbonate vs dioxane derivatives
depends upon the nature of the substituent on the glycol moiety (Scheme 29).
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To summarize. the applications of asymmetric dihydroxylation of alkenes in synthetic
organic chemistry is gaining ground slowly, even when the process to improve the selectivity
in ADH reaction and understanding the origin of selectivity is continuing to evolve. We
anticipate many more applications to emerge in the near future and this review just presents
the state of art how a synthetic organic chemist can exploit this novel tool.
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