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Abstract 

The results derived in earlier works on the stability of linear vector equation of the type, St + H± 
Gx = 0, which were obtained through the use of energy-like Liapunov functions, are extended in 

this paper to nonlinear and time varying vector equations of the type, I + h(z,x,A) + g(t,x) = 0. 
The derived results are useful only for certain types of g (t, x). Stability analysis of a discretized partial 
differential equation through the method described can help in choosing a suitable Liapunov functional 
for the original equation. 
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1. Introduction 

Suppose a nonlinear system is described by the vector differential equation 

X = Ax f (x), t e [0, co) 	 (1) 

where x is a On x 1) vector, A is a (in x m) matrix, lc = (dxfolt) and f4  (.) are nonlinear 

functions. The system can be treated as a feedback system, with the forward linear 

part described by 
(2) 

= Ax u 

and the nonlinear feedback part described by 

(3) 
u = f (x). 

Methods are available to study the stability of such systems', 2• 

Suppose a system is described by a set of second order equations of the form 

(4) 

where x, h and g are (n x 

equation (4) as 

st =a_ F(t, y) 

1) vectors, .t = (dxidt),I = (clieldt). It is possible to rewrite 

(5) 
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where y is a (2n x I) vector formed Lby (x, 2). Since F 
(F By), equation (4) can be converted to the form of (1). 
advantageous to study the stability of equation (4) as it is, 
following pair of scalar equations: 

can be written as By + 
However, it is sometimes 

For example, consider the 

+0+e-9x=--0. 	 (6) 
Theorem l of the following section is directly applicable to this system. It shows that 
the system is globally asymptotically stable. It is not necessary to convert the pair of 
equations (6) into the form of equation (I). 

Results on the linear form of equation (4) are available; 4 . Stability conditions are 
obtained in this work through the use of energy-like Liapunov functions. Similar 
methods are used here. 

Although the theorems presented here are applicable to ordinary differential equa- 
tions only, an interesting application is to discretized partial differential equation. The 
result is interesting because in the limit of zero step size used for discretization the 
result yields a sufficient condition for the stability of the original partial differential 
equation. 

Let 11 x I  represent the norm of x in Rn, and let II (x, 16„ represent the norm of (x, 2) 
in R2*. Let So  (b) represent the open ball j (xl 	< b. In the following theorems, 
by the statement "solution x = 0 of equation (4) is stable in So  (b) c R 2* " it is implied 
that the following conditions are satisfied. 

(Cl) If (x (t o), 2 (t 0)) e So  (b), then there exists on 0 < a < oo such that, 

(x (0, 2 	e So  (ab), for all t 	t 	0. 

(C2) For every c > 0 there is a (5 > 0 such that (x (t o), .* (to)) e se, (6) 
. (t), (0) e S o  (8) for all t 	O. 

The solution x = 0 is said to be stable if condition (C2) is satisfied. It is asymptoti- 
cally stable in S (b), if it is stable in S (b) and II (x, 2) 112, 	0 as t 	00 if (x (10), 

(to)) e S (b) for to  > 0. If a and 6 in conditions (C1) and (C2) are independent of to  
stability is uniform with respect to t 0 .5  

It is assumed that h and g in equation (4) are such that solution x (0 and i (0 are 
continuous. 

2. Results 

Now we state the main theorems of the paper. 

Theorem 1 a : If there are positive a, nil  and m2  such that in the region S(a) 

of R2", the following conditions are satisfied for all I 	0; 

-0) 	(t, x, 	2 	0 
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00 there is a scalar p (t, x) continuous with respect to t and x such that (a) ?nip x i1 2 	P 0, x) 	m211 x11 2  

(b)
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(t, x) (c) --b—t 	is non-positive and piecewise 

r 

continuous with respect to x and t 
then the trivial solution x r--- 0 of equation (4) is stable in so  (kaiih 2), where 

rill  =-_-• min (I, mi) 

ih2  = max (-I, m2) 
(7) 

(8) 
Theorem 1 b: If condition (ii) of Theorem l a is satisfied and there exist positive 

constants M, k, e l  and c2  such that for all (x, t)e S (a) and all t > 0, 

(iii) hi (I, x, lc) . i 	M il t 11 2  

(iv) h (t, x, t) 	k II i II 

(v) ?P (t,  l'c  -+ 0, as t -4 co 
bt 

(vi) for any fixed x„ where 11 xa  11 S a, g (t, xe) -4 k' fr.), as t -3 00 where g is a 
time invariant vector function. 

(vii) ca x li s I I nx) 11 co x j i 
then, equilibrium x = 0 of equation (4) is asymptotically stable in S (th 1alth2). 

Theorem 2: If there exist positive constants M1 , a and c such that for all t> 0, 

(1) g (t , x) 	M 1  il x II, if II x il 	a 

(ii) hi (t, x, 2) . :t 	E11211, if il .t il S a 

then the solution x =-- 0 of equation (4) is stable. 

Theorem 3: Suppose equation (4) can be written as 

(9) 

where C (t) is a symmetric matrix for all t 0, and N (x) is a vector whose element n, 

is a function of x 4  alone. 
If, in some region containing the origin as an interior point and for all t 0 

. (i) i xl cx + IT 7 n4  (x4) dx, > 0, x 0 0 
1 	4) 	

. 	a 
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(ii) dCldt is negative semi-definite 

(iii) (Is s . i) 	0 

then the equilibrium x = 0 is stable. 

3. Proofs 

Proof of Theorem 1 a : 	Let a scalar 

V (t, x, st) =-The p (t, x) + -} (if 2). 

V (I, x, i) be introduced such that 

(10) 

It is seen from equations (7), (8) and (10) and condition (ii a) of Theorem 1 that 

Me i 11(x, 2) III. 	v ( t, x, 2) S ni2 ! ! (x, -t) 	- 

Hence, V can be considered as a possible Liapunov function for establishing conditions 
for the stability of equation (4). If the vector x is considere id analogous to a displace- 
ment vector, then .k is analogous to velocity and si (2.2) is similar to kinetic energy. 
Since, the scalar p can be expressed as a gradient of a vector g, p is similar to potential 
energy. Hence. Liapunov function V can be said to be an energy-like function. 

Let w (t) be introduced such that 

w (t) = V (t, x (t), (t)). 	 (12) 

Note that w (0 is a continuous function of t because of the assumption that p and x 
are continuous. It is seen from equation (4) and (10) that 

1;_r_ br a_ 	(bVi 
1 	1 ) 

b V (13) 
bt 	Uxi   

1 

Substituting for xi  from equation (4) in equation (13) and making use of condition (ii b) 
of Theorem 1, we get, 

. 	dp 	hi 0, 	gy 
	 (14) 

it follows from conditions (1), (ii c) and equation (12) that 

(15) 

 

for all t for which (x (t), it (0) e S (a). 

We shall now prove, by contradiction, 

(x (:0), i (th LI2 < < 	a 

that if 

(16) 
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then 

II (x (0, g (0) II2„ < 	< a for all t 	to. 	 (17) 
Suppose. the assertion is not true. Then there must exist one or more values of 

> t for which (x (t), x (0) 11 2„ is equal to (thhe/iii,). Let the smallest of all such values of t be ti . Then by definition of t i , 

(x (6), g 	= M2e/fil1 < a 
(18) 

It also follows that 

(t). x (0) II2„ < tihejin i  for t e [to, ti). (19) 
It is seen from condition (11) that relations (16) and (18) imply that 

w(t ) < iih e (20) 

w 00 > ni2e (21) 

At the same time, it is seen from equations (15) and (19) that 

(1)‹ 0 for all t e (to, ti). 	 (22) 

Since, w (t) is continuous, it is obvious that if inequalities (20) and (22) are satisfied 
then inequality (21) cannot be true. Hence, the assumption that there exists a t i  
for which equation (18) is satisfied is not true. It is therefore concluded that 

II (x (t), t (0) 112,, < rn0€/rn 1  < a for all I > to. 	 (23) 

and, furthermore from relations (10), (11), (15) and (23) it is concluded that 

0 	w (t) < 	elmi  for all t > to 	 (24) 

and 

bev WS 0 for all :> I. 	 (25) 

This proves Theorem I a. 

Proof of Theorem 1 b : We shall now show that if conditions (i)-(vii) of Theorem 1 
are satisfied, then for any initial condition which satisfied inequality (16) we have 

(t), (0) II2„ -4 0, as t -4 oo. 	 (26) 

Limit (26) along with inequality (17) establishes asymptotic stability. 

It has been shown in the proof of Theorem 1 a that inequality (16) implies inequali- 

ties (24) and (25). It follows from inequality (24) that 	 , j1 	I 

.f 	dt < 	1. 	
(27) 
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Since, it,  is piecewise continuous and nonpositive, inequality (27) can be satisfied only if 

as t 	co. 	
(28) • 

It is seen from equation (14) and conditions (iii), (iv) and (v) of Theorem 1 that limit 
(28) implies that 

• g 	0, as t 	co  
(29) 

11 h 	x , 	II —* 0, as t 	co 	 (30) 

It follows from limit (29) that 

x (t) -4 2, as t --) oct. 	 (31) 

where 2 is a constant vector. Let us assume that 2 0 0. Then, it is seen from condi- 
tion (vii) that there is at least one i, say m, such that ä  (2)0 0. 

From conditions (vi), (vii) and limits 	(30) and (31) it follows 	that 	given a pair of 
positive e and 5, we can find a T such that 

h,,(t, x, 2) 6 for all t 	T (32) 

I go, (t, x (0) g„, (te  ) I < 8 for all t T. (33) 

Let us choose e and 6 such that 

(34) 

It can be seen from equation (34) and the mth component of equation (4) that 

516, 	sgn (km  (2)) 	(e + (5) — I wg„, (2) I < 0, t 	T 	 (35) 

. 	But we know that 	2„, so 0. 

we conclude that x (t) --0 0 and 
Inequality (35) imply that sgn tgns  (50 In  (1) —0 — 004 
Hence, the supposition that 2 0 0 is not true, and 
Theorem I b is proved. 

Proof of Theorem 2: Let aV be chosen as 

• V (x , 	= p (x) 	- 
	 (36) 

where p (x) is positive definite in Rs and there are positive constants a and it12  such that 

JIdx 
11 	M2 II X lj for all (x, 	e S (a). (37) 

Function V is positive definite in S (a). 	 • 
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From equations (4), (36) and condition (ii) of Theorem 2, it is found that 

— *c7rc  g) • .t (I: I 
dx 8'11 e) (38) 

From conditions (i), (37) and inequality (38) 

12  ((M1 + M2) jlxI1 — 	 (39) 
provided (x, ic) e S (a). If an a> 0 is chosen smaller than both a and 4(m 1  + Af2) 
then, it is seen from inequality (39) that I,  0 in S (a). Hence, solution x = 0 of equa- 
tion (4) is stable. 

Proof of Theorem 3: Let 

v(ttx,±)=-4xi cx f 
0 

(40) 

It can be seen from condition (i) of Theorem 3 that V is positive definite. 	It is also 
seen from. equations (4), (40) and conditions (ii) and (iii) of Theorem 3 that 

• , dC V gra- x —
dt 

x— 	O. 

Hence solution x = 0 of equation (4) is stable. 

4. Examples 

 

(41) 

Example 1 : Consider the scalar equation 
• 

 

h (t, x, fc) 	C (t) x + f (x) 0. 

 

(42) 

Application of Theorem 3 shows that equilibrium x = 0 is globally stable if for all x 

and all t 	0, 

dC (i) --• S 0 
dt 

(ii) h(t,x, I) 	0 	
d. 	 • 

(iii) f(p) dp 	C (0 x2 . 
0 • • • 

Example 2 : Consider a scalar equation 

h (I) kx = 0 	
(43) 

where k > 0. This system is obviously unstable if h. does not satisfy condition (ii) of 

Theorem 2. 



446 	 3. S. ANSARt 

Suppose, h (2) is given by 

lz (I) c sgn (t) 	± 0 0, c > 0. 	 (44) 

Then 

(45) 

Hence, it is seen that condition (ii) of Theorem 2 is satisfied. 

Equation (43) is a special case of equation (4) where 

g (x, t) = 	kx. 	 (46) 

It is obvious that g satisfies condition (I) of Theorem 2. Hence, the trivial solution 
x =-- 0 of equation (43) is stable for all positive c and all non-negative b and k. 

Example 3: Consider the system described by 

+ hi (t, x, 2) + (t) + (-TO = x2 
	 (47) 

k2  4 h2 (t, XI 2) ± C2 (0 X2 + /2 (X2) = Xi* 
	 • 	

(48) 

Equations (47) and (48) can be written in the form of equation (9) of Theorem 3 by 
defining 

[CI  (it) C (t) = - I 1 
C2 (0 

(49) 

and 

If N (x) = [ f 2  (X2) 
(50) 

• 

Applying Theorem 3, we find that the system is stable if' for all t > 0. 

(1) dCildt 0, dC2/di 0 

(ii) hi  21 	h2 22 	0 
• 

a, 
(iii) (Ci

1 
 f f (Y) dY) e2 + x2 

f f 2 (v) dy) 1. 

0 

Condition (iii) is satisfied if 

C1 Q) C2(t)> l for all t 0 
	 (51) 

and integrals of I  1 (x1) and 1. 2 00, between zero and any positive number, are non - 

negative. 
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Example 4 : Consider a partial differential equation 

b 2  x (t, z) 	 bx bx) 	2  b 2  X Z) t, Z, X, s-z- yie — C 	 =0. 	 (52) 

Let the boundary conditions at z 0 and z = L be such that 

bx 0, 0) 	 (I, L) x 01, 0) -- = (t,  
(53) bz 	 bz 

Liapunov's direct method can be used for a partial differential equation" but the 
choice of Liapunov function is not obvious. 

It can be seen that x 0, = 0 is a solution of equation (52) which satisfies boundary 
condition (53). 

In order to discretize equation (52), let A be the step size. 
denote x (t, IA). 	Equation (52) can be approximated as 

Let n A = L and let x 

• 	 C2  
.f -I- h i  (le, 	(x4+1 	2x4  + x4_1) 	O. 

6. 2  

Boundary condition (53) becomes 

xo  (xi  — xo) =x„ (x, 4_1) = 0. 

(54) 

(55) 

Let 

 

(4 — 2 xixt+i 44.) 	 ao.• 	 (56) 

V is positive definite. It is found from equations (54) and (56) It can be seen that 
that 

fret— p 11,24A. 

Hence, the trivial solution x4  = 0 of the discretized equation is stable if 

h4t4  A > 

Condition (58) suggests that the partial differential equation is stable if 

h(t,x,I)Iclx 0. 
0 

(57) 

. (58) 

(59) 
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Since the properties of a discretized equation can differ fr 
equation, we cannot conclude that inequality (59) is a sufficient 
lily of the partial differential equation...However, if h is equal 
becomes linear, and through the use of Laplace transforms we 
(at least in this case) is a sufficient condition for stability. 

om that or the original 
condition for the stabi- . 
to cThx1Zt, equation (52) 
frfid that condition (59) 

The study of discretized equation can help us in the choice of a Liapunov function for 
the partial differential equation. In some cases it may be possible to take the limit 
P of V as A tends to zero and express the resulting -17 as a function of the derivatives 
of x. 

Liapunov function P can be used to determine the stability of the partial differential 
equation. For example the limit P of V given by equation (56) is 

L  = f [ C 2  (LetY + C1 2 ] dX 

0 
(60) 

• 

Differentiating with respect to t we get 

z. 
x = 2  r C2 z 	x dx 2 f 'x ' 2 x  

dt 	J 	Zzbt 	 bt 2 dx  
0 	 0 

Integrating the first integral by parts we find • •• 
••• 

(61) 

dv 
dt 2 f [ — C2 X  + X.1 dx. 

bz 2 	ibt 2  
0 	- 	 a 

t_ 
Combining equations (52) and (62) we find 

gr) 
(62) 

• 

dV r  
dt 	J 

0 

h dx. (63) 

Since, 	S 0 is sufficient to establish stability we conclude that condition (59) is suffi- 
cient for the stability of trial solution x = 0 of equation (52). 

6. Conclusions 	• 

The results presented here are useful only for certain class of the following vector 
equation 

h (t, x, i)g (t, x) 	O. 
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If g can be expressed as a gradient of a positive definite scalar or as G(x) . x where 
G is symmetric, the results are applicable. The theorems are in general useful for 
cases where elements of g are non-increasing functions of t. 

It is shown that discretization of a partial differential equation and study of its stabi- 
lity can help us in choosing a suitable Liapunov functional for the original partial 
differential equation. 
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