J. Indian Inst. Sci., 64 (B), Feb. 1983, Pp. 41-44 © Indian Institute of Science, Printed in India.

Short Communication

Apparent molar volume of alkali metal formates in formic acid-water mixtures

K. CHOWDOJI RAO AND S. BRAHMAJI RAO

Department of Chemistry, Sri Krishnadevaraya University, Anantapur 515003, India. Received on April 29, 1982; Revised on July 7, 1982.

Abstract

The apparent molar volumes of formates of lithium, sodium and potassium in different mixtures of formic acid and water at 30° C have been calculated from the experimentally determined densities. The molar volume increased with concentration in pure water while it decreased with concentration in aqueous formic acid mixtures. At any concentration of the salt the volume varied non-linearly with the composition of the solvent and exhibited a maximum at about 40%, 60% and 80% of formic acid for lithium, sodium and potassium formates respectively.

Key words : Apparent molar volume, viscosity, density, alkali metal formates, formic acid.

1. Introduction

Our previous studies on the viscosity¹ and conductance² of sodium formate in formic acid-water mixtures indicated points of inflection at about 50% formic acid. In continuation of these studies we have studied the apparent molar volumes of formates of lithium, sodium and potassium in formic acid water mixtures at 30° C. The results are communicated here.

2. Experimental

Formic acid (Riedel, 98-100%) purified by the standard procedure³ (density 1.2058 g/ml lit.⁴ 1.2073 g/ml; viscosity 1.459 cp lit.⁵ 1.465 cp) and conductivity water are used in these studies. Salt solutions and solvent mixtures are prepared by weight. Density measurements are made with a pycnometer as reported¹ earlier.

% нсоон	0.02	0.10	0.50	0.30	0.40	0.20
Lithium form 0 20 40 60 80	nate 24:00 28:83 35:23 33:45 33:10	28·30 28·70 34·98 33·55 32·40	24·90 28·54 34·65 32·95 31·40	25·30 28·40 34·43 32·50 30·65	25 · 60 28 · 30 34 · 20 32 · 15 30 · 05	26.00 28.20 34.00 31.80 29.50
Sodium form 0 20 40 60	ate 23·20 27·96 30·80 32·60 26·50	23·70 27·94 30·65 32·30 26·10	24 · 30 27 · 86 30 · 40 32 · 00 25 · 60	24·90 27·81 30·20 31·60 25·20	25·30 27·78 30·05 31·40 24·90	25·70 27·74 29·90 31·20 24·60

Table I urent molar volumes (ϕ_{ν}) of alkali metal formates in formic acid-water

42

K. CHOWDOJI RAO AND S. BRAHMAJI RAO

21.01	32.06	32.28	32.44	32.26	32.70
		36.10	35.65	35.25	34.90
A STOLEN AND A STO		R. Rec. mailee	The second se	37.20	36.90
		ST-6137 19850-513	사망 같	38.11	38.04
44479 - FX563465	40. 2009 1000 7000	The second secon		38.60	38.40
	31 · 91 37 · 15 38 · 80 38 · 50 44 · 10	37.1536.7038.8038.1038.5038.40	31 31 32 00 37 15 36 70 36 10 38 80 38 10 37 70 38 50 38 40 38 28	31 91 32 00 36 10 35 65 37 15 36 70 36 10 35 65 38 80 38 10 37 70 37 40 38 50 38 40 38 28 38 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

3. Results

13

Apparent molar volumes (ϕ_v) are calculated by equation⁶ (1) and the data obtained are presented in Table I.

$$\phi_{v} = \frac{M}{d_{0}} - \frac{1000 \ (d - d_{0})}{d_{0} \ C} \tag{1}$$

where d and d_0 are the densities of the solvent and of the solution, M is the molecular weight of the salt and C is the concentration.

4. Discussion

The apparent molar volume exhibited a linear decrease with salt concentration in aqueous formic acid in contrast to water. At any concentration of the salt the apparent mola

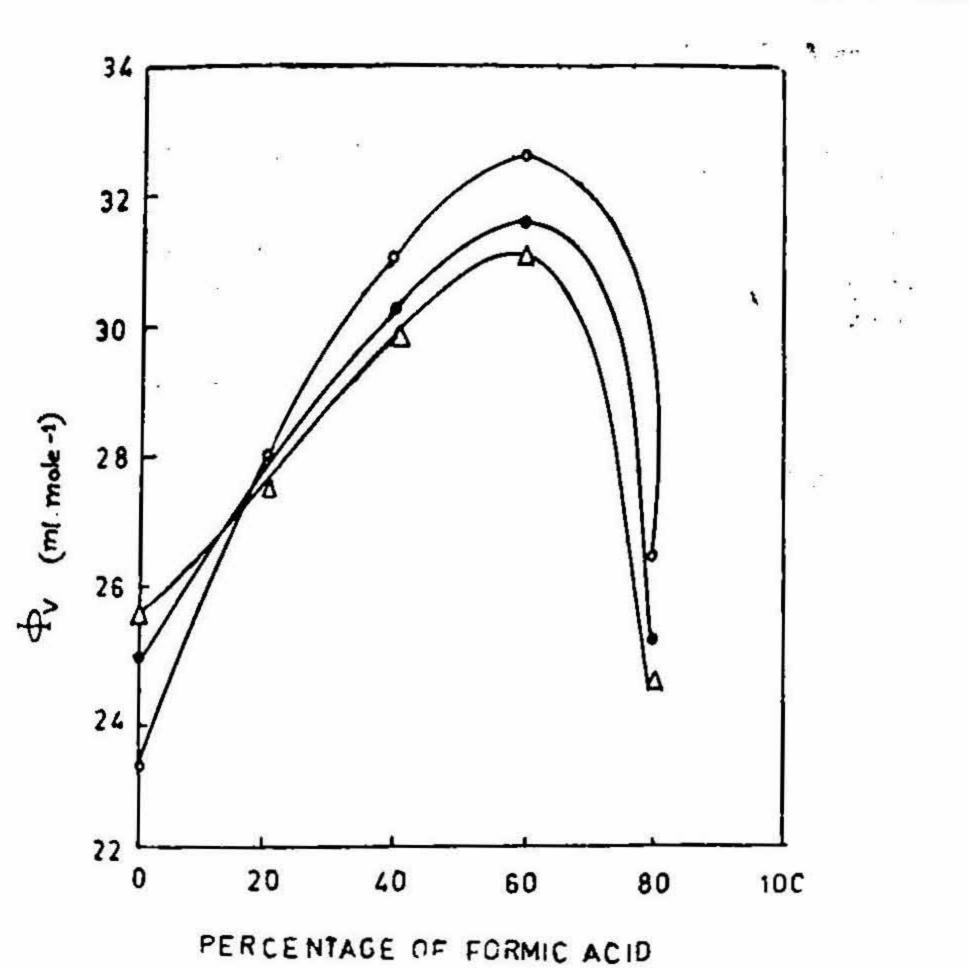


FIG. 1. Plot of ϕ_V vs. percentage of formic acid at 30°C; O, 0.1 molar; \bullet , 0.3 molar; \triangle ,

0.5 molar sodium formate solutions.

volume changed with the composition of the solvent in a non-linear fashion exhibiting a maximum (cf. fig. 1). This maximum occurred at 40%, 60% and 80% formic acid for lithium, sodium and potassium formates respectively. The change in viscosity and the packing⁷ of the solvent molecules in the ion-solvent complex may be responsible for this maximum. The greater the packing the smaller is the apparent molar volume. It appears that smaller the size of the cation, the minimum solvation (maximum molar volume) occurs at lower percentages of formic acid.

Acknowledgement

The authors are thankful to the authorities of Sri Krishnadevaraya University. Anantapur, for providing necessary facilities and the University Grants Commission, New Delhi, for the award of Junior Research Fellowship to one of them (K. C. R.).

References

1. CHOWDOJI RAO, K. AND Indian J. Chem., 1980, 19, 467, BRAHMAJI RAO, S.

K. CHOWDOW 2.40 AND S. BRAHMAJI RAO

44

.

2.	Chowdoji Rao, K. and Brahmaji Rao, S	Indian I. Corm. (in press).
3.	WEISSBERGER, A.	Technique of organic chemistry, 2nd edn., Interscience, New York, 1947. 3. 389.
4.	WASHBURN, E. W.	International origical tables, McGraw-Hill, New York, 1928, 3, 122.
5.	WEAST, R. C.	Hordonic of chemistry and physics, 55th edn., The Chemical Rabber Co., Cleveland, Ohio, 1974, F. 52.
6.	HARNED, H. S. AND Owen, B. B.	Physical chemistry of electrolyte solutions, Reinhold Publishing Corput, New York, 1957, p. 358.
7.	LONGSWORTH, L. G. AND MACINNES, D. A.	J. Phys. Chem., 1939, 43, 239.