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ABSTRACT

The stress and displacement ficlds wre determined in the neighbourhood of a
star-shaped crack in a composite material. It is assumed that a thin infinite plate
has been formed by wedges of sanie verijcal angle 2a and are even in number. For
the sake of simplicity it is assumed that the aliernative wedges are elastic and rigid
respectively. Iz is also wussumed thut there are cracks of wnit length originating from
the centre of the plate, and that ali cracks are opened by the same pressure. By
symmetry the problem has been reduced to amixed boundary value problem for an
dastic wedge.  Mellin transform method fus been used to reduce the mixed boundary
value problem to a simultancous set of dual iniegral equations involving inverse Mellin
transform.  The set of dual equations have becn soived in the case when o = nj2
by solving a pair of coupled Abel integral equations and the quantities of physical
importance have been determined. Finally, it is shown that the dual equations of the
present paper, for o =: n[2, through the Mellin transform reduce to those obtained
by Chakrabarti* and Lowengrub® through Fouricr transform by using the Convolution
theorem for Mellin transform. The paper demonstrates further use of integral
transforms to crack problems in composite materials.
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1. INTRODUCTION

The problems of Gtiffith cracks at the interface of (wo dissimilar media
have been the interest of Applied Mathematicians for a long time. In
_]968’ Erdogan® solved the problem of an even number of cracks at the
interface of two bonded dissimilar materials by the method of Fouriex
tl'ﬂﬂSfOl‘ms. The method of Erdogan does nol need calculating the inverse
F"“‘tler transforms under consideration to compute the quantities of
physical interest. England? comsidered the problem of a single Griffith
erack opened by equal and opposite normal pressure between iwo dissitilar
half planes. England used complex variable method to solve the problem
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and concluded that the solution is physically inadmissible since it predici
that the upper and lower surfaces of the crack should overlap at the ends,
Lowengrub® bas solved the problem of the stress distribution due to 4
Griffith orack at the interface of an elastic half plane and a rigid foundation,
He obtains the solution through Fourier transforms which lead to a simyl
taneous set of dual integral equations with trigonometric Kernels. Lowen
grub® uses almost the same method of ref. I 1o solve the set of dual integral
equations and obtains an oscillatory characler in a small region near the ends
of the crack in the components of displacements and stresses. Recently
Chakrabarti* has solved the problem considered by Lowengrub®in a cog-
pletely different manner. First he* reduces the problem to the same system
of dual integral equations as obtained by Lowengrub,® then reduces the
system of dual integral equations to that of solving a pair of coupled Abel
integral equations by making use of some important results given by
Jones.? The simutltancous system of Abel integral equations have been
reduced to that of solving simultaneous Rieman Hilbert problems for two
sectionally holomorphic functions ¢ (z) and ¢ (z). In his technique, Chakra-
barti* does not make any assumption as done by Lowengrub? to solve the
simultaneous set of dual integral equations. Finally Chakrabarti* obtains
the correct expressions for the displacement and the stress components.

2. STATEMENT OF THE PROBLEM AND FORMULATION OF THE SYSTEM OF
DUAL INTEGRAL EQUATIONS

The problem is that of determining the stress and displacement fields
in the neighbourhood of a star-shaped crack in a composite material, It
is assumed that a thin infinite plate has been formed by wedges of same
vertical angle (2¢) and are even in number. For the sake of simplicity it
is assumed that the alternative wedges are elastic and rigid respectively.
It is also assumed that there are cracks of unit length originating from
the centrs of the plate, and that all the cracks arc opened by the same
pressure.’ By symmetry the problem has been reduced to a mixed boun-
dary value problem for a single elastic wedge (0< 6 < a, 7 22 0)-.

‘The boundary conditions on the boundary 8 == 0 of the elastic wedge
with the crack 0<{#<1, can be expressed in the form
g (1,0) =0, 0< r< 1,
o (0 =—2uf(@), O0<r<1,
Uy (#,0) =0, r>1,
Ur (n,0)=0, r>1, @0
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whete orp az.nd o, are the shear and normal components of the stress while
U, and Uy ate the displacement components and f (v) is a known function.
On 8 =a, we have the following boundary conditions

Uy (7, 0) =0,
Ty (# a.) =0.
The conditions (2.2) are symmelry conditions on the line 6 = a.

2.2

1t is well known® that the equations of equilibrium are satisfied if we
assume that
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where x is the Airy stress function and w is the rigidity modulus. The
compatibility condition is fulfilled when x is a solution of the equation

DZ 1 2 az 2
(572‘+7S;+’5?92) x(r, ) =0. 2.9
Let
x (r, 8) 5t dr 2.5)

°—g

%(r,0) =

epresent the Mellin transform of x (r, ). Then, by Mellin’s inversion

1 Chico dz
o -
27: =5 f (cW;{ — 5% ) P+ s, (2.6)
C—mio0
1 Cico
=5 [ s+Dr.resoas, @.7
C=jco
1 00
o _
gk, T orodrena 2
C—joo
CHioo

__ 1 1 a3 1
U= | a0 -nipl —sarmz] e
C—ico (2.9)
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Ctico
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Cmico
A= e+ D6+ e e
where n is the Poisson’s ratio of the material
Using (2.5) in (2.4) we get
GE+ [pro+or | GE +e6+2z=0 (2.1
The solution of (2.11) is given by
(s, 6) =Asin(s8) - B(s)cos(s0) -+ C(s)sin(s +2)0
+ D(s)cos(s +2)0. (2.13

Using (2.2), (2.9), (2.10) and (2.12) we see that ¥ (s, ) can be writicn
in the form

5(s,0) =B coss(0 —a)+Dcos(s +2)(f —a), 2.1y
where ’ '
. B .. D
B = consa and D s 2.14

The boundary conditions (2.1), after using (2.7), (2.8), (2.9) (2.10), (2.1
and (2.14) may be expressed in the form

Ctica T

1

55 f [sB + sD] Fts+D ds:ff(u)du, O< r< 1) (2.19
C100 °
Chyoo

f [sB tan sa + (s +2) D . tan (s + Da] r SV gy =0, .-

C-too

N
2mi
O<r<l)y (21§

Cico
f [$B tan sa 4+ D{(s + 2) — 4 (1 — n)}tan (s + 2] "

clioo

xds =0, ¢>1) @17
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and
e
[ B4 D{s 40 =l iids =0, (r > 1) (2.18)
¢c—ioo
Now, let,
sB {5+ 4{1 =)D =F(s) 219
and

sBtan sa + {(s 4 2) - 4 — ) Dian (s + Do = G(s), (2.20)

then equations (2.15) to (2.18) take the form

Gfico
f [F(s) — 4 (1 —3) D ()1 D5 = f/(u) du,
h ‘0= r< 1), @.21)
Cico
e [ 6 40 =) DEIFS s =0, (0< r< 1),
C—io
@.22)
crico
Q}lﬁ f G reds =0, (>0, (2.23)
and
CHioo . -
1 f F(s) =S+ g g o= 2.24
3 (5) ds =0, >0 (2.249
Ceg

where, from (2.19) and (2.20) we get the expression for D (s) in terms 'of
F(s) and G (s)
D(s) = F(s)tan as — G (s)
[stan sa — (s - 2) tan (s+ 2) @ + 4 (1 — p)itan s + tan (s + 2) all
(2-25)

3. REDUCTION OF THE SYSTEM OF DUAL INTEGRAL EQUATIONS TO INTEGRAL
EQUATIONS OF THE SECOND, KIND "

In this section we reduce the system of dual integral equatlon (2.21)
o (2.24) to integral equations of the second kind in the following way:
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Let
s L
re= %%{_%)_ J [ELL 63
and
6 — r(z 2) P(z) f 5 g (6 dt 62

r(2+1) ;

where g, () and g,(?) are iwo unknown functions to be determined.
Substituting the expressions for G(s) and F(s) from (3.1) and (3.2)
(2.23) and (2.24) respectively we see that they are satisfied automatically,
while equations (2.21) and (2.22) reduce to

A f [ (1) K 0 0) + 22 () K 1, D]

vﬁ
=% ff (W du, 0<r< 1) @3
and
O+ [0 @ ka0 820 ka, D1 di =0,
O< r< ), G4
where

Gy () = 15, (1) .
= e )
s 2
G
Giioo r(s +l r(l s
2711 f P(s a) (j, (52_2 1)(2) (;) &,

G—ico

) =—20 -5

k() =2(—7)-

(3.6
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Ctico

2(1 — ) 1 tan so . tan (s -- 2) «
k()= —""7" - " B f Pis, )
T(z)r(z) (r\s , 3.7
r(2 3
Ctivo
201 — 1 tan (s -+ 2
ky(r 1) = — ( 7 ) C Qi f jn_[’ (s, a,))_a
I
(2 2)_ ( ) G.9)
r( +1)
P(s,0) =stan sa — (s + 2 tan (s +2) a -4 (1 — 7)
X {tan sa - tan (s + 2) a}. (3.9)

The following results were made usc of in deducing the equations (3.3)
and (3.4)

T (2) () ox

=L 56 G
and =0 (r>1) (3.10)
poer (o 2)1‘(2)
i, TGy () &=z ¢ -
=0 (r< 1)

Taking Abel inversion, the equanons (3.3) and (3.4) reduce to integral equa-

tt:xons of the second kind for the functions G, (¥) and G, (t) in the following
orm :

G +OJ[81 ML, ) + g (ML (v, )] dv
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378
and

&@+ T1g(®) Ls(v, 1) -+ g (v) Lo (v, 1)] dv =0
whcre

1
Liwn=—2 [ B02 g a=1,234
t

and

1=5% [

4. THE CASE WHEN a = 7/2, REDUCTION TO A SYSTEM OF ABEL Tyre
INTEGRAL EQUATIONS AND ITS SOLUTION

We now consider the case « == /2, which reduce the problem of 4
crack at the interface of an elastic half plane and a rigid foundation as
considered by Chakrabarti,* Lowengrub® and others. In the case when
o ==/2, the values of k; (r, 1), ky (r, 1) ks (r, 1), and k,(r, £) can easily be

obtained as

ky(r, ) = — 23(1_—‘.;]) \/“22;72 <1

=0 @ >1), (.4
O e v >

= (r< 1), 4.9
ko) = — 2= . —n >0

=0 (r< o, (4.3
ky(r. 1) = 237(1_—4:07) *\7',’——~§1;—;§ <1

=0 @ >1), (CX)

we also find that
P (s, ’27) =2Q — 4t ,
F(s) tan (%’) —G(s)

2(3 — 4 tan fzf

D(s) =
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Jn order to arrive at the final form of ki(r, ) (/== 1,2, 3, 4) we have made
use of the following results:

Gf+»°°1“(2 )T<2)() o Sds= 7 . =

»

,V/I._' . 12

2 e F( + 1)
=0 (r< 1)
and 4.5

1 7‘”1‘( )F( ) ( ) mn-——ds --——~—2>r< z (r>1)

i i — 2

2w o ]1( - 2>

r< b
(4.6)

i
1
<o

Now, using (4.1), (4.2), (4.3) and (4.4) in (3.3) and (3.4) we atrive at

r . - .
o (_t),-z dt + ray fv;% <-t.> p¥=3 ff () d,

s, f\’/iz ;
! 0< r< 1) “.7
and
1 T ¢
razf 7'}—:} dt — ay it — () Ldt=00< r< 1) 4.8)
where
24 — =G =2
e

We shall now obtain solution of the system of Abel type 'int'egral equation;
{4.7) and (4.8) for the functions G, (#), by a method similar to that o
Chakrabarti .4

Assuming

so=f S0 ye = Vf: s
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the equations (4.7) and (4.8) can be converted into the following simyl.
taneous Riemann-Hilbert problem for the sectionally analytic function
(with usual notations, see Chakrabarti®).

a (7 () ¢ (r))+l—2(r/>* M= M) =PMN(—1<r<
“.9
() — )+ i L (4 () + () =0(—T<r<l) @10)
where
P = [ fwdy, O<r< )
and
P(r)=—P(—pr), (—1< r<O)
The Case of Constant Pressure

Here we restrict on calculations to the case when the crack is opened
by constant pressure p,, whereas the analysis remains valid for arbitrary
integrable pressure distribution on the crack surfaces.

If we introduce two functions

b2 =¢(@) + z‘{’«g@ @10
and
2@ =4 —itD, @12

we may write the equations equivalent to the equations (4.9) and (4.10) in
the case when f (x) == constant (p,), as:

B—IPXP+XE=0C—d)pr(—l<r<l) .13
and
BO+E @ =3—dpr(-1<r<) (.14

The solutions of the two Hilbert problems (4.13) and (4.14) are obtained
by the technique of Muskhelishvilli® in the form

A()-— Po Y(Z)f ”ﬁm (4.15)
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ard
p(@) = X(Z)f 7(7—(7)—(7:;) (4.16)
where
Y(o) = /3T = 1)(‘2+ Iy (4.17)
X (@) = VEST (‘T} B (4.18)

are the solutions of the homogencous problems (4.13) and (4.14) and
1
k=5 In (3 — 4n).

The functions ¢ (z) and # (2) can then be calculated by using (4.11) and
4.12).

5. DETERMINATION OF STRESSES AND DISPLACEMENTS

From (2.23), (2.24), (4.14), (4.17) and (4.18) we find that the displace-
ment components on the crack surface are given by (0< r<< 1)

U (50 =5 [0+ () — X () + (& () — = ()] ERY
and

Ur (50 =L 1ot ) — - (9) — (3 () = - ()1 5.2)
Now, by the method of Muskhelishvilli,* we find that from (4.15) and (4.16)

@ =5 g’ 4”7) [z — ¥ (@] _ (5.3)
and

pe =2 8 *:;7) Iz — XL 5.4)

Hence using (5.3) and (5. 4) in (5.1) and (5.2) we get the expressions for
the components of displacements in the range 0< r<C 1 as:

r+1” , (5.5

\/3 \/1 — 72 cos [kln



382 A. CHAKRABARTI AND A. AMARNATH
and

e i vi=sanl 4 os

The stresses, on the line y =0, for | # | >1, can be calculated by means
of (2.15), (2.16), (4.13), (4.17), (4.18), (5.3) and (5.4) as

=1s

d rg—— 11
070(0:”)5!71>1=”‘Pa‘gr[\/f*-lsm{kln ;:{__1! ]

000, )| r »>1= 2o [\/r“—lcos{kln

and

These results are comparable with those obtained by Chrakrabarti.

6. ANALOGY BETWEEN THE EQUATIONS (2.21) TO (2.24) OF THE PRESENT
PAPER (IN THE CASE WHEN a = #/2) AND THE EQUATIONS (2.7)
TG (2.10) oF CHAKRABARTI?
Let

F()=F(Jcosy and  G() =G ()sin}, (6.1)

then, in the case when o ===/2, we get from equations (2.21) to (2.24) the
following equations in terms of F’'(s) and G’ (s):

CHioo CHico B
a 2%;1 f F’ (s) cos ”zv—ﬂ rjs ds + a, zim. f G’ (s) cos sz—wrs
C—ioo Cwica
ds= rp (r), O<r< 1) (6.2
1 o P 1 e . sm
a5 f G (s) sin 5 r3ds + a, 5 f F’ (s) sin 5 rs
G100 C—io ™
ds =0, O< r< 1) 6.3)
1 Ctico sor
o f @ (s)sin 3 s ds = 0 r>1 (64

C—100

Lot -
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and
Cico
zl;i [ Fcosy 1 ds=0 (r>1 (6.5)
Crt0
Now, let
F () = a* () ' (5) and G (8) == b* (s} I'(s), (6.6)
where

a* (s) = f:oa’ ) rstdr and b¥(s5) = ofc b (ryrsidr, (6.7)
0 o

Then using the foflowing results (¢f. Sneddon)

o

f cos £ . rSdr = I"(5) cos ;ﬂ (6.8)

0

[ simr s rdr =1 (s) sin o (6.9)

and
Ctioco oo
1 - ¥ ]

5o f FH(S) g* (s) S dds = f J (;) g (@) ;’” (6.10)

Cioo a

equations (6.2) to (6.5) take the form
a4 Jma(f) cosr £d€ - ay j?ob (Edcosr Edé—=rP(r), 0O< r<1)
(6.11)

a T b(E)sin rEdE 4 ay | a(€)sinrEde =0, (0= r< 1) (6.12)
T b(&)sinrede =0, >0 (6.13)

:fa(é')cos v dE — =1 (6.14)

where

wo-be(l) mt s ls()
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Equations (6.11) to (6.14) are similar to equations (2.7) to (2.10) of

Chakrabartj.?
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