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The problems of GuifE,ili cracks at thc interface of two dissimilar mema 
h e  been the interest of Applied Mathcmaticians for a long time. In 
1968, Erdoganl solved the problem of an cvcn number of cracks at  the 
interface of two bonded dissimilar materials by the method of Fourier 
transforms. The method of Erdognn does no1 need calculating the inverse 
Fourier transforms under co~isideratiol~ to compute the quantities of 
physical inlerest. England" considel-ed the pvobleln of a sin& Griffith 

opened by equal land opposite normal pressure between two dissimilar 
half planes. Englaiid uscd colnplex varinblc method to  solve tb.e probJenl 
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and concluded that the solution is physically inadmissible since it predicts 
that the upper and lower surfaces of the crack should overlap at the ends, 
Lowengrubs bas solved the problem of the stress distribution due to a 
GriBth crack at the interface of an elastic half plane and a rigid foundation. 
He obtains the solution through Fourier transforms which lead to a simul. 
taneous set of dual integral equations with trigonometric Kernels. Lowen. 
grub3 uses almost the same method of ref. 1 to solve the set of dual integral 
equations and obtains an oscillatory character in a small re&ion near the ends 
of the crack in the components of displacements and stresses. Recently 
Chakrabarti4 has solved the problem considered by Lowengrub3 in a corn. 
plttely different manner. First he4 reduces the problem to the same system 
of dual integral equations as obtained by Lowengr~b ,~  then reduces the 
system of dual integral equations to  that of solving a pair of couplcd Abel 
integral equations by making use of some important results given by 
J o n e ~ . ~  The s i m ~  ltaneous system of Abel integral equations have been 
reduced to that of solving simultaneous Rieman Hilbert problems for two 
sectionally holomorphic functions Ii, (2) and $ (2). In his tcchnique, Chakra- 
barti4 does not make any assumption as done by Lowengrubvo solve the 
simultaneous set of dual integral equations. Finally Chakrabarti4 obtains 
the correct expressions for the displacement and the stress components. 

2. STATEMENT OF THE PROBLEM AND FORMULATION OF THE SYSTEM OF 

DUAL INTEGRAL EQUATIONS 

The problem is that of determining the stress and displacement fields 
in the neighbourhood of a star-shaped crack in a composite material. If 
is assumed that a thin infinite plate has been formed by wedges of same 
vertical angle (2a) and are even in number. For the sake of simplicity it 
is assumed that the alternative wedges are rlastlc and rigid respectively. 
It is also assumed that there are cracks of unrt length originating from 
the centr: of the plate, and that all the cracks are opened by the same 
pressure. By symmetry the problem has been reduced to a mixed boun- 
dary value problem for a single elastic wedge (0< 0 < a, r 2 0). . 

The boundary conditions on the boundary 0 = 0 of the elaatic wedge 
with the crack O< r< 1, can be expressed in the form 



vhvbere g7e and are the shear and normal components of the stress while 
ug and U, are the displacement components and f (r) is a known function. 
on 8 = a ,  we have the following boundary conditions 

U, ( I ,  a) = 0, 

UT# (P, a) = 0. (2.2) 

~ h c  conditions (2.2) are symmetry conditions on the line 6 = a. 

It is well knowne that the equations of equllibriurn are satisfied if we 
assume that 

where x is the Airy stress function and u is the rigidity modulus. The 
compatibility condition is fulfilled when is a solution of the equation 

represent the Mellin transform of x ( r ,  0). Then, by Meliin's inversion 



4- {(I - 7 )  s* + (S  + i) (s t 2) 2H - w  11 ds, (2.10) 

where 7 is  tl.e Poisson's ratio of the material. 

Using (2.5) in (2.4) we get 

T1.e solutio~i of (2.1 I )  is given by 

X (s, 6) = A sin Is 6 )  + B (s) cos ( s  0) + C (s) sin ( s  +- 2) B 

+ D (s )  cos ( s  + 2)  8 .  (2.12) 

Using (2.2), (2.9), (2.10) and (2.12) we scc that 2 (s, 8) can bc writttn 
in the form 

X (s, 0) = B' cos s (0 - a) -k D' cos (s + 2) ( 8  - a), (2.13) 

where 

B' = . B... D 
COS sa. 

and D' = ,- . 
sm sa (2.14) 

The boundary conditions (2 .  I), after using ( 2 . 7 ,  (2.8); (2 .9)  (2. I@) ,  (2  .l3) 
and (2.14) may be expressed in the form 

c + l m  & j" [ s B t u l ~ a + ( s t 2 ) D . t a n ( s i 2 ) a ] r - ~ " ~ ~ ~ = ~ , ~ ~ ~  
C-ICo 

(O< ?< 1) (2.16) 

c+<m & ;/ [sB tan sa + D {(s + 2) - 4 i1 - v)] tan (s + 2)aI 'I 

c 2 , m  

x ds = 0, ( r >  1) (2.17) 



and 
C.+l=' 

! j- I s B + - D ( . s - i - 4 ( 1  - - - 7 ) i : ] r - ~ s + l ) d s = 0 ,  ( ; . > I )  
2ni 

. (2.18) 

and 

sB tan sa $- [(s  -I- 2)  - - 4 (1 - 91): D tan ( s  i. 2 )  r~ - G (s), (2.20) 

then equations ('2.15) io (2.1 8 )  iakc the form 

el- 

where, from (2.19) and (2.20) wc get the expression for D (s)  in telrns of 
F(s)  and G (s) 

D (s) = F(s )  tan as - G (s)  - 
[s tan sa - (s + 2) tan (si- 2) a  -I- 4 ( 1  - 7) {tan sa + tan ( s  $- 2) a ) ]  

(2.25) 

ID this ~ection we reduce the system of dual integral equat~on (2.21) 
to (2.24) to integral equations of the second kind in the following way: 



Let 

where g, ( t )  and g, ( t )  are two unknown functions to be determined. 
Substituting the expressions for G ( s )  and F(s)  from (3 .1 )  ar,d (3.2) 
(2.23) and (2.24) respecthely we see that they are satisfied automatically, 
while equations (2 .21)  and (2 .22)  reduce to 

c+4= 
1 

kl (r, t )  = - 2 (1 - 7) - tan sa GI G) (;yds, 
2ni S -1 

C-im (; + 9 
(3.5) 



C k l o o  

2 ( 1  - 7) . . I -  tan sa . tan ( s  -1- 2 )  a 
k3 (r, f) = --7 2ni 

C-100 

P(s, a) = stall sa - (s $- 2) tan (s  4- 2) a 4- 4(1 - ?) 

x {tan sa 4- tan (s + 2 )  a}. (3.9) 

The followmg results werc made use of in dcducing the equations (3.3) 
and (3.4) 

= 0 ( r > t )  (3.10) 
and 

= 0  (r< t )  

Taking Abel inversion, the equat~ons (3.3) and (3.4) reduce to integral equa- 
hens of the second kind for the functions G, ( t )  and G, ( t )  m the following 
form : 
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and 

4. THE CASE WHEN u = 4 2 ,  REDUCTION TO A SYSTEM OF ABEL TYPE 
INTEGRAL EQUATIONS AND ITS SOLUTION 

We now consider the case a :- 42;.  which reduce the problem of a 
crack at the interface of an elastic half plane and a rigid foundatioil as 
considered by Chakrabarti? Lowengrub3 and others. In the case when 
a = 11312, the valnes of k, (r, t ) ,  k2 (r, t )  k3 (r, t) ,  and k, (P, t )  can easily he 
obtained as 

we also find that 

P (s, ;) = 2 (3 - 47) tan , 



and 

(4 ' 6) 

Now, using (4. I), (4 4, (4.3) ~iiic! (4.4) in (3.3) and (3.4) we arrive at 

and 

where 

We shaU now obtain solution of the system of Abel type integral equations 
(4.7) and (4.8) for the f~mctions GI (t), by a method similar to that of 
Chakrabarti 

Assuming 



the equations (4 .7)  and (4.8) can be converted into th.e following simul. 
taneous Riemann-Hilbert problem for the sectionally analytic functions 
(with usual notations, see Chakrabarti4). 

wh.ere 

p(r) = [ f ( u ) d u ,  (O< r .< 1) 

and 
P (r) = - P (- r), (- 1 < r< 0). 

The Case of Constant Pressure 

Here we restrict on calculations to the case when the crack is opened 
by constant pressure po, whereas th.e analysis remains valid for arbitrary 
integrable pressure distribution on the crack surfaces. 

If we introduce two functions 

+ ( 2 )  P (4 = + (4 S- i -; 

and 

C (4 X(z) = + ( z )  - i- , 

we may write the equations equivalent to the equations (4.9) and (4.10) in 
the case when f (x) = constant (po), as : 

(3 -4r))A+(r)+h-(r)=(3 - G ) p , r ( - I <  r <  1) (4.13) 

and 

p+ (r) + (3 - 417) p- ( Y )  = (3  - 417) po I (- 1 < Y < 1 )  (4.14) 

The solutions of the two Hilbert problems (4.13) and (4.14) are obtained 
by the technique of Muskhelishvillis in the form 
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1 
P (z) == + T I  ~ ( 2 )  J x+- ( t )  (f - zl dt 

-I 

where 

are the solutions of th.e h.oin.ogencous prob1eni.s (4.13) and (4.14) and 

The functions 4 (z) and # (z) can then be calculated by using (4.11) and 
(4.12). 

From (2.23), (2.24), (4.14), (4.17) and (4.18) we find that the displace- 
ment components on the crack surface are given by (0< r<  1) 

uo (r,  0) = [(A+ (r) - A- (r)) 4- (p+ ( r )  - p- ( r ) ) ]  (5.1) 

and 

Now, by the method of MuskhelishviUi,a we find that from (4.15) and (4.16) 

and 

(5.4) 

Hence using (5.3) and (5.4) in (5.1) and (5.2) we get the expressions for 
the components of displacements in the range 0 < r t  1 as: 
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The stresses, on the line y == 0, for 1 r I > 1, can be calculated by means 
of (2.15), (2.16), (4.13), (4.17), (4.18), (5.3) and (5.4) as 

and 

a,." (0, r) 1 , . , , , = - p, - l/r2 - 1 sin 
dv [ ---- 

These rcsults arc comparable with those obtained by Cbakralzarti.4 

6 .  ANALOGY BETWEEN THE EQUATIONS (2.21) TO (2.24) OF THE PRESENT 
PAPER (IN THE CASE WHEN a = ~ 1 2 )  AND THE EQUATIONS (2.7) 

TO (2 .lo) OF CHAKRABARTI~ 

Let 

F(s)  = F' (s) cos and G (s) = G (s) sin iz , (6.1) 

then, in the case when a = ~ 1 2 ,  we get from equations (2.21) to (2.24) the 
following equations in terms of F' (s) and G' (s) : 

c+im ctioo 
1 ST 1 

a, 2% 1 G' (s) sin 3 rs ds + a, zi F' (s) sin rs 



and 
C-cioo 

where 

a, 

.\ 7r 
J Tin r . YS -I  cir -: r ($1 sin 2 ( 6 . 9  

and 

equalmns (6.2) lo (6.5) take thc form 
m m 

al J u ( t ) c o a r  Edc-j-ct, J b ( t ) c o b r  f r i t - r P ( r ) ,  ( O < r <  1) 
0 0 
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Equations (6.11) to (6.14) are similar to equations (2.7) to (2.10) $ 

1, Erdogen, F. 

2. Englmd, A. H. 
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