THE EFFECT OF A PENNY-SHAPED CRACK IN A SEMI-INFINITE CYLINDER

Aloknath Chlakrabarti
(Department of Applied Mathematics, Indian Institute of Science, Bungalore 560 012)
Reccived on March 12, 1977

Abstract

A procedure is presented for solving the problem of a penny-shaped crack, in a semi-infinite cylinder opened by a known pressure. The crack is assumed to be situated at a finite distance from the flat end, which is assumed stress-free and the curved boundary constrained. Expressions for the quantities of practical interest have been obtained and some of them have been compared with the results of a particular limiting case of this problem. Numerical results are tabulated at the end.

Key words: Penny-shaped crack, Dual series relations, Fredholm integral equations.

1. Introduction

Axisymmetric mixed boundary value problems in Elasticity have been considered by many authors. ${ }^{1-7}$ Thesc authors have handled axisymmetric problems associated with either a half-space or a long cylinder. Problems concerning half cylinders containing a single crack even have not been tackled so far, either because of the lack of techniques available or because of the complication it gives rise to mathematically.

In this paper, we have investigated the problem of a semi-infinite cylinder containing a penny-shaped crack at a finite distance $h(>0)$ from its flat end, through a system of Fredholm integral equations. The crack is assumed to be symmetrically situated around the axis of the cylinder. The cylinder is assumed to be deformed by the application of a known pressure on the crack surfaces, whereas the flat end of the cylinder is assumed to be stress free and the curved boundary constrained. The method followed in solving the problem here is simmlar to the second method of Sneddon and Tait ${ }^{3}$ with the modi cation given by Chakrabarti. ${ }^{8}$ The problem has been reduced to a system of dual series relations which ultimately have been reduced to a system of Fredholm integral equations of the second kind
by a technique similar to that described in Chakrabarti. ${ }^{8}$ In the limiting case, when $h \rightarrow \infty$ in our problem, the problem reduces to that of Sneddon and Tait. ${ }^{3}$

Numerical solutions of the system of Fredholm cquations have been obtained for different values of h, a and the Poisson's ratio $\%$. Using these numerical solutions, the non-dimensional quantitics involving the stressintensity factors have been tabulated for different values of η, a and h.

2. The Statement and Mathematical Formulation of the Crack Problem

We consider the following mixed boundary value problem:
The curved boundary $r=a$ of the cylinder is assumed to be constraned in such a manner that the radial displacement and the shearingstress are zero on $r=a$. The that end $z=-h(h>0)$ of the cylinder is assumd to be stress-free, whilst the stresses are prescribed on the surface of the crack $\left(z=0^{ \pm}, 0 \leqslant r<1\right)$, where r, θ, z are cylindrical polar coordinates, the z-axis being taken along the axis of the cylinder. We have considered the radius of the crack to be unity and assumed that $a>1$.

With usual notations, the boundary conditions of the problem are:

$$
\begin{align*}
& \sigma_{z}=0=\tau_{r z}, \quad \text { on } \quad z=-h,(0 \leqslant r \leqslant a) \tag{2.1}\\
& u=0=\tau_{r_{z}}, \quad \text { on } \quad r=a, \\
& \sigma_{z}\left(r, 0^{-}\right)=-p(r), \quad \tau_{r z}\left(r, 0^{-}\right)=0, \quad(0 \leqslant r<1) \tag{2,3}\\
& \sigma_{z}\left(r, 0^{+}\right)=-p(r), \quad \tau_{r z}\left(r, 0^{+}\right)=0, \quad(0 \leqslant r<1) \tag{2.4}
\end{align*}
$$

Also, the continuity of the sitesses and the displacements actoss the plane $z=0$, unoccupied by the crack, requires

$$
\left.\begin{array}{l}
\sigma_{z}\left(r, 0^{-}\right)=o_{z}\left(r, 0^{+}\right), \quad \tau_{r_{2}}\left(r, 0^{-}\right)=\tau_{r_{z}}\left(r, 0^{+}\right),(1<r \leqslant a) \tag{2.5}\\
u\left(r, 0^{-}\right)=u\left(r, 0^{+}\right), \quad w\left(r, 0^{-}=w\left(r, 0^{+}\right), \quad(1<r \leqslant a),\right.
\end{array}\right\}
$$

where $u(r, z)$ and $w(r, z)$ are the nonvanishing components of the dis. placement vector.

3. Reduction to a System of Dual Series Relations

To solve the above-posed, axisymmetric mixed problem in section 2, we look first for the expressions for the displacements and stresses in the cylinder in terms of an axisymmetric bi-harmonic stress function $\chi(r, z)$
(cj. Love ${ }^{9}$). Throughout the paper, η is Poisson's ratio and μ is the rigidity modulus of the material of the isotropic elastic cylinder.

Solution for $z>0$:
We assume a bi-harmonic function $\chi(r, z)$ satisfying the conditions of the vanishing of stresses and displacements for large z, in the following form,

$$
\begin{equation*}
x(r, z)=\sum_{n=1}^{\infty}\left(A_{n}+B_{n} z\right) J_{0}\left(\xi_{n}\right) \exp \left(-\xi_{n} z\right) \tag{3.1}
\end{equation*}
$$

where A_{n} and B_{n} are constants and ξ_{n} 's are the positive zcros of $J_{1}(\xi a)$, $J_{n}(x)$ being the Bessel function of the first kind of order n.

Expressions for the displacements and stresses in the region $z>0$ can be obtained by using the relations in Love. ${ }^{9}$

Solution for $-h<z<0$
In this region, we assunce the representation of $\chi(r, z)$ as :

$$
\begin{align*}
\chi(r, z)= & \sum_{n=1}^{\infty}\left[C_{n} \cosh \xi_{n}(z+h)+D_{n} \sinh \xi_{n}(z+h)\right. \\
& \left.+E_{n}(z+h) \cosh \xi_{n}(z+h)+F_{n}(z+h) \sinh \xi_{n}(z+h)\right] \\
& \times J_{0}\left(\xi_{n} r\right),
\end{align*}
$$

where $C_{n}, D_{n}, E_{n}, F_{n}$ are constants.
We observe that these forms of the stress-functions satisfy the conditions (2.2) automatically because of the choice of the ξ_{n} 's. We can satisfy the conditions (2.1), by choosing

$$
\begin{equation*}
\xi_{n} C_{n}=-2 \eta F_{n}, \quad \xi_{n} D_{n}=(1-2 \eta) E_{n} \tag{3.3}
\end{equation*}
$$

Reduction to a system of dual series relations
The conditions (2.3) and (2.4) require:

$$
\begin{align*}
\sum_{n=1}^{\infty} \quad \xi_{n}^{3} & {\left[A_{n}-2 \eta G_{n}\right] J_{1}\left(\xi_{n} r\right)=0 } \\
= & \sum_{n=1}^{\infty} \xi_{n}^{2} \sinh \left(\xi_{n} h\right)\left[E_{n}\left(1+\xi_{n} h \operatorname{coth} \xi_{n} h\right)+F_{n} \xi_{n} h\right] \\
& \times J_{1}\left(\xi_{n} r\right)(0 \leqslant r<1) \tag{3.4}
\end{align*}
$$

LISc.-3
and

$$
\begin{align*}
& \sum_{n=1}^{\infty} \quad \xi_{n}^{3}\left[A_{n}+(1-2 \eta) G_{n}\right] J_{0}\left(\xi_{n} r\right)=-p(r) \\
&= \sum_{n=1}^{\infty} \dot{\xi}_{n}^{2} \sinh \left(\xi_{n} h\right)\left[-E_{n} \xi_{n} h+F_{n}\left(1-\xi_{n} h \operatorname{coth} \xi_{n} h\right)\right] \\
& \times J_{0}\left(\xi_{n} r\right),(0 \leqslant r<1) \tag{3.5}
\end{align*}
$$

where

$$
\begin{equation*}
B_{n}=\xi_{n} G_{n} \tag{3.6}
\end{equation*}
$$

The continuity conditions (2.5) together with (3.4) and (3.5) require:

$$
\left.\begin{array}{l}
{\left[A_{n}-2 \eta G_{n}\right]-E_{n}^{\prime}\left(1+y_{n} \operatorname{coth} y_{n}\right)-F_{n}^{\prime} y_{n}=0} \tag{3.7}\\
A_{n}+(1-2 \eta) G_{n}+E_{n}^{\prime} y_{n}-F_{n}^{\prime}\left(1-y_{n} \operatorname{coth} y_{n}\right)=0
\end{array}\right\}
$$

and $[$ for $1<r \leqslant a]$,

$$
\begin{align*}
\sum_{n=1}^{\infty} & {\left[\left(-A_{n}+G_{n}\right)-E_{n}^{\prime}\left(y_{n}+(2-2 \eta) \operatorname{coth} y_{n}\right)\right.} \\
& \left.-F_{n}^{\prime}(1-2 \eta)+y_{n} \operatorname{coth} y_{n}\right] \xi_{n}^{2} J_{1}\left(\xi_{n} r\right)=0 \tag{3.8}\\
\sum_{n=1}^{\infty} & {\left[\left(A_{n}+2 G_{n}(1-2 \eta)\right)+E_{n}^{\prime}\left((1-2 \eta)-y_{n} \operatorname{coth} y_{n}\right)\right.} \\
& \left.+F_{n}^{\prime}(2-2 \eta) \operatorname{coth} y_{n}-y_{n}\right] \\
& \times \xi_{n}^{2} J_{0}\left(\xi_{n} r\right)=0 \tag{3.9}
\end{align*}
$$

where we have written

$$
\begin{gather*}
E_{n}^{\prime}=E_{n}\left(\sinh \xi_{n} h\right) / \xi_{n}, \quad F_{n}^{\prime}=F_{n}\left(\sinh \xi_{n} h\right) / \xi_{n} \\
y_{n}=\xi_{n} h \tag{3.10}
\end{gather*}
$$

Solving equations (3.7) for E_{n}^{\prime} and F_{n}^{\prime} in terms of A_{n} and G_{n} and substituting in (3.8) and (3.9), we obtain:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[A_{n} M_{n}+G_{n} N_{n}\right] \xi_{n}^{2} J_{1}\left(\xi_{n} r\right)=0, \quad(1<r \leqslant a) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[A_{n} P_{n}+G_{n} Q_{n}\right] \xi_{n}^{2} J_{0}\left(\xi_{n} r\right)=0, \quad(1<r \leqslant a) \tag{3.12}
\end{equation*}
$$

where

$$
\begin{align*}
M_{n}= & -(2-2 \eta)\left(1-y_{n} \operatorname{cosech}^{2} y_{n}+\operatorname{coth} y_{n}\right) / \\
& \left(y_{n}^{2} \operatorname{cosech}^{2} y_{n}-1\right), \\
N_{n}= & -2 \eta M_{n}-K_{n}, \quad Q_{n}=K_{n}+(1-2 \eta) P_{n}, \\
K_{n}= & (2-2 \eta) y_{n}^{2} \operatorname{cosech}^{2} y_{n} /\left(y_{n}^{2} \operatorname{cosech}^{2} y_{n}-1\right), \tag{3.13}\\
P_{n}= & -(2-2 \eta)\left(1+y_{n} \operatorname{cosech}^{2} y_{n}+\operatorname{coth} y_{n}\right) / \\
& \left(y_{n}^{2} \operatorname{cosech}^{2} y_{n}-1\right) .
\end{align*}
$$

Thus by means of (3.4), (3.5), (3.11) and (3.12), we see that the problem is reduced to a system of dual series relations given by:

$$
\left.\begin{array}{l}
\sum_{n=1}^{\infty}\left[A_{n}+(1-2 \eta) G_{n}\right] \xi_{n}^{3} J_{0}\left(\xi_{n} r\right)=-p(r), \tag{3.14}\\
\sum_{n=1}^{\infty}\left[A_{n}-2 \eta G_{n}\right) \xi_{n}^{3} J_{1}\left(\xi_{n} r\right)=0 ;
\end{array}\right\}(0 \leqslant r<1)
$$

and

$$
\left.\begin{array}{l}
\sum_{n=1}^{\infty}\left[P_{n} A_{n}+Q_{n} G_{n}\right] \xi_{n}^{2} J_{0}\left(\xi_{n} r\right)=0 \tag{3.15}\\
\sum_{n=1}^{\infty}\left[M_{n} A_{n}+N_{n} G_{n}\right] \xi_{n}^{2} J_{\mathrm{L}}\left(\xi_{n} r\right)=0
\end{array}\right\}(1<r \leqslant a)
$$

Writing

$$
\begin{equation*}
P_{n} A_{n}+Q_{n} G_{n}=R_{n} / \xi_{n}, \quad M_{n} A_{n}+N_{n} G_{n}=S_{n} / \xi_{n}^{2} \tag{3.16}
\end{equation*}
$$

and using the expressions (3.13) for $M_{n}, N_{n}, P_{n}, Q_{n}$ and K_{n}, we can easily reduce the above system (3.14) and (3.15), after some manipulations, to the following simple form:

$$
\left.\begin{array}{l}
\sum_{n=1}^{\infty}\left[\left(1-V_{n}\right) R_{n}+\xi_{n}^{-1} U_{n} S_{n}\right] \xi_{n}^{2} J_{0}\left(\xi_{n} r\right)=-p(r), \tag{3.17}\\
\sum_{n=2}^{\infty}\left[U_{n} R_{n} \xi_{n}+\left(1-W_{n}\right) S_{n}\right] \xi_{n} J_{1}\left(\xi_{n} r\right)=0 ;
\end{array}\right\}(0 \leqslant r<1)
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} R_{n} \xi_{n} J_{0}\left(\xi_{n} r\right)=0=\sum_{n=\ddagger}^{\infty} S_{n} J_{1}\left(\xi_{n} r\right), \quad(1<r \leqslant a) \tag{3.18}
\end{equation*}
$$

where

$$
\begin{align*}
U_{n}= & -\left[y_{n}^{2} \exp \left(-2 y_{n}\right)\right] / 4(2-2 \eta) \tag{3.19}\\
V_{n}= & -y_{n}^{2} \exp \left(-2 y_{n}\right)\left[\left(1-\left(1+y_{n}\right) \exp \left(-2 y_{n}\right)\right) /\right. \\
& \left.\left(1-\left(1-y_{n}\right) \exp \left(-2 y_{n}\right)\right)\right] / 4 \cdot(2-2 \eta) \tag{3,20}
\end{align*}
$$

and

$$
\begin{gather*}
W_{n}=-y_{n}^{2} \exp \left(-2 y_{n}\right)\left[\left(1-\left(1-y_{n}\right) \exp \left(-2 y_{n}\right)\right) /\right. \\
\left.\left(1-\left(1+y_{n}\right) \exp \left(-2 y_{n}\right)\right)\right] / 4(2-2 \eta) \tag{3.21}
\end{gather*}
$$

It is easily seen that in the limiting case, when $h \rightarrow \infty, U_{n}, V_{n}, W_{n} \rightarrow 0$, and the problem reduces to that considered by Sneddon and Tait. ${ }^{.}$

4. Reduction to a System of Fredholm Integral Equations

To reduce the above system of dual series relalions to a systcm of Fredholm integral equations, we follow a technique given by Chakrabartis in reducing dual series relations to a Fredholm integral equation.

We assume (cf. Chakrabarti ${ }^{9}$):

$$
\begin{equation*}
\sum_{n=1}^{\infty} R_{n} \xi_{n} J_{0}\left(\xi_{n} r\right)=\int_{r}^{1} g_{1}(t)\left(t^{2}-r^{2}\right)_{1}^{-\frac{1}{2}} d t(0 \leqslant r<1)\left(g_{1}(0)=0\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} S_{n} J_{1}\left(\xi_{n} r\right)=-\frac{\partial}{\partial r} \int_{r}^{1} g_{2}(t)\left(t^{2}-r^{2}\right)^{\frac{1}{2}} d t .(0 \leqslant r<1) \tag{4.2}
\end{equation*}
$$

Then, we obtain by the technique of finding the Dini and the Fourier-Bessel coefficients (see Chakrabarti ${ }^{8}$),

$$
\begin{equation*}
R_{n} \dot{\xi}_{n}^{2}=\left[2 / a^{2} J_{2}^{2}\left(a \xi_{n}\right)\right] \int_{0}^{1} g_{1}(t) \sin \left(\xi_{n} t\right) d t \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{n}=\left[(2 \pi)^{\frac{1}{2}} / a^{2} J_{2}^{2}\left(a \xi_{n}\right)\right] \xi_{n}^{-\frac{1}{2}} \int_{0}^{1} t^{3 / 2} g_{2}(t) J_{3 / 2}\left(\xi_{n} t\right) d t \tag{4.4}
\end{equation*}
$$ We also note that, for $0 \leqslant r<1$ (sec Chakrabariis),

$$
\begin{align*}
& \sum_{n=1}^{\infty} R_{n} \xi_{n}^{2} J_{0}\left(\xi_{n} r\right)=\int_{0}^{\infty} g_{1}^{\prime}(t)\left(r^{2}-t^{2}\right)^{-\frac{1}{2}} d t \\
& \quad-(2 / \pi) \int_{0}^{1} g_{1}(t) d t \int_{0}^{\infty}\left(K_{1}(a y) / I_{1}(a y)\right) I_{0}(r y) y \sinh (t y) d y \tag{4.5}
\end{align*}
$$

and

$$
\begin{aligned}
\sum_{n=1}^{\infty} S_{n} \xi_{n} J_{1}\left(\xi_{n} r\right)= & \int_{0}^{r} G_{2}^{\prime}(t)\left(r^{2}-t^{2}\right)^{-\frac{1}{2}} d t \\
& +(2 / \pi)^{\frac{1}{2}} \int_{0}^{1} G_{2}(t) d t \cdot \frac{d}{d t}\left\{t^{-\frac{1}{2}} K_{1,1, \frac{1}{2},-\frac{1}{2}}(r, t ; a)\right\}
\end{aligned}
$$

where $G_{2}(t)=t^{2} g_{2}(t)$, and $K_{p, a, \beta, \gamma}(r, t, a)$ is defned by Chakrabarti. ${ }^{8}$
Substituting from (4.3), (4.4), (4.5) and (4.6) in (3.17), using some well-known results, ${ }^{10}$ we obtain, after using Abel inversion formula:

$$
\begin{equation*}
g_{1}(r)-\int_{0}^{1}\left[L_{1}(r, t) g_{1}(t)-L_{2}(r, t) G_{2}(t)\right] d t=h(r) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2}(r)+\int_{0}^{1}\left[M_{1}(r, t) g_{1}(t)+M_{2}(r, t) G_{\mathrm{Q}}(t)\right] d t=0 \tag{4.8}
\end{equation*}
$$

where

$$
\begin{aligned}
L_{1}(r, t)= & H((r+t) / a)-H)((r-t) / a) \\
H(\lambda)= & \left(2 / \pi^{2} a\right) \int_{0}^{\infty}\left(k_{1}(y) / r_{1}(y)\right)(\cosh (\lambda y)-1) d y \\
+ & \left(2 / \pi a^{2}\right) \sum_{n=1}^{\infty}\left(V_{n} / \xi_{n} J_{2}^{2}\left(a \xi_{n}\right)\right) \cos \left(\lambda \xi_{n}\right) \\
L_{2}(r, t)= & \left(4 / \pi a^{2} t\right) \sum_{n=1}^{\infty}\left(U_{n} / \xi_{n} J_{2}^{2}\left(a \xi_{n}\right)\right) \sin \left(\xi_{n} r\right) \\
& \times\left(\sin \left(t \xi_{n}\right) /\left(t \xi_{n}\right)-\cos \left(t \xi_{n}\right)\right) \\
M_{1}(r, t)= & \left(4 / \pi a^{2}\right) \sum_{n=1}^{\infty}\left(U_{n} \xi_{n}^{\left.-\frac{1}{2} / J_{2}^{2}\left(a \xi_{n}\right)\right) \sin \left(\xi_{n} t\right)}\right. \\
& \times\left(\sin \left(r \xi_{n}\right) /\left(r \xi_{n}\right)-\cos \left(r \xi_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
M_{2}(r, t)= & \left(4 r^{32} / \pi^{2} t\right) \int_{0}^{\infty}\left(K_{1}(a y) / I_{1}(a y)\right) y^{\frac{1}{2}}(\cosh (t y) \\
& -\sinh (t y) /(t y))(\cosh (r y)-\sinh (r y) /(r y)) d y \\
& \left.-4 r^{3 / 2} / \pi a^{2} t\right) \sum_{n=1}^{\infty}\left(W_{n} \xi_{n}^{-\frac{1}{2}} / J_{2}^{2}\left(a \xi_{n}\right)\right)\left(\sin \left(r \xi_{n}\right) /\left(r \xi_{n}\right)\right. \\
& \left.-\cos \left(r \xi_{n}\right)\right)\left(\sin \left(t \xi_{n}\right) /\left(t \xi_{n}\right)-\cos \left(t \xi_{n}\right)\right)
\end{aligned}
$$

and

$$
h(r)=-(2 / \pi) \int_{0}^{r} \rho p(\rho)\left(r^{2}-\rho^{2}\right)^{-\frac{1}{2}} d \rho
$$

5. Quantities of Practical Interest

The stress-intensity factors: K_{1} and K_{2} are defined by

$$
\left.\begin{array}{l}
K_{1}=\lim _{r \rightarrow++}\left[\left.(r-1)^{\frac{1}{2}} \sigma_{z} \right\rvert\, z=0\right] \tag{5.1}\\
K_{2}=\lim _{r \rightarrow 1+}\left[\left.(r-1)^{\frac{1}{2}} \tau_{r z} \right\rvert\, z=0\right]
\end{array}\right\}
$$

Ucing the values of A_{n} and G_{n} from (3.16) and making use of the values of R_{n} and S_{n} given by (4.3) and (4.4), we obtain (cf. Love ${ }^{9}$)

$$
\begin{align*}
& \text { As } r \rightarrow 1^{+} \\
& \left.\quad v_{z}\right|_{z=\mathbf{0}}=-g_{1}(1)\left(r^{2}-1\right)^{-\frac{1}{2}}+0(1), \quad K_{I}=-2^{-\frac{1}{2}} g_{1}(1), \tag{5.2}
\end{align*}
$$

and

$$
\begin{equation*}
\left.\tau_{r z}\right|_{z=0}=-G_{2}(1)\left(r^{2}-1\right)^{-\frac{1}{2}}+0(1), \quad K_{2}=-2^{-\frac{1}{2}} G_{2}(1) \tag{5.3}
\end{equation*}
$$

It is easily checked from (4.7), (4.8), (5.2) and (5.3) that $K_{\text {tos }}=2^{\frac{1}{2}} p_{0} / \pi$ and $K_{2 \infty}=0$, where the quantities $K_{1 \infty}$ and $K_{2 \infty}$ are the stress intensity factors at the tip of a penny crack in an infinite solid opened by a constant pressure p_{0}.
6. The Numerigal Solution of the System of Fredholm Equatons. Cragk opened by Constant Pressure p_{0}

To solve the system of equations (4.7) and (4.8) numerically, we have reduced the system to a system of Algebraic equations by a technique similar to that described by Srivastav and Narain, ${ }^{12}$ we have written the integrals in (4.7) and (4.8) by means of an n-point quadrature formula, e.g.:

$$
\int_{0}^{\pi} L_{1}(r, t) g_{1}(t) d t=\sum_{j=1}^{n} K_{j} L_{1}\left(r, t_{j}\right) g\left(t_{j}\right)
$$

where K_{j} 's are the weights of the formula.

The Effect of a Penny-shaped Crack in a Semi-Infmite Cylinder

We have taken $n=13$ and employed Simpson's 13 point formula. The integrals involved in the Kernels L and M have been evaluated by Wedde's rule and the series involved have been computed by taking 20 terms. We have thus obtained a system of 26 algebraic equations for the 26 unknowns $g_{1}\left(r_{i}\right)$ and $G_{2}\left(r_{i}\right), i=1,2, \ldots 13$, where r_{i} 's are the abscissae. Finally, we have obtained the solution of these algebraic equations for different values of η, a, and J_{m}. Using these numerial solutions, the nondimensional quantities $K_{1 \infty} / K_{1}$ and $\pi K_{2} / 2^{\frac{2}{2}} p_{0}$ are tabulated for four sets of values of a and h and for values of η ranging from 0.05 to 0.45 (Tables 1-4).

The computations were carried out on the computer IBM 360/44, at the Indian Institute of Science, Bangalore 560012.

7. Acenowledgements

I express may warm thanks to Dr. (Mrs.) S. Chakrabarti and Mr. V. V. S. S. Sastry of the Department of Applied Mathematics, for their help in the computational part of the work.

Table I

$h=1 \cdot 5, \quad a=3 \cdot 5$					
η	0.05	$0 \cdot 15$	0.25	0.35	0.45
$K_{1} / K_{1 \infty}$	I. 0005	$1 \cdot 0005$	$1 \cdot 0004$	$1 \cdot 0004$	$1 \cdot 0003$
$\pi K_{2} / 2 / 2 p_{0}$	$0 \cdot 0019$	0.0025	$0 \cdot 0024$	0.0027	$0 \cdot 0029$
Table TI					
$h=2 \cdot 5, \quad a=3 \cdot 5$					
η	0.05	$0 \cdot 15$	0.25	$0 \cdot 35$	0.45
K_{1} / K_{100}	$1 \cdot 0007$	$1 \cdot 0006$	1-0006	$1 \cdot 0006$	$1 \cdot 0006$
$\pi K_{2} / 2^{1 / 2} p_{0}$	$0 \cdot 0003$	$0 \cdot 0004$	$0 \cdot 0004$	$0 \cdot 0005$	$0 \cdot 0005$

Table IIT

	$h=3.5$				
	0.05	0.15	0.25	0.35	0.45
η	1.0007	1.0007	1.0007	1.0007	1.0007
$K_{1} / K_{1 \infty}$	0.0006	0.0007	0.0008	0.0009	0.00011
$\pi K_{2} / 2^{1 / 2} p_{0}$					

Table IV

	$h=4.5$				
	$a=3.5$				
n	0.05	0.15	0.25	0.35	0.45
$K_{1} / K_{1 \infty}$	1.0007	1.0007	1.0007	1.0007	1.0007
$\pi K_{2} / 2^{21 / 2} p_{0}$	0.0001	0.0001	0.0001	0.0002	0.00002

References

1. Lebdev, N. N. and Ufliand, Y. S.
2. Kuzmin, I. N. and Ufiiand, Y. S.
3. Sneddon, I. N, and Tait, R. J.
4. Sneddon, I. N. and Welch, J. T.
5. Srivastrva, K. N. and Singh, K.
6. Watanabe, K. and Atsumi, A.

Axisymmetric contact problem for an elastic layer. J. Appl. Math. Mech., 1958, 22, 442-450.

Axisymmetric problem in the theory of elasticity for a balfspace weakened by a plane circular crack. J. Appl. Math. Mech. 1965, 29, 1330-1336.

The effect of a penny-shaped crack on the distribution of stress in a long citcular cylinder. Int. J. Engg. Sc., 1963, 1, 391-409.

A note on the distribution of stress in a cylinder containing a penny--Shaped crack. Int. J. Engg. Sc., 1963, 1, 411-419. The effect of a penny-shaped crack on the distribution of stress in a semi-infinite solid, Int. J. Engg. Sc., 1906, 7, 469-490.

Long circular cylinder having an infinite row of penny-shaped cracks. Int. J. Engg. Sc., 1972, 10, 159-171.

The Effect of a Penny-shaped Crock in a Semi-Intinite Cylinder 395
7. Dhaliwal, R.S. The steady state thermoelastic mixed boundary value problem for the elastic layer. SLAM J. AppI. Math., 1971, 20, 131-140.
8. Chakrabarti, A.

Certain dual series relations involving Bessel functions arising in crack problems. ZAMM, 1974, 54, 436-439.
9. Love, A. E. H.
10. Erdelyi, A., (Ed.)
11. Cooke, J. C. and Tranter, C. J.
12. Srivastay, R P. and $\mathrm{N}_{2} \mathrm{rain}, \mathrm{P}$.

A Treatise on the Mathematical Theory of Elasticity (4th eda.), Cambridge, 1934.

Tables of Entegral Transforms, 1954, 2, 48, McGraw-Hill, New Yoxk, London.

Dual Fourier-Bessel Series, Quaf. J. Mech. Appl. Math., 1959, 12, 379-386.

Cartain two-dimensional problems of stress distribution in wedge-shaped elastic solids under discontinuous load. Proc. Camb. Phil. Soc., 1965, 61, 945-954.

