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A procedure is presented for solving the problem of apennpshaped crack, in 
a semi-infmzite cylinder opened by  a known pressure. Thc eracl; is as.sumed to be 
situated at a finite distance fron7 the flat end, whiclz is assumed stress-fie@ and the 
curved boundary constrained. Expressions for the quantities of practical interest 
have been obtained and some of them have been conzpared with the results of a parti- 
cular limiting case of this probletii. Nzo~ierical results are tubdated at the end. 
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Axisyrnmetric mixed boundaly value problems in Elasticity have been 
considered by many auth0rs.l-7 Thesc authors have handled axisymme- 
tric problems associated with either a half-space or a long cylinder. 
Problems concerning half cylinders containing a single crack even have 
not been tackled so far, either because of the lack of technjques available 
or because of thc complication it gives rise to mathematically. 

In this paper, we havc investigated the problem of a semi-infinite cylinder 
containlng a penny-shaped crack a t  a finite distance It (> 0) from its flat 
end, through a system of Fredholm integral equations. The crack is 
assumed to be symmetrically situated around the axis of the cylinder. The 
c~llnder is assumed to be deformed by the application of a known pressure 
On the crack surfaces, whereas the flat end of the cylinder is assumed to be 
stress free and the curved boundary con5trained. The method followed 
In solving the problem hew is similar to the second method of Sneddon and 
Tat3 with the modi cattoll given by Chakrabarti.8 The problem has been 
reduced to a system of dual series relations which ulbmately have been 
reduced to a system of Fredholm integral equations of the second kind 
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N~l~i~erical  solutions of the system of l~redholm cquations have bee,, 
obtained for different values of /t, ci and thc Poisson's ratio 7 .  Using t17e5e 
l~ummrical solutions, the  ion-dimensiolial quantitics involving ihe stress. 
intensity factors have heen tabulated for diffucnt vaii~cs of  7 ,  n and h. 

Wc consider the Collowmg mixcd boundary value problen~: 

The curved boundary r= n of the cylinder is arsu~ncd to be constraiucb 
111 such. a manner that the rcdial displacement and th.e siicar;ngbtucas arc 
zero on r =- ( 1 .  The flat end z - - / I  (li > 0 )  of the cylinder is a,aumcd 
to be slress-free, whilst thc stvesscs arc prcscribcd on 1h.e surface of the 
crack ( z  = O f ,  OC r c  1 ) .  wherc r ,  0, r are cylindrical polas coordinaies, 
Ihe z-axis being taken along ihc  axis of thc cylinder. We have considered 
the radius of the crack to hc unity and assumed ihat n > 1 .  

With usual notations, the bounc'ary cunclitions of Ihe problem arc: 

uz= O = r T z ,  on z =  -h , (O<r<o) ,  (2.1) 

u = 0 TI, ,  011 I' = u, (2.2 

oZ (r, 0-1 - - p (r), r~~ (I., 0--) : 0. (0  < r < 1) (2.3) 

vz ( r ,  0' ) =-=  -- p (r),  T~~ (I- ,  04.) = 0 ,  (0 < Y < 1) (2.4) 

Also, the continuity of tlrc 5'11-cases and the displacernints across the plane 
z = 0 ,  unoccupied hy the crack, rcqilires 

0, (v, 0-) = a, (r, OL), T~~ (r .  O - ) - T ~ ~  (Y, Oi ), (I< r<  a) 
u (r, 0--) - u (r,  0 1 ~ ) .  LV (r, 0-, - w (r ,  O'), ( I  < r < a), 

where I I  (r,  z )  and TV (r,  z) am t!;c 11onvani:liiog components of the cis. 
placcmenl vector. 

To solve the above-poscd, axisynm~etric mixed problem in section 2 
we look k s t  for the expressions for the displacements and stresses in the 
cylinder in tenns of an nxisyrnn~etric bi-h.armonic strcss function x (r,z) 
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(,j: b v e g ) .  Throu&ouL the Paper, ri js Poisson's iatio and p is the 
modulus of the lllalerial of the jsolropic elastic cylinder. 

We assume a bi-harmonic f~mction x (r ,  2 )  aatisfying the conditions of 
tb vanishing of strcsses and displacements for largc z, in thc followjag 
form, 

00 

x t i ;  Z) ; C (An - i - B n  2)  Jo ( fnr)  C X ~  (- 5 , ~ ) ~  (3 . l )  
"=, 

wk,ere An and 13, arc constants and En's arc the positive zcros of .J, ([u), 
J,(x)  being the Besscl i'unclion oi' the first kind of order n .  

Exprc~siolls fbr th.e displacements and stresses in thc rcgion z>0 cmi 
be oblaincd by using ihc r~litiions in Love.' 

Sohition for - /t < z < O 

In this region, we nssumc the representation of x (r, z) as : 
00 

,y ( r ,  z) = 21 [Cn cosh f n  (Z 4- 11) f Dn sinh fn (z  4- lz) 
11-1 

-b E n  (z f iz) cash fn (z+/z) -1- Fn (z  + h) sinh fn (2-I- h)] 

x JO (5, r), (3.2) 

where Cn, D,, En, F, arc constants. 

We observe that these fonns of the strc~s-f~rnctions satisfy Ihc conditions 
(2.2) automatically becausc of thc choice of the fn  's. We can satisfy the 
conditions (2. I), by ch.oosing 

&Ccn=-27Fn, f , D n = ( l - 2 T ) E n .  (3.3) 

Reduction to a system of ~7ual series relutiorts 

The conditions (2.3) and (2.4) r e q ~ ~ i r e  : - 
Z fn3 [An - 27 GnI J1 ( f n r )  = O 
.=I 



whcre 

B,, -- En G n  

The continuity conditions (2.5) together with (3.4) and (3.5) require: 

[An - 27Gn] - En' (1 i- yn ~ 0 t h  yn) - Fn' Yn = 0, 
An + ( 1 - 27) Gn En' yn - Fn' ( I  - yn ~ 0 t h  yn) = 0, 

wllere we have written 

Enp = En (sinh 5n h)/5n, Fn' = Fn (sinh 5n j~)lEn, 

yn = f n  h. (3 .lo) 

Solving equations (3.7) for En' and Fn' in temx of An and Gn and substi- 
tuting in (3.8) and (3.9), we obtain : 

and 



Mn = - (2 - 27) ( I  - yn coscc!~ ')h + coth yn)/ 

(yna cosech2 yn - 1). 

N n = - 2 7 M n - K n ,  Q n = = K n + ( I  -27)Pn,  

Kn = (2  - 27) ynZ C O S ~ C ~ ~ Y ~ / ( J J ~ ~ C O S ~ C ~ '  yn - I), 
(3.13) 

Pn = - (2 - 27) ( 1  3- yn cosechQn -I- coth Y,) /  

(yn2 coseche yn - 1). 

Thus by means of (3.4), (3.5), (3.1 1 ) and (3.12), we see that the problem 
is reduced to a ~ystem of dual scries relations given by: 

and 

Writing 

and using the expressions (3 .13) for Mn, Nn, Pn, Qn and Kn, we can easily 
reduce the above system (3.14) and (3.15), after some manipulations, to 
the following simple form: 

(3.17) 
and 



where 

Un = - LvnQXp (- 2~n)] /4  (2- 27), (3.19) 

Y, = - yn2 exp (- 2yd [(I - (1 1- y d  cxp (- 2 ~ d ) /  

(1 - (1 - y d  exp (- 2~n))1/4 (2 - 27) (3.20) 

and 

Wn = - -  Y ~ ' C X P  (- 2 ~ n )  [(I - ( 1  - Y*Z) cXP (- 2yn))l 

(1 - (1 + yn) e w  (- 2~n))1/4 (2 - 27) (3.21) 

It is easily seen that in the limiting case, when / I  --> oo, U,, V,, W, +(I, 
and the problem reduces to that considered by Sneddon and Tnit.3 

To reduce the above system of dual series relations to a systcm of 
Fredholm integral equations, we follow a techniq~~e given by Chakrabartis 
i n  reducing dual series relations to a Fredholm integral equation. 

We assume (cf. Chakrabartiy) : 

and 

Then, we obta~n by the techniql~e of finding the Dini and the Four~er-Bcssel 
coeffic~ents (see Chakrabartia), 

and 
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we note that, for O <  r< 1 (see Chakrabartia), 

m 

Rnfn2 Jo (& r) = J' 'TI' ( t )  (f8' - t3)-3 dt 
"=I 0 

00 

- ( 2 1 ~ )  / &?I ( t )  & S (KI (Wa)/J3 ( 0 ~ ) )  10 (ry) y sinh ( ty)  dy, (4.5) 

and - 
2 sntn~, (Q r)  = S G; ( t )  ( r ~  rt)-* L I ~  
n=1 0 

where G,( t )  = t2g2 ( t) ,  and Kp,a,F,y ( r ,  I, N )  is defined by Chakrabartis 

Substituting from (4.3), (4.4), (4.5)  and ( 4 . 6 )  in (3.17), using some 
well-known results,1° we obtain, after using Akel inversion formula: 

gl (r) -o; [ L ~  (r, t )  gl 01 - LZ (r; t j  GS (01 dt = h (4.7) 

and 

G2 (r) 4- [MI (r, t )  g, ( t )  + Mz (7, f )  GZ (t)3 dt = 0, (4.8) 

where 

4 (1, t )  = H ((r + t ) /a)  - H) ((r -t)/a), 

H(h)  = (2/n2 a) T (kl  (Y) / I~  (Y)) (cosh (AY) - 1 ) d y  



M, (r, t) - f) ?(K, (uy)/IL (a,")) yf (cosh ( t y )  

The stl-ess-intensity faclors : K, and K, are defined by 

K1 = lim [(r - I)* oz 1 z=O] , 
*I+ 

K, = lim [(r 1 Z=o] . 
,+I+ 

U-ing the values of An and G, flom (3.16) and making u\e of the valucs of 
R, and S,  given by (4.3) and (4.4), we obtain (cf. Loveg) 

As r + I+ 

U I  = - g 1 )  r - I - 0 (1 ,  K, = - 2-f g1 (I), (5 2) 
and 

7rzjz=o = - G 2 1 )  r - 1 -  + 0 ( I )  K2 = - 2 4  GZ (I). (5.3) 

It is eas~ly checked from (4.7), (4. S), (5.2) and (5.3) that K,, = 2*p& 
arid K,, =O, where the quantities K,, and K,, are the stress intensity factors 
at the tip or a penny crack in an infinite solid opened by a constdnt pressurz 
Y 0. 

6. THE NUMERICAL SOLUTION OF THE SYSTEM OF FREDHOLM EQUATIONS. 
CRACK OPENED BY CONSTANT PRFSSURE po 

To solve thc system of equations (4.7) and (4.8) numerically, we have 
reduced the system to a system of Algebraic equations by a technique similar 
to that described by Srivastav and Narain,lz we have written the intcgrds 
in (4.7) and (4.8) by means of an n-point quadrature formula, e.g.: 



we have taken n = 13 and employed Simpson's 13 point formula. 
ne integrals involved in the Kernels L and M have been evaluated by 
weddle2s rule and the series involved have been computed by taking 20 
terns. We have thus obtained a system of 26 algebraic equations for the 26 
ll&owns gl (ri) and G, (Pi), i = 1 ,  2, . . . 13, where ri's are the abscissae. 
Finally, we have obtained the polulion of these algebraic equations for 
different values of 7, a,  and I,. Using these numerial solutions, the non- 
dimensional quantities K,,/K, and .irKE/2*pfp, are tabulated for four sets of 
values of a and h and for values of 7 ranging from 0' 05 to 0' 45 (Tables 1-4). 

The computations were carried out on the computer IBM 360f44, at  
the Indian Institute of Science, Bangalore 560 012. 

I express may warm thanks to Dr. (Mrs.) S. Chakrabarti and 
Mr. V. V. S. S. Sastry of the Department of Applied Mathematics, for 
their help in the computational part of the work. 
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