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ABSTRACT

A procedure is presented for solving the problem of apenny-shaped crack, in
4 semi-infinite cylinder opened by a known pressure. The crack is assumed to be
situated at o finite distance from the flat end, which is assumed stress-free and the
curved boundary constrained. Expressions for the quantities of practical interest
have been obtained and some of them have been compared with the results of a parti-
cular Emiting case of this problem. Numerical results are tabulated at the end.
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1. INTRODUCTION

Axisymmetric mixed boundary value problems in Elasticity have been
considered by many authors.*~? Thesc authors have handled axisymme-
tric problems associated with either a half-space or a long cylinder.
Problems concerning half cylinders containing a single crack even have
not been tackled so far, either because of the lack of technjques available
or because of the complication it gives rise to mathematically.

In this paper, we have investigated the problem of a semi-infinite cylinder
confaining a penny-shaped crack at a finite distance /(> 0) from its flat
end, through a system of Fredholm integral equations. The crack is
assumed to be symmetrically situated around the axis of the cylinder. The
¢ylinder is assumed to be deformed by the application of a known pressure
on the crack surfaces, whereas the flat end of the cylinder is assnmed to be
stress free and the curved boundary constrained. The method followed
i solving the problem here is similar to the second method of Sneddon and
Tait* with the modi cation given by Chakrabarti.® The problem has been
Teduced to a system of dual series relations which ultimately have been

reduced to a system of Fredholm integral equations of the second kind
385
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by a technique similar to that described in Chakrabarti® In the limiting
case, when h — oo in our problem, the problem reduces to that of
Sneddon and Tait.®

Numerical solutions of the system of Fredholm cquations have Deen
obtained for different values of /1, ¢« and ihe Poisson’s ratios. Using thee
numerical sofutions, the non-dimensional gquantilics invelving the stress
intensity factors have been tabulated for diffcrent values of 9, a and j.

2. THE STATEMENT AND MATHEMATICAL FORMULATION OF THE
CRrACK PROBLEM

We consider the following mixed boundary value problem:

The curved boundary r= a of the cylinder is assumcd to be constramned
i such a manner ihat the radial displacement and the shearingstress arc
zero on ¥ =qa. The flat end z = — ik >0) of the cylinder is assumed
to be stress-free, whilst the stresses are prescribed on the surface of the
crack {z = 0%, 0 r<C 1), where r, 0, = are cylindrical polar coordinatss,
the c-axis being taken along the axis of the cylinder. We have considered
the radius of the crack to be unily and assuvmed that « > 1.

With usual notations, the boundary conditions of the problem arc:

2= 0 =7, on z=—/,0<r<a), 2.0

U=0=r7py,, on r-—=aqa, 2.2

oz (0= —p(), 7:(,0)=0, (0<r< 1) (2.3)

op (1, 0F) == — p (1), Tre (G} =0, (O<r< 1) 2.4
Also, the continuity of the siresses and the displacements across the plane
z =0, unoccupied by the crack, requires

0z (£, 07) =0, (r, 0%), 7y (r, O )=y, (7, 0F), (I P a)} @3

u(r,0) = ulr,00), w0 =w, 0%, (I<r<a),
where u(r, z) and w(r, 2) are the nonvaniching components of the dis.
placement vector.

3. REDUCTION TO A SYSTEM OF DUAL SERIES RELATIONS

To solve the above-posed, axisymmietric mixed problem in section 2
we look first for the expressions for the displacements and stresses in the
cylinder in terms of an axisymmetric bi-harmonic stress function x (7)
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(g, Love®). Throughout the paper, 7 is Poisson’s ratio and u is the
tigidity modulus of the material of the isolropic elastic cylinder.
o

Solution for z>0:
We assume a bi-harmonic function x (#, z) satisfying the conditions of
the vanishing of stresses and displacements for large =z, in the following

form,
X (22) = 5 (-t Bu2) Lo (Enr) exp (= £n2), G0

where Ay, and By arc constants and §n’s are the positive zcros of Jy (&u),
Ji (x) being the Bessel funciion of the first kind of order n.

Expressions for the displacements and stresses in the region z 30 can
be obtained by using the tzlations in Love.?

Solution for — <. z<C 0
In this region, we assume the representation of y (#, z) as:
X2 = 3 [Cncosh & (z + h) + Dy sinh & (z + h)
+En(z + i) cosh €, (z-+h) - Fp (z-F B)sinh &, (z-+ A)]
X Jo (n 1), G-2)
where Cn, Dy, En, F, are constants.
We observe that these forms of the stress-functions satisfy the conditions

(2.2) automatically because of the choice of the &, ’s. We can salisfy the
conditions (2.1), by choosing

én Cn = — 29Fy, fn Dp = (1 — 21) En. @-3)

Reduction to a system of dual series relations

The conditions (2.3) and (2.4) require:
":21' §n3[An — 29 Gpl J, (énr) =0
== ”_._Zl' En?sinh (n W) [En (1 -1 €n ficoth én ) + Fy & 4]

X hlnr) (O<r< ) S

LIS¢~3
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and
T e+ (1= 2) Gal o (Enr) = =2 ()
= "_5 €a?sinh (£n ) [— En én h -+ Fn(l — n kcoth &, iy
K Jol&nr), O<r< 1) (3.5
where
By = &n Gn. (3.6

The continuity conditions (2.5) together with (3.4) and (3.5) require:

[An — 29Gn]l — En’ (I 4 yncoth yn) — Fpn' yn =0,
A + (1 —2%) Gn + Eq' yp — Fn' (1 — p coth yp) = o,} G

and [for | < r<d],
ni\z [(— 4n 4 Gn) — En’ (¥ + (2 — 29) coth yn)

— Fp/ (1 — 29) + yncoth yu] {a2 Sy (€ 7) = 0, (3.9

g8

W(An + 2Gn (I — 20)) -+ En’ (1 — 27) — pn coth yp)
~+ Fp' (2 ~— 2m) coth ¥p — yil
X €n2 Ty (€nr) =0, (3.9
where we have writien
Ey = En(sinh &n h)/én, Fp' = Fp (sinh & h)/én,
n= n k. . (3.10)

Solving_ equations (3.7) for Eyp’ and Fy' in terms of Ay and Gy and substi-
tuting in (3.8) and (3.9), we obtain:

“5{ [An My 4 Go Npl €221 (60 7) =0, (1< r<a) (3.1
and

S [AnPud GnOnl&atlo () =0, (I<r<a) (.12

=%
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where
My = — (2 — 29) (1 — yn coscch? pp + coth yn)/
(yn® cosech?yy — 1),
Ny = —29p My — Kn, On = Kn -+ (1 —29) Py, (3.13)
Kn = (2 — 23) yn? cosech®yn/(yn? cosech? y, — 1), ’
Pp = — (2 — 29) (1 - yp cosech?® yp -+ coth y,)/
(vn® cosech? yp — 1).

Thus by means of (3.4), (3.5), (3.11) and (3.12), we see that the problem
is reduced to a system of dual series relations given by:

T [An + (L~ 20) Gl &3 Ty (dn 1) = — p (),
= (0<r< 1) (3.14)

E [An — 29Gn) €n Ty (én 1) =0;

and
Z [Ppdn -+ QuGnl éa®Jo(én1) =0,
— (< r<a) (3.15)
Z="1 [Mndn + NuGul 52 J, (én 1) = 0.

Writing

P'nAﬂ -+ QnGn = Rn/f’n, MnAn + NnGn = ls'n/fn2 (3 ~I6)

and using the expressions (3.13) for My, N, Py, On and Ky, we can easily
teduce the above system (3.14) and (3.15), after some manipulations, to
the following simple form:

F 10 = V2) Ru+ &2 UnSl a2 Jo (b ) = =P (),

oo 0<r< 1)
,'2:1 [UnRuén + (1 — Wp) Snl €n i (€n1) =0;
(3.17
and
2 Ratudy(6n) =0 =3 Suli(éar), (1< r<a) (3.18)
1 =1
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where
Un = — [yn?exp (— 2n)}/4 2~ 2m), (3.19)
Vo = — yu2exp (— 2vm) [(1 — (1 -+ yn) exp (— 2yn)/
(1 — (A — ynyexp (— 2ym)))/4 (2 — 27) 3.20)
and
Wn = — ya?exp(— ) [(1 — (1 — yn) exp (— 2p))/
(1 — (1 + yryexp (— 2y))l/4 (2 — 29) (3.21)

It is easily seen that in the limiting case, wWhen /i -> co, Un, ¥y, Wy -0,
and the problem reduces to that considered by Sneddon and Tait.?

4., REDUCTION TO A SYSTEM OF FREDHOLM INTEGRAL
EQUATIONS

To reduce the above system of dual series relalions to a system of
Fredholm integral equations, we follow a technique given by Chakrabari
in reducing dual series relations to a Fredholm integral equation.

We assumie (¢f. Chakrabarti®):

3 Rutnly(Gan) = § 200 (2 — ) Q< r < 1) (50) =0)

@)
and
2 Safy (bn?) = — %r f L@@ —rHrdL(0sr< ) (“)

Then, we obtain by the technique of finding the Dini and the Fourjer-Bessel
coefficients (see Chakrabarti®),

Rutn® = [2/a* T2 (aén)] [ & () sin (énf) dt “3
and

Sn = [@mHarTs? (atn)| £F [ 192 g3 (1) Ty (6n 1) . ¢4
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We also note that, for 0 r=< 1 (see Chakrabartj®),

T RetatJoléar) = I & (00 — o4 dd

—(2f) n.fl & (B dt f(]{, (@y)/h (@v)) Io (ry) y sinh (rp) dv, (4.5)
and

2 Saéndy (§n 1) = .([' Gy (1) (r* — r*yE dr

. 7
+ @ [ G dr L K (s ),
; 4.6)

where Go(¢) = 12 g2 (1), and K, o5,y (r, 1, a) is defined by Chakrabarti®

Substituting from (4.3), (4.4), (4.5) and (4.6) in (3.17), using some
well-known results,” we obtain, afier using Akel inversion formula:

6@ = Le0a®— L0 ) GOld=h) %)
and
G+ | M0, 1) 2 () + Ma 1) G ()] =, “.8)

where
Ly (r, 1) = H((r + Bja) — H) ((r —1)/a),

HQ) = @ a) T (ks G)/E 0)) (cosh () — 1)y
+@ma T (Vaftndi? (atn)) cos (),
Ly (r, £) = (4ma? £) °§°1 (Un/ €n® (atp)) sin (£n 1)
x (sin (#£n)/(rén) — cos (2£n)),
My (.0) = (4w a) T (Unba 375 (@) sin (nt)

X (sin (rén)/(rén) — cos (rén)),
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My (1) = (4% 0) T (K (@)1 (@) ¥* (cosh (1)
— sinh (1)/(1)) (cosh (1) — sinh (3)/(r3) dy
— 42 fwa’) ;‘; (Wanéat/Ta* (aén)) (sin (r&n)/(rEy)
— cos (rén)) (sin 1€}/ (1) = cos (£w),

and

R = — @) [ ep () (* — oD dp

"5, QUANTITIES OF PRACTICAL INTEREST
The stress-<intensity factors: K; and K, are defined by
Ky = Im [(r — D¥oz | z-d] }
~>14

Ky = Tm {(r =1 7r; | 2] - 6D

i

Using the values of Ay, and G, ffom (3.16) and making use of the values of
Ry and Sy, given by (4.3) and (4.4), we obtain (¢f. Love?)

As ¥ — It
Slpmo = —& (M =D+ 0, K=-2%g0, (I
and
Tralem = — Ga (D (2 —DF+ 0(1), K= —2FG,1). (I

1t is easily checked from (4.7), (4.8), (5.2) and (5.3) that K, = 2pr
and K., =0, where the quantities K., and K,,, are the stress intensity factors
at the tip of a penny crack in an infinite solid opened by a constant pressure
Po-

6. THE NUMERICAL SOLUTION OF THE SYSTEM OF FREDHOLM EQUATIONS.
CRACK OPENED BY CONSTANT PRESSURE pg

To solve the system of equations (4.7) and (4.8) numerically, we have
reduced the system to a system of Algebraic equations by a technique similar
to that described by Srivastav and Narain,’? we have written the integrals
in (4.7) and (4.8) by means of an n-point quadrature formula, e.g.:

T LG g () de = ,2" K3 Ly (r, 1) g (5),
0 =]

where Kj's are the weights of the formula.
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We have taken z = 13 and employed Simpson’s 13 point formula.
The integrals involved in the Kernels L and M have been evaluated by
Weddle’s rule and the series involved have been computed by taking 20
terms. ' We have thus obtained a system of 26 algebraic equations for the 26
uknowns g, (#3) and Gy (r3), i =1, 2, ... 13, where ri’s are the abscissae.
Finally, we have obtained the solution of these algebraic equations for
diferent values of 7, a, and L. Using these numerial solutions, the non-
dimensional quantities K; /K, and 7K,/2%po are tabulated for four sets of
values of @ and & and for values of 7 ranging from 0'05 to 0- 45 (Tables 1-4).

The computations were carried out on the computer IBM 360/44, at
the Indian Institute of Science, Bangalore 560 012.
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TABLE 1

h=15 a=35

] 0-05 0-15 0-25 0-35 0-45

KK 1-0005 1-0005 1-0004 1-0004 1-0003

nKyf2% py 0-0019 0-0025 0-0024 0-0027 0-0029
TaBLE TI

h =25, a=3-5

i 0-05 0-15 0-25 0-35 0-45
KKy, 1-0007 1-0006 1-0006 1-0006 1-0006
LAV 0-0003 0-0004 0-0004 0-0005 0-0005
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TABLE IIT

h=35 a=3'5

T T ——
7 0-05 0-15 0-25 0-35 0-45
KKy e 1-0007 1-0007 1-0007 1-0007 1-0007
7K {2Y% p,y 0-0006 0-0007 0-0008 0-0009 0-00011
TaBLE IV
h=4.5 a=3.5
" 0-05 0-15 0-25 0-35 0-45
Ki/K o 1-0007 1-0007 1-0007 1-0007 1-0007
Ky /242 py 0-0001 0-0001 0-0001 0-0002 0-00002
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