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ABSTRACT

A method of obraining similar solutions for pseudo-one-dimensional, nom
equilibrium nozzle flows is discussed. A diatomic gas undergoing simultaneous
relaxation of both vibrational and dissociational modes including coupling among
them is considered. Similar solutions for oxygen and nitrogen, with nonequilibrium
effects starting from the nozzle reservoir are presented. General correlating para
meters have been deduced from the transformed governing equations. It is shown
that all the approximate correlating parameters that have been hitherto formulated
using approximate methods can be deduced from the present gemeral correlating
parameters as special cases. With the present similar solutions the flow quantities
in the nozzle can be readily obtained from the charts for any given initial conditions
in the nozzle.

Key words: Nozzle flows, nonequilbrium cffects.

1. INTRODUCTION

Nonequilibrium effects in nozzle flows have long been of interest in
the propulsion field because of the thrust loss resulting from chemical freez-
ing (recombination lag) occurring in nozzle expansion process. In recent
years the problem of chemical freezing in nozzles has assumed greater
importance with the development of high performance chemical rockets
using hydrogenfluorine system and the interest in develonment of advanced
hypersonic ram jet engine. Nozzle flow nonequilibrium is also of much
concern in connection with hypersonic wind tunnel testing. The currest
test devices such ac are jets and shock tupnels utilize nozzle expansions of
air from 1nitial high temperature conditions where a major portion of the
air may be dissoclated. Usually some degree of freezing occurs in the
nozzle expansion, which produces a test ajr flow not in an equilibrium state.
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Hence, the actual physical and chemical state of the test gas in a hypersonic

facility {s essential for successful wind tunnel testing.

The present state-of-the-art for analysing nonequilibrium nozzle flows
requires complex computer programmes* with which the flow variables are
determined by numerical integration for any given initial and boundary
conditions. These conditions usually are the reservoir temperature and
pressure, nozzle shape and a specified gas. Because of many variables
involved, the numerical solutions do not provide suitable theoretical com=
parisons for use by an experimentalist. Several approximate analyses have
been proposed to correlate at least the frozen cnthalpy in the nozzle. Bray?,
while introducing ‘sudden freeze > analysis, found that the frozen mass
fraction in the nozzle, for a certain range of reservoir conditions and a parti-
cular nozzle geometry, depends on the reservoir entropy alone. This was
later used by Lordi and Mates® and Harris and Warren? to correlate the
frozen enthalpy in air. Hamey® improved on the entropy corrclation by
inchiding the nozzle scale parameter. FHowever, these correlations do not
include the effects of variations in the total enthalpy and do not correlate
all quantities of interest. Ring and Johnson® used a correlation based on
the reservoir entropy and a time 7. characterising the flow expansion rate
for the nonequilibrium flow parameters. It should be emphasized that all
these methods were not based on any rational analysis but their success or
atherwise was solely judged by correlating the nurmerically computed nozzle
flow quantities in a rather restricted range of reservoir conditions.

From the preceding discussion it is obvious that suitable similar solu-
tions to this problem are highly desirable. Such similar solutions would. -
not only eliminate the need for repeated computations using complex com-
puter programmes but also provide, for the experimentalist, the badly
needed gemeral correlating parameters. The present work discusses a
method of obtaining similar solutions for pseudo-one-dimensional, inviscid,
adiabatic, nonequilbrium nozzle flows. The case of a single diatomic gas
undergoing either vibrational relaxation or dissociational relaxation has
been already considered by Reddy and Dawm? Similar solutions for the
case of oxygen, considering only the dissociational nonequilibrium effects,
have been presented in ref. 8. But in the real problem a diatomic gas under-
goes both these relaxations simultaneously with coupling between them.
In the present work a realistic model for a single diatomic gas like oxygen
or nitrogen undergoing simultaneous vibrational and dissociational relaxa-
tiqn is considered. A cut-off harmonic oscillator model is used for des-
aibing the vibrational rate process. ‘The coupling between vibrational and
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dissociational modes is also taken into account. The assumption of equili-
brium flow upstream of the nozzle throat made by Reddy and Daum? has
been avoided and the present analysis is capable of handling the nop.
equilibrium  situation throughout the nozzle beginning from the nozze
1ESErvoir.

General correlating parameters have been deduced from the transformed
goveming equations. It is shown that all the approximate correlating para-
meters that have been hitherto formulated can be deduced from the
present general correlating parameters as special cases. The similar soh.
tions for oxygen are presented in the form of graphs. With the present
similar solutions the flow quantities in the nozzle can be easily read of
from the charts for any given initial conditions in the nozze reservoir,
Similar solutions for nitrogen can be found in ref. 9.

2, GOVERNING EQUATIONS

The governing equations (in nondimensional form) for a steady state,
pseudo-one-dimensional, adiabatic, inviscid flow are given below. A detailed
derivation is given in ref. 9.

Conservation of Mass ; pud = p, 1, = constant )

Conservation of Momentum : udu -+ dpfp =0 @
2

Conservation of energy : A -+ uf = Hy == constant 3

" where
743
h*—-‘-(-%")Tt—}-(l——a)e—[-a

and )
@=0y/(e? — 1) — (Nbp/e"® — 1)

for a cut-off-harmonic oscillator approximation ; N is the maximum number
of vibrational levels.
Equation of state : p = pT(1 -+ «) O]
Dissociational rate equation
da _ lky, Tq® pa®a?(l — o
= P Tt e 8 oy (v oy

X Qo (1 —a)a2 (1 — e —e™yt =1 0
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where
k,, ] kn Tts.

Vibrational rate cquation :
%z[f(m) s —(E— O VL Ju(l —a) + (G~ o Ju(l — a)
(6)

where
§ == 0y pg uap(l + o) eSFuC

I = lkpy Ta® pa® T2 p2 (1 — o) a®/ma® ug.
The preceding six equations are sufficient to determine the six unknowns
p,p T u, € and a.

3. TRANSFORMATION OF GOVERNING EQUATIONS

An independent variable 7 is defined as » = loge p. Then the governing
equations can be written in terms of this new variable as:

Conservation of mass : n == loge (WA/pyxity) N
Conservation of momentum : wdy -+ e dp =0 %)
Conservation of energy :
w2+ (7 + 3a)0p/2¢ + (1 — a) €+ a = H, )
Equation of state : p = &7 0y (1 + o)/ (10)

Dissociational rate equation :

da _ lkpy Tg® 1 a? (1 — - a) s /
o leyy Tg® p::l ae“ - (1 (Bo))® [Ve-rab
X o/ (1 —a) a2 (1 —e¥) (1 — ™) — 1], an

The vibrational rate equation can be written in terms of vibrational tempe-
rature function ¢ with a cut-off-harmonic oscillator approximation as

B s(er—1)( — e —f)e? @ — DA ~F)
— VLI~ D)1 — ) (s — fofu(l — ) (* — ) o1 — £)
+ 1A — e?)2u(l —a) et (@—1)(1 — £)] (N—1) (ee™ — 1)
+ OV + 1) (e — &%) a2

where the function £ and [z are functions of temperaturc and are given
in ref, 9,
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In a one-dimensional nozzle flow with an area distribution given by
A= {1+ x), it can be easily shown’ that,

5 da ..
% = (pa sty €M a‘:g;/ 7 (Ns)e (13)
where the function Ng, is given by

(No)e = (M‘z )(1 — AUy i,

The velocity term in the function (Ns,) has been nondimensionalised
by ug. This will be changed in the following manner for reasons that wil
be explained later

u w @olp o _ (P olp’ 0¥
— e XS
S R S LT ua &

where suffix O refers to the nozzle reservoir conditions. With egns, (13)
and (14), the dissociational rate equation [eq. (11)] can be written as:

%‘; = exp[Aa — 72 — 1/i)] (Bufp) (1 — o) a® [Vexp (— 1~ 8/f)

X(1—aya?(l —e¥) (1 — ™y — 1](N) (13)
where
(W) = (:’&7@4@7) (1 A1y g 11ty
and
Xg = loge [Hkry Ta® pa® (ifmyua) ™ (px )9 (uagss’ ) 1]
where

wo = (P olp’ o)
Proceeding in the same way and arranging the terms, as in the previous case
the vibrational rate equation {eq. 12) can be written as

d 1 . .
B — ey Lo O 1 (1 17) — Capis — )

% {(1 +ay(e? —1)(ef —e?)(l ~ 1))
$—DU -7

— VLexp{dg —7(2 — 1/ij)}




Similar Solutions in Nonequilibrium Nozzle Flows 401

s o DO —e?) (fp— )
<oty o { S Ly TSP
+expfrg — 122 — 177y — & } (Bpfih )° e (I — e?)
N —1(e? e — 1) + (N 4 1) (e? — &%)
A e . i )

where B B
= loge [(pu s V'Y 100 paua (ualu o) "/ijCy]

(Ns), and Ag are the same as in eq. (15).

By using the differential form of conservation of energy and equation of
state, the conservation of momentum (eq. 8) can be expressed as

[(e# — 1y — N (e — 1) — " — 6 de + (2 F )
+le? (1 —a)(1 —f)e? — 1y df — (1 + o) dy =0. (17)

It is clearly seen that the problem under consideration has been reduced to
solving three differential egs. (15) (16) and (17) for three unknowns o, ¢ and
¢ with n as the independent variable. The other unknowns namely p, p
and u are obtained from the other governing equations which are simple
algebraic equations.

The main motivation in expressing the rate equations for the dissocia-~
tional and vibrational mode in the form given in eqgs. (15) and (16) is to com-
bine all the parameters of the problem into two parameters Ag and A, It
can be easily shown that, for a given gas, the parameter A, is a constant
multiple of Ag. So one can write Ay, =QXq where Q = loge [k, Tq® Cy pa/ma®
uz*0s). So it is obvious that a single parameter Ag is sufficient to define
the problem. However, the similar governing equations contain additional
parameters Cy, 5 and ij. The parameters C, and s are also fixed for a given
gas and are usually obtained from experimental measurements. The
parameter /j is the nozzle shape parameter and a given of value ij covers a
family of nozzle shapes. Fortunately, for the commonly used nozzle shapes
of conical and hyperbolic type the value of if = 2. The governing equa-
tions also contain a rather undesirable term (Ny), which is different for
different reservoir conditions and also varies along the nozzle length. If
the function (M), could be expressed in terms of only the independent
vatiable 7, then similar solutions for translational and vibrational tempe-
rature functions ¥rand ¢ as well as for atom mass fraction a can be obtained
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with 7 as the independent variable. The parameters to be specified are N
and i since the other parameter Ay is related to Ag and the parameters ¢
and s are constants for a given gas. A method to express (Ny), in terms
of % is given in the following section.

4., FuncTION Ng

The cxpression for (Ng), given in eq. (13) is a function of M, u and 4,
Hence it will have different values for different reservoir conditions ang
it also varies along the nozzle axis. The significant variable is the velocity
u since it is nondimensionalised by g which is independent of reservoir
conditions. It was observed from a number of nozzie computations that
the velocity, when- nondimensionalized with a velocity #'y = (po/p' )},
did not change very much for different reservoir conditions. That is why
the expression for (Ns), was re-written earlier in texms of uy and the resulting
constant was included in Ag and A,. Atypical variation of (&), with nozde
area ratio is shown in Fig. 1. It is noted that moving upstream from nozze
throat (Ns), Tapidly tends to zero since M and z, both tend to zero, At
the geometric throat, since the rate of change of area with x goes to zeo,
the function (Ng), has an indeterminate form since M also becomes unity at
the nozzle throat. However, it can be shown?! that the function (¥g)
tends to a definite limit at the throat.

& T T T T T ¥ T 7 T
CXYBEN
5 F e [—
I
1 1 1 Lo S R B
40 50 80 T0 80 90 100 10

AVA'%

Fi6. 1. Typical variation of function (IV,), with area ratio for oxygen,
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The exact nozzle flow quantities were computed for oxygen with a
sumber of nozzle reservoir conditions by using the computer programme
given by Tung Chen and Eschenroeder’. TFhe function (N); was also
computed for several reservoir conditions and are plotied in Fig. 2 with a
new independent variable ¢ defined as £ == (S, — ) where S, is the entropy
of gas in the nozzle reservoir. The purpose of introducing ¢ is explained
in the following sections. Tt is apparent from Fig. 2 that there is still a
significant effect of the reservoir conditions (temperature and pressure) on
(Ng), more so towards the end of the nozzle. Tn an effort to obtain a
better correlation, the (Ns), values were multiplied by a factor (mp’o/T" o)
where m and n were found to be 4-15 and — 0-037 respectively in the
case of oxygen. The constants z and m were determined by equaling the
maximum and mininrum values of (Ng), at a value of (£y/€) = 1-15. This
procedure is somewhat arbitrary but seems to be effective in obtaining a
better correlation for the function N, which can now be written as

Ny = (Ne)y (4-15p' o/ T'o)y~ * 18)

The N; values computed from eq. (18) are shown in Fig. 3 for the same
reservoir conditions given in Fig. 2. All the values for different reservoir
conditions correlate well and can be represented by a mean curve as shown

6 ‘(‘ T T T T i T T ! "'_1
| s oA b
c08® % P x x
s L o 8080571 % ¥
o X
- a A, o o o o © o ©
4 BX o -
(Ns)( A OXYGEN
3 L g To (°K} R'(otm) So -1
.
o 5000 10 456
e r X x 5000 50 39.3 -
o & 5000 00 36.89
I ¢ 6000 50 44.48
s o 6000 100 42.2
o] {__Lﬁ__[ﬁ___u‘ L L L. 1 1
[N [ 12 - 1.4 5 1.6 L7 1.8 19

o6

Fi. 2, Variation of (N, with parameter (/) for oxygen.
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¥ro. 3. Correlation of N, with the parameter (£o/€) for oxygen.

by the dotted line. The actual values correlated in this way are within
-+ 5 per cent of the mean curve. In the present analysis the success of corre-
lation of the function Nsis crucial for obtaining similar solutions, Hence,
use of a mean curve for N; given in Fig. 3 has to be justified quantitatively
Towards this end the following procedure was adopted. Apart from using
a mean curve to represent the Ng values, two more curves were fitted corres-
ponding to the extreme values in the scatter. A few cases were tested using
all the three values of N; in the governing equations. For a particular case,
the species mass fraction values obtained with all the three categories of N
are plotted in Fig. 4. It is clear that the difference in o values is negligibl.
This is expected since the o values will not be too sensitive to small changes
in N, towards the end of nozzle where the flow is almost frozen. However,
small changes in N; can cause significant changes in « in the eatly expar-
sion region in the nozzle where the flow is rapidly changing from equilibrinm
to nonequilibrium state. Fortunately, the N; values do not seem to vafy
very much in this region. Therefore, fairly accurate similar solutions cad
pe obtained with a single mean curve to represent the function Ny for all
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Fig. 4, Effect of using different (M) curves on similar solutions.

the reservoir conditions. The mean curve for N can be expressed in a.
simple analytical form as:

Ny =TI5(1 — £/£)> — 60 (1 — £)/&) for 1:01 = (¢/O) =10
=57 —5125(2-0 — £/£)Y2 for 2:0 = (§/8) = 1-01
=5-7 for (£y/€) >2-0.

It is important to note here ithat the N values have been correlated
starting from the nozzle reservoir. Hence, one need not assume equili-
brium flow up to the nozzle throat as was done by Reddy and Daum™,
In order to estimate the effect of different mnozzle shapes on the function
X;, its values were obtained with different conical nozzle shapes (/=1-0
to3-0 cm) as well as hyperbolic nozzle shapes ([=0-5 to 2-0cm). It
was found that the differences in the N; values were within the accuracy
of N; correlation shown in Fig. 3. The additional factor (4-15 p/of Ty 0" %"
was also included in the expressions for Ag and A, so that its effect is properly
taken into consideration.

5. INITiAL VALUE PROBLEM

After having obtained a universal cortelation for the function N in
terms of the independent variable, similar solutions can be obtained by a
simujtaneous solution of the transformed goveming equations given by
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eqgs. (15), (16) and (17). As this is a well-known initial value problem
starting values of ¢ ;¢ , u corresponding to a given valiue of % have to be speci,
fied. The stagnant gas in the nozzle veservoir will be in chemical apd
thermodynamic equilibrium and it departs from this equilibrium state a
expands in the nozzle. Hence, for the specification of initial values, 3
relation between ¢, ¢, o and 7 for equilibrium state is required. This rel,.
tion can be easily obtained as a limiting case from the general transformed
governing equations.

This limiting case is achieved when the vibrational mode is fully excited
and dissociational reactions occur at an infinite rate. This means that the
vibrational relaxation time 7, and the recombination rate constant X; seps.
rately tend to zero and hence the parameters Ag and Ap each tend to o,
With this situation, the equality of translational and vibrational tempe-
rature functions ¢ == ¢ can be inferred from the vibrational rate =q. {16).
With ¢ =3¢, the generalized momentum eq. (17) can be integrated and
given as

B/ + (1 + D /) — SN — 1D+ (e —a)(ef — 1)
— N (™ — a)f(e¥ — 1) + 2loge [/l — a)] + 2logs
x [(e™ — 1)/(e¥ — 1)} = constant. )

The preceding equation is also the expression for the change in entropy
in an equilibrium flow™, and it also shows that entropy is conserved which
is expected in an equilibrium flow. The constant in eq. (20) can be written
as (Sg — S7), where S,= (S'o/R) is the nondimensional entropy of gas
in the nozzle reservoir, Sy is the nondimensional reference entropy and R
is the gas constant. With Ag — oo, the equilibrium law of mass action
can be inferred from the rate eq. (15) and is given as

(1 —¢0v) = loge {(#/0o)* [ae¥(1 — ae)] [(1—e¥)/(1 —e¥)} @)

where the coupling factor ¥V is taken as unity in equilibrium flow. It may
be noted that the equilibrium flow does not depend on the nozzle shap,
as it should be.

The equilibrium solution given in egs. (20) and (21) could be used to
obtain the initial values required for the nonequilibrium solutions. For
any given value of 7, the corresponding values of ¥ and « can be obtained
from egs. (20) and (21) by using an iteration procedure. Butit introduces
an additional parameter namely the reservoir entropy S, through the
constant given in eq. (20). Hence the nonequilibrium similar solutions
would dependbn two parameters Sp and Ag, ’for a given gas and nozz

i
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shape parameter ij. The two parametric dependence can be reduced to a
;ingle parameter™® by using the following transformations :

f=(Ss—m; B =(Se—4/02);
y =(8; —¢/0v) and o remains the same.

The equilibrium. and nonequilibrium governing equations can be rewritten
in terms of the new variables £, 8, v and «. These equations are not given
hete since they are essentially similar in nature compared to eqs. (20), (21),
{15), (16) and (17) and besides, are loo lengthy®. The significant aspect
that arises out of this transformation is that the governing equations are
controlled by anew parameter xg = [(2 — 1/i7) Sy — Aq] with £, instead of
7, as the independent variable. There is another parameter x» = [(2 — 1/§j)
S, — Ap] which also appears in the governing equations but it is not
independent of xq since Ay is related to Ag for a given gas. The governing
equations written with £ as the independent variable contain also S, sepa-
rately. But it was shown in ref. 10 that its influence on similar solutions is
negligible. This fact is also apparent from the similar solutions presented
elsewhere in this report. Tt should be noted that the general correlating
parameter yq is a combination of two parameters Sy and Ag, the former
arises out of initial value problem and the;latter out of nondimensionalising
the governing equations.

6. SIMILAR SOLUTIONS
6:1. Method of Solution

The equilibrium solutions for « and B were obtained from eqs. (20) and
(21) for given values of ¢ and S, by Newton Raphson iteration procedure.
These equilibrium solutions were used as the initial starting values for the
nonequilibrium solutions which were obtained from egs. (15), (16) and (17)
with xq as parameter. The well-known fourth order Runge-Kutta method
was used for solving these nonlinear rate equations. The usual method
of finding the correct step size by trial and error consumes much computing
time. Hence, in the present computation the correct step size was obtained
by vsing Richardson’s extrapolation,

62, Similar Solutions for Oxygen

The mass fraction « and temperature Ty and Ty corresponaing to a
particnlar case (p'o=50 atm., T'o=5000°K, S,=39-3, g= —2-5)
obtained from the present similar solutions have been compared in Figs. 5
and 6 with the values obtained by the exact numerical computations of
Tung Chen and Eschenroederl. The agreement is quite good. The
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FiG. 6. Comparison of vibrational and translational temperatuyes for oxygen.

nonequilibrivm similar solutions of o, § and y for oxygen for various S
and xg values are given in Figs. 7, 8 and 9. The corresponding
equilibrium solutions with (i = 2) are also showan.
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Fic. 7. Species concentration variation with purameter ¢ Tor oxygen.

6.3, Discussion of Similar Solutions

It can be seen from Fig. 7 that all che equilibrium solutions do not
collapse on to a single curve since the transformed equations with £ as the
independent variable still contain the reservoir entropy S,. The separation
between the different solutions of « increases towards the higher values of
Ss. The spread between the different equilibrium solutions of g (Fig. 8)
is not as pronounced as it is in «. The vibrational temperature function
y (Fig. 9) increases slightly before it freezes. This behaviour is possible
since the vibrational de-cxcitation along the nozzle axis might become negli-
gible because of rapid decrease in temperature and pressurs, whereas the
uet recombination would contribute significantly to the vibrational energy
for a longer distance along the nozzie'?. The nonequilibrium solutions
with the same S, and ygq but different P’, and 77, are identical as shown
by curve A in Fig. 7. The a values with the same xa but slightiy different
Sp start with the corresponding equilibrium values but tend to the same
fozen Jimit as indicated by the curve B in Fig. 7. This suggests that the
eservoir entropy S, which appears as a separalc parameter in the trans-
formed equations with £ as independent variable does not effect the
solutions to any significant extent.
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Fis 9. Vibrational temperature function Hva,riation with ¢ for oxygen.

Tihe variation of frozen mass fraction ay, which is a fonction of xd
only 13 §h0wn in Fig. 10. Another important feature of the present
&nalYSls: is that the function N, has been correlated starting from the nozzle
reservoir.  Hence an assumption of equilibrium flow in the subsonic region
of the nozzle is not necessary and in the present analysis the nonequilibrivm
solutions were obtained starting from the nozzie reservoir unlike in the
analysis of Reddy and Daum?.

LLsc—s
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FiG. 10. Frozen species concentiation with the parameter ygfor oxygen.

7. UNIVERSAL CORRELATING PARAMETERS ¢ AND yxq
7.1. Parameter &

The similarity parameter ¢ is already defined as §=(S,—~7)=
[Se — loge (uAd/p,2t,)). This parameter is not only a function of the reser-
voir and nozzle throat conditions but also a function of velocity. There-
fore, the velocity ratio (u'/u' ) = (u/u,) was computed for several reser-
voir conditions for oxygen. It was observed that this type of correlation
still results in a significant amount of reservoir pressure and temperature
effects which is similar to that noticed in Ns correlation. In order to obtain
a better correlation, each velocity ratio was multiplied by the corresponding
reservoir function as given below:

(uu*)L = (u%) (415 p /T )0 02 -

where the constant factor — 0:04 was obtained by using considerations
similar to those used previously in the correlations of N;. This modi
fied velocity ratio (ufu, ); was replotted for all the reservoir conditions as
shown in Fig. 1| for oxygen. All the values now correlate fairly well and a
mean curve can be taken to represent the velocity ratio for all the reservor
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conditions. This mean curve for oxygen can be represented by a simple
expression of the type.

35 T
* [ 3.25~ 2.3 +og, a®!
30 A

Mean Cuorve

OXYGEN
25) T,;('KY PO'(Eﬂm) S 4
E) 5000 0 45.80
s 5000 80 38.30 1
20 8000 100 36 89

[alelo} 50 44 48

o s ©&x ©
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Fig. 11. Velocily correfation with area ratio for oxygen,

Upstream of the nozzle throat:

;” = (4 15p o/ T/ o)y 9% [— 1-01 4 2-13 (1 + logge 47> Y] 23)
*
Downstream of the nozzle throat:

;fw = {4157 o/ T ) -9 [3:25 — 2-13 (1 -+ logy o Ay 2-1] 24)
*
It is shown by Reddy and Daum?®® that a correlation for the density at the
throat can be obtained for oxygen as

p% ==p"0 (0529 + 9 x 10-% T, ° K). 25

With eqs. (24) and (25), the expression for ¢ in the downstream pottion of
the nozzle for oxygen can be given as
£= 5, — loge [(4-15p o/ T oy 0% (A'/A', ) {3-25 — 213
X (L 4 logyo (A'[A', )2} (pa/p’o) ,
X(0-529 + 9 x 10-5 77, ° K)Y). (26)
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7.2. Parameter xg

The parameter yg bas been defined as yd ==[S,(2 — 1/ij) — Ag] where
Aq is given by eq. (15). Since the function Ag contains the mass flow term
py Uy » their values for several reservoir conditions have been correlated by
Reddy and Daum?®® and can be written for oxygen as,

(p g 's) == pg'1y’ (0-585 - 1-33 X 108 7T °K). )
Then the expression xg for oxygen can be written as

xa = Su (2 — 1) — loge [(095/5) C ¥ 1Ky Ty pg'-31¥)
X Mgt (pro)—mm Pf0(0.5+1m (T/0)0-037] (23)

where
Cp,=1{D-58541-33 X105 T, ° K).

The parameters & and yg are now expressed in terms of the initial
and boundary values only and hence can be readily computed for any
given reservoir conditions and nozzle shape.

7.3. Discussion of General Correlating Parameters ¢ and g

It has been mentioned earlier that Bray? has shown that the frozn
mass fraction, for a given nozzle and gas, correlates very well with reservoir
entropy alone. Bray concluded this by corrclating a number of values of
ay computed for different reservoir conditions using ‘sudden freeze’ ana-
lysis. From the present analysis, it is shown formally that the frozen mass
fraction depends on only one parameter xq and for a given gas and nozze
shape xq can be written as

xa = So(2 — /i) — loge [(po)0-5 p/y/ @5+ (T'0) 1]
-+ constant )

From eq. {29) it is obvious that the major controlling parameter is the
reservoir entropy S, and for a certain combination of reservoir conditions
the logarithmic term in eq. (29) could be small so that yq depends on S
only. Thus, the frozen mass fraction af may not correlate with S, only for
all possible combinations of reservoir conditions. Again by using a pumber
of computed values of of for different nozzles, Harney® added another term
like loge (I) to the entropy to obtain the necessary correlation. It is no'ted
that in the present general correlating parameter xq, the type of expressiot
deduced by Harney appears formally and Harney’s parameter is not complets
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in the sensc that the general correl.ating paramet'er shonld contain addi-
fional reseTvoir pararneters as given in eq. (28). Ring and Johnson® used a
correlation based on two independent parameters, na'mely Sy and a non-
Jimensional time ¢ characterising the flow expansion rate. It can be
shown formally that their parameter 7c is a part of the function N; which
controls the behaviour of the rate equation and hence the extent of non-
equilibrium  flow in the nozzle. It should be emphasized that all these
preceding procedures adopted for correlation were thought of on an ad-
oc basis. In contrast the present amalysis is based on formally treating
the complete governing equations and it is evident that the general corre-
lating parameter xg consists of two parts mnamely Aq and Sy, the former
arises from the nondimensionalization of governing equations and the latter
(a significant part) arises from the °initial value problem’ consideration.

8. CONCLUSIONS

Based on the present analysis the following conclusions are noted :

I. Similar solutions have been obtained for nonequilibrium nozzle
flows of oxygen uvndergoing simmitaneous vibrational and disso-
ciational relaxation by using a new similarity parameter £.

2. The similar solutions presented can be used over a wide range of
initial conditions and nozzle scale parameters.

3. The equilibrium solutions depend on only one parameter ¢ and
the nonequilibrium. solutions depend on two parameters £ and
xd- The frozen species concentration depends on xg only.

4. 'The parameters ¢ and xa would serve as universal correlating para-
meters since they contain all the physical quantities of the problem.
The hitherto used approximate correlating parameters can be
deduced from the present general correlating parameter xg.

5. For any given initial conditions the nozzle flow quantities can be
read off from the graphs without resorting to complex computer
programmes,
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NOMENCLATURE

A area ratio (4 = A'JA",)

C, and C, constants in 7y p’ == C; ¢*+¢AHU3

E defined in ref, 9

G defined in ref. 9

h static enthalpy (2 = /[RT"y)

H total enthalpy (H = H'/RT",)

kr recombination rate constant (ky = kr; T15)

H nozzle scale length (I ==t /tan §)

L defined in ref. 9

Mg atomic weight

M Mach number

N Maximum number of vibrational levels in a cut-off-harmoni
oscillator

p pressure (p' = p'/pa)

s entropy

u velocity (# == ' [+/RT"y)

14 coupling factor (ref. 9)

x distance along the nozze

a dissociation mass fraction

€ vibrational energy (e = ¢/RT",)

Oy characteristic vibrational temperature

& vibrational temperature function (¢ = 05/Ty)

P density (p = p'/pa)

7 defined in eq. (7)



Similar Solutions in Nonegquilibrium Nozzle Flows

417

translational temperature function (f == ty/Ty)

defined as & = (Sq — 1)

characteristic dissociation values
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