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ABSTRACT 

A method of obtaining similar solutions for pseudo-one-dimensional, non. 
equilibrium nozzle flows is discussed. A diatomic gas undergoing simultmeou~ 
relaxation of both vibrational and dissociational modes including coupling among 
them is considered. Similar solutions for oxygen and nitrogen, with nonequilibrium 
effects starting from the nozzle reservoir are presented. General correlating pasa- 
meters have been deduced from the transformed governing equations. It is shown 
that all the approximate correlating parameters that have been hitherto formulated 
using approximate methods can be deduced from the present general correlating 
parameters us special cases. With the present similar solutions the flow quantities 
in the nozzle can be readily obtcrined from the charts for any given initial conditions 
in the nozzle. 

Key words: Nozzle flows, nonequilbriuln cffecls. 

Nonequilibrium effects in nozzle flows have long been of interest in 
the propulsion field because of the thrust loss resulting from chemical freez- 
ing (recombination lag) occurring in nozzle expansion process. In recent 
years the problem of chemical freezing in nozzles has assumed greater 
importance with the development of high performance chemical rockets 
using hydrogenfluorine system and th.e interest in develonment of advanced 
hypersonic ram jet engine. Nozzle flow nonequilibrium is also of much 
concern in connection with hypersonic wind tunnel testing. The cwent 
test devices such a5 are jets and shock tunnels utilize nozzle expansiolls of 
air from Initial high temperature conditions where a major portion of the 
air may be 6issociated. Usually some degree of freezing occurs in the 
nozzle expansion, which produces a test air flow llot in an equilibrium states 
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Hence. the actudl phyAcal and chem*cd state of thc test gas in a hypersonic 
faciji~y 1s essential for successful wind tunnel tesling. 

Tile present state-of-the-art for analysing nonequilibrium nozzle flows 
compbx coinputcr progrmuncs' with which the flow variables are 

determined by iiun~erical illtegraiion for any given initial and boundary 
conditions. These conditions usually arc the reservoir temperature and 
pressure, nozzle shape and a specified gas. Bccausc of many variables 
illvo]ved, rhe nunlerical solutions do no1 provide suitable theoretical com- 
paxisolis for use by an cxperinlentalist. Several approximate analyses havc 
been proposed to correlate at least thc frozcn cnthalpy in the nozzle. Brayz, 
l~hile introducing "sudden freeze ' analysis, found that the frozen mass 
f:&on in the nozzle, for a certain ran& of reservoir conditions and a parti- 
cular nozzle gcomel~y, depends on the reservoir entropy alone. This was 
later used by Lord,i and Mates3 and Harris and Warren4 to correlate the 
frozen enthalpy in air. Harncy" .improved on the entropy cornlation by 
including Ll~e nozzle scale parameter. However, these correlations do not 
include the effects of variations in the total enthalpy and do not correlate 
all quantities of interest. Ring and Johnson"sed a correlation based on 
the reservoir entropy and a time 7, characterising the flow expansion rate 
for the nonequilibriunl flow parameters. It should be emphasized that all 
these methods were not based on any rational analysis but their success or 
otherwise was solcly judged by correlating thc numcncally coinputed nozzle 
flow quantities in a rather restricted range of reservoir conditions. 

From the preceding discussio~l i t  is obvious that suitable similar solu- 
tions to this problem are highly desirable. Such similar solutions would. 
not only eliminate thc need for repeated computations using conlplex com- 
pnter programmes but also provide, for the experimentalist, the badly 
needed gencral correlating parameters, Thc present work discusses a 
method of obtaining similar solutions for pseudosne-dimeilsional, inviscid, 
adiabatic, nonequilbriunl nozzle flows. Thc case of a single diatomic gas 
undergoing cithcr vibratio~lal relaxation o r  dissociational relaxation has 
been already considered by Reddy and Daum7. Similar solutions for the 
case of oxygen, considering only the dissociational ilonequilibrium effects, 
have been presented in ref. 8 .  But in the real problcm a diatomic gas under- 
goes both these relaxations simultaneously with co11pE11g between thlem. 
In the Present work a realistic lnodel for a single diatomic gas like oxygen 
01 lutrogen undergoing sinluitaneous vibrational and dissociational relaxa- 
tion is considered. A tiul-of hal-lnonic oscillator model 's used for des- 
cribing the vjbrational rate process. ~ h c  coupling between vibrational and 
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dissociational modes is also taken into account. The assumpti011 of oqulli. 
brium flow upstream of the nozzle throat made by Reddy and Daum7 has 
been avoided and the present analysis is capable of h a n d l q  the non. 
equilibrium situation throughout the nozzle beginning from the node 
reservoir. 

General correlating parameters have been deduced from the transformed 
governing equations. It is  show^^ that all the approximate correlating para- 
meters that have been hitherto formulated can be dcduced from the 
ppy,ent general correlating parameters as special cases. The similar solu. 
tions for oxygen are presented in the form of graphs. With the present 
similar solutions the flow quantities in the nozzle can be easily readoff 
from the charts for any given initial conditions in the nozzle reservoir, 

Similar solutions for nitrogen can be found in ref. 9. 

The governing equations (in nondimensional form) for a steady state, 
pseudo-one-dimensional, adiabatic, inviscid flow are given below. A detailed 
derivation is given in ref. 9. 

Conservation of Mass ; p u A  = p, u, =. constant (1) 

Conservation of Momentum : udu + &Ip = 0 (2) 

Conservation of energy : It -i- =; H, = constant (3) 

and 
e- b',/(e+ - 1)  - (NOv/eN+ - 1) 

for a cut-off-harmonic oscillator approximation; N is the maximum number 
of vibrational levels. 

Equation of state : p - p T ( 1  $- a)  (4) 
Dissociational rate equation 

da - !kn TdS pd2 
( 1  - n_) (0,)s ~ v ~ o w , ~ ~ ~  dx- ma2 uud 



Vibrational rate cquation : 

:z [ s (M) - €1 b - (B - C) YL' Z/u (1 - a) + (8 - 9 Z/U (1 - a) 

(63 
where 

& = (8', pd Ud P (1 $. a)  C ~ ~ * " ~ / U C ~  # 
I = Ikrl TdS p d V t S  p2 (1  - a) a z b a  "a .  

 he preceding six equaiions are sufficient lo determine the six unknowns 
p, p, Tt, u, E and a. 

An independent variable 7 is defined as 7 = log, p. Then the governing 
equations can be written in terms of this new variable as : 

Conservatmn of mass : 7 = log, (uA/p, u,) (7) 
Conservation of momentum : udu t eq dp = 0 
Conservation of energy : 

(8) 

u2/2 -+ (7 i. 3 a) 8,/21/1+ (1 - a) 6 -[- a = H, (9) 

Equation of state : p -- e-7 Bv (1 +- a)/# (10) 

Dissociaiional rate equation : 

The vibrational rate equation can be written in terms of vibrational tempe- 
rature function + with a cut-off-harmonic oscillator approximation as 

where the function f, and f ,  are functions of temperature and are given 
ie ref. 9. 
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In a one-dimensional nozzle flow with an area distribution given by 
A = (1 $. it can be easily shown7 that, 

The velocity term in the function (N,,) has been nondimension&d 
by ud. This will be changed in the following manner for reasons that Mi 
be explained later 

where suffix 0 refers lo the nozzle reservoir conditions. Witb. eqns. (13) 
and (14), the dissociational rate equation [eq. (ll)] can be written as: 

where 

( N  s 1 -  - (,wy: - J (1 - ~ - = ~ i ) + i ) ~ ~  z,iTo+~~ijj 

and 

Ad = loge [ikrl. TdS pd" (ijmasud)" ( p c  11,)"~j (ud/~r',)"+''~j'] 

where 

u'o = ( ~ ' 0 1 ~  'elf 
Proceeding in the same way and arranging the terms, as in the previous case, 
the vibrational rate equation (eq. 12) can be written as 



By using the differential form of conservation of cnergy and equation of 
state, the conservation of momentum (eq. 8) can be expressed as 

It is clearly seen that the problem under consideration has been reduced to 
solv~ng three differential eqs. (15) (16) and (17) for three unkt~owns a, 4 and 
$ with 7 as the independent variable. The other unknowns namely p, p 

and u are obtained from the other governing equations which are simplc 
algebraic equations. 

The main motivation in expressing the rate equations for the dissocia- 
tional aud vibrational 1nod.e in the form given in eqs. (1 5) and (16) is to com- 
bine all the parameters of thc problem into two parameters Ad and A,. It 
can be easily shown that, for a given gas, the parameter A, i s  a constant 
multiple of Ad. So one can write A, =QAd where Q = log, [k,, T d S  Cl pd/%" 

u ~ ~ O V ] .  SO it is obvious that a single parameter Ad is sufficient to define 
the problem. However, the similar governing equations contain additional 
Parameters C,, s and v. The parameters C, and s are also fixed for a given 
gas and are usually obtained from experimental measurenlents. The 
Parameter ij is the nozzle shape parameter and a given of 3alue ij covers a 
family of nozzle shapes. Fortunately, for thc commonly used nozzlc shapes 
of conical and hyperbolic type the value of ij - 2. The governing equa- 
tions also contain a rather undesirable term (N,), which is different for 
different reservoir conditions and also varies along the nozzle length. Lf 
the function (N,), could be expressed in terms of only the independent 
variable 7, then similar solutions for translational and vibrational tempe- 
rature functions I/, and $ as well as for atom mass fraction a can be obtaineq 



with as thc independent variable. Tlie parameters to be s p e c w  are hd 
and ij since the oth.er parameter hv i i  related lo Ad and the parameters cn 
and s are constants for a given gas. A method to express (N,), in term; 
of rl is given i n  the following section. 

The expression for (N,), given in eq. (13) is a fmction of M, u and A, 
Hence it will have ciifferent valrres for differen1 reservoir conditions and 
it 31s3 varies along- the nozzle axis. The significant vaiiable is the velocity 
u since i t  is i~ondimcnsionalised by ud which is independent of reservoir 
conditions. It was observed from a number of nozzle conlputvtions that 
the velocity, when, nondirnensionaulzed with a velocity u', s (p'o/p'o)i, 
did not change very much for different reservoir conditions. That is why 
the expression for (N& was re-written earlier in t e r m  of ur and the resulting 
constant was included in hd and A,. A typical variation of (N,), with nozzle 
area ratio is shown in Fig. 1. It is noted that moving upstream from nozzle 
throat (Ns), rapicily tends to zero since M and zc, both tend to zero. At 
the geometric throat, since the rate of change of area with x goes to zero, 
the function (N,), has an indeterminate form since M also becomes unity at 
the nozzle tl~roat. However, it can be shown" that the function (A',), 
tends to a definite limit at the throat. 

RG. 1. Typical variation oC function (N,), with alea ratio for oxrgev. 



The exact nozzle Bow quantities were conlputed ibr oxygen with a 
number of nozzle reservoir collditions by using the computer programme 
kve,, by mng  Chen and Eschenroeder'. The function (N,), was also 
,rnputed for several reservoir conditions and are plotted i n  Fig. 2 with a 

illdependent variable f defined as t = (SO -- 7) where So is i11c entropy 
of gas in the n o d e  rWrvoil-. The purpose of iniroci~icing f is explained 
in the following sections. I t  is apparent from Fig. 2 that there is still a 
o,i@ifiificant effect of the reservoir conditions (temperature and pressure) 0x1 

(N&, more so towards the end of the nozzle. In an effort to obtain a 
better correlation, the (N,), values were multiplied by a factor (mp',/T',)n 
where m and n were found to be 4.15 and -- 0.037 respectively in the 
case of oxygen. The constants 71 and 112 were determined by equating the 
maximum and mininnrm values of (Ns), at a value of ( f , / f )  = 1 .15. This 
procedure is somewhat arbitrary but seems to be effective in obtaining a 
better correlation for thc f~mction N,, which can now be written as 

The N, values computed from eq. (18) are shown in Fig. 3 for ihe same 
reservoir conditions given in Fig. 2. All the values for different reservoir 
conditions correlate well and can be represented by a mean cuive as shown 
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FIG. 3. Correlation of N. with the parameter ( t o / &  for oxygen. 

by the dotted line. The actual values correlated in this way are within 
i 5 per cent of the mean curve. In the present analysis the success of c o w  
lation of the function Ns is ci~icial for obtaining similar solutions. Hence, 
use of a mean curve for Ns given in Fig. 3 has to be justified quantitatively 
Towards this end the followjng procedure was adopted. Apart from using 
a mean curve to represent the Ns values, two more curves were fitted corres- 
ponding to the extreme values in the scatter. A few cases were tested using 
all the three values of N, in the governing equations. For a particular case, 
the species mass fraction values obtained with all the three categories of 
are plotted in Fig. 4. It is clear that the difference in a values is negligible. 
This is expected since the a values will not be too sensitive to small changes 
in Ns towards the end of nozzle where the flow is almost frozen. However, 
small changes in Ns can cause significant changes in a in the early expan- 
sion region in the nozzle where the flow is rapidly changing from equilibrium 
to nonequilibrium state. Fortunately, the Ns values do not seem to vW 
very much in this region. Therefore, fairly accurate similar solutions Can 

obtained with a single mean curve to represent the function Na for dl 
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FIG. 4. Effect of using different (hr.) curves on similav solutions. 

the reservoir conditions. The mean curve for N, can be expressed in a. 
simple analytical form as : 

N, = 715 (1 - f0/f)Z - GO (1 - fd f )  for 1.01 3 ( f d 8  >, 1 .o 
= 5.7 - 5.125(2.0 - f O / ~ ) I f V o r  2.0 > (fO/f) 2 1.01 
= 5.7 for ( fo / f )  >2.0. 

It is important to note here that the Ns values have been correlated 
starring from the nozzle reservoir. Hence, one need not assume equili- 
brium flow up to the nozzle throat as was done by Reddy and Daum7J0. 
In order to estimate the effect of different nozzle shapes on the function 
%, its values were obtained with different conical nozzle shapes (1 r 1.0 
to 3 4 cm) as well as hyperbolic nozzle shapes (1 = 0.5 to 2.0 cm). It 
was found that the differences in the Ns values were within the accuracy 
of NS correlation shown in Fig. 3. The additional factor (4.15 ~ ' o l T ' & ~ '  03' 

was alsoincluded in the expressions for X d and h, so that its effect is properly 
taken into consideration. 

After having obtained a univensal correlation for the function NS in 
t&rms of the independent variable, similar solutions can be obtained by a 
Wultaneous solution of the transformed governing equations given by 
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eqs. (151, (I 6) and (I 7). As this is a well-known initial value problem 
starting values of 4, I), o corresponding to a given value of 7 have to be speci: 
fid. The stagnant gas in the nozzle reservoir will be in chemical and 
thernlodynamic equilibrium and it departs from this equilibrium statc it 
expands in the nozzle. Hence, for the specification of initial values, a 
relation between +, 4, a and 7 for equilibrium state is required. This ,&. 
tion can be easily obtained as a liniiting case from the general transformed 
governing equations. 

This limiting case is achieved when the vibrational modc is fully excited 
and dissociational reactions occur aL an infinite rate. This means that ihe 
vibrational relaxation lime rv and the recombination rate constant K, sepa 
rately tend to zero and hence the parameters ha and A,, each tend to m, 

With this situation, the equality of translational and vibrational temp 
rature functions 4 .= $ can be inferred from the vibrational rate eq. (16). 
With 4 =$, the generalized momentum eq. (1 7) can be integrated and 
given as 

The preceding equation is also the expression lor the change in entropy 
in an equilibrium flowl1, and it also shows that entropy is conserved which 
is expected in an equilibrium flow. The constant in eq. (20) can be written 
as (So - ST), where So = (S 'dR)  is the nondimensional entropy of gas 
in the nozzle reservoir, ST is the nondimensional reference entropy and R 
is the gas constant. With Ad -t a, the equilibrium law of mass acbon 
can be inferred from the rate eq. (15) and is given as 

where the coupling factor V is taken as unity in equilibrium flow. It mag 
be noted that the equilibrium flow does not depend on the nozzle shape, 
as it should be. 

The equihbrium solution given In eqs. (20) and (21) could be used to 
obtam the mitial values required for the nonequilibrium solut~o~s For 
any given value of 7 ,  the corresponding values of $ and a can be obtaned 
from eqs. (20) and (21) by using an iteration procedure. But ~t intr&m 

; an additional parameter namely the reservoir entropy So through 
constant given in eq. (20). Hence the nonequilibrium similar solutions 
youid depend on two parameters So and ha, for a given gas and no* 
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shape parameter g. The two parametric dependence can be reduced to a 
single parameter7,10 by using the following transformations : 

.= (SB - $/flu) and a remaius the same. 

The equilibrium and noueq~ilibrium governing equatious can be rewritten 
in terms of the new variables f, P ,  y and a. These equations are not given 
here since they are essentially similar in nature compared to eqs. (20), (21), 
(151, (16) and (17) and besides, are too lengthy'. The significant aspect 
that arises out of this transfo~mation is that the governing equations are 
controlled by anew parametev )(d = [(2 - l/ij) So - hd] with f ,  instead of 
,,, as the independent variable. There is another parameter xv = [(2 - l/ij) 
So - A,] which also appears in the governing equations but it is not 
independent of xd since h~ is related to Ad for a given gas. The governing 
equations written with f as thc independent variable contain also So sepa- 
rately. But it was shown in ref. 10 that its influence on similar solutions is 
negligible. This fact is also apparent from the similar solutions presented 
elsewhere in this report. It should be noted that the general correlating 
parameter xd is a combination of two parameters So and Ad, the former 
arises out of initial value problem and thellatter out of nondimensionalising 
the governing equations. 

6.1. Method of Solution 

The equilibrium solutions for a and j3 were obtained from eqs. (20) and 
(21) for given values of f and So by Newton Raphson iteration procedure. 
These equilibrium solutions were used as the jnitial starting values for the 
nonequilibrium solutions which were obtained from eqs. (15), (16) and (17) 
with xa as parameter. The well-known fourth order Runge-Kutta method 
was used for solving these nonlinear rate equations. The usual method 
of finding the correct step size by trial and error consumes much computing 
time. Hence, in the present computation the correct step size was obtained 
by using Richardson's extrapolation. 

b.2. Similar Solutions for Oxygen 

The mass fraction a and temperature Tt and Tv corresponaing to a 
Particular case -- 50 atm., T', = 5000" K, So = 39.3, 9 = - 2.5) 
obtained from the prssent sim~lar solutions have been compared in Figs. 5 
dnd 6 with the values obtamed by the exact numer~cal computations of 
Tu% Chen and Eschenroederl. The agreement is quite good. The 
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FIG. 5. Coinperison of dissociation mass fractious for oxygen. 
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Fm. 7. Spccies cmlccnlralion v.uiation with parnnlclcr hl .  oxygen. 

6.3. Discussion qf' Similar SoZutions 

It can be seen from Fig. 7 ihat all che equilibrium solutions do not 
collapse on to a single curve since Ihc transformed eq~tations with f as the 
independent variable still contain the reservoir entropy SO. The separation 
between the differcnt solutions of a increases towards Lhehlglier values of 
SO. The spread between the different equilibrium solutions of /3 (Fig. 8) 
is not as prooormced as it is in a. The vibrational temperature function 
'/ (Fig. 9) increases slightly before it freezes. This behaviour is possible 
since the vibrational de-cxcitaiion along the nozzle axls might bccolrie negli- 
iible becauae or rapid decrease in temperature and pressur:, whereas the 
net recombination w o ~ l d  contribrtte significantly to the v~brational energy 
for a longer distance along the nozzle12. The noneqttilibriun~ solutions 
with the same So and ~d but different Pro aud T',, are identical as shown 
by curve A 111 Fiz. 7. The a values with the same ~d but sljghtiy different 
SO s k t  with the corresponding eq~tilibriuin values but tend to the same 
Elom limit as indicated by the cmve B in Fig. 7. This suggcsts that the 
"servoir entropy So which appears as a sepavaic paranlcter in the trans- 
formed equations with as independent variable does not effect thc 

to mjr significant extent. 
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FIG. 10. Frorcn species concentlation with the  pal-ametcr za ior oxygen. 

7. UNIVERSAL CORR~ATING PARAMETERS 5 AND XU 

7.1. Parameter f 

The similarity parameter E is already defined as f = (So - 7) = 
[ S o  - log, (uAlp,u,)]. This parameter is not only a f~~nction of the nser- 
voir and nozzle throat conditions but also a function of velocity. There- 
fore, the velocity ratio (u'lu',) r (&/I+) was computed for several reser- 
voir conditions for oxygen. It was observcd that this type of correlation 
still results in a sign~ficant amount of reservoir pressure and temperature 
effects which is  similar to tliat noticed in N, correlation. In order to obtab 
a better correlation, each velocity ratio was multiplied by the cormpond& 
reservoir function as given below : 

where the constant factor - 0.04 was obtained by using considerations 
similar lo those used previously in the correlatio~is of N,. This modi- 
fied vzlocil~ ratio (ulu,), war replotted for all the reservoir conditiolls as 
shown in Fig. 1 1 for oxygen. All the values now correlate fairly well ad a 
m a n  curve can be taken to represent the velocity ratio for all the 



FIG. 11 .  Velocily correlation with area rnlio tor oxygen. 

Upstream of the nozzle throat: 

= (4.15p'0/T',,)-o~04 [- 1 .01 $- 2.1 3 (1 f log,, A)-''] (23) 
u * 

Downstream of thc nozzle throat: 

It is shown by Reddy and Daumlo that a correlation for the density at the 
throat can be obtained for oxygen as 

p'* * p r o  (0.529 + 9 X lov6 Ti,, " K). (25) 

With eqs. (24) and (25), thc; expression for f in the downstream portion of 
the nozzle for oxygen can be given as 
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7..2. Parameter xd 

The parameter xa has been defined as xd ..= Wo(2 - 110) - id] where 
ha is given by eq. (15). Since the function ha contak~s the mas? flow term 
p , ~ *  , thclr values for several ieservoir conditions have been correl&d by 
Reddy and Danmlo and can be writtcn for oxygen as. 

(p'* u',) - p,'~,' (0.585 + 1.33 x lCV6 T' OK). (27 
Then the expression xd for oxygen can be written as 

where 

The parameters f and xd are now expressed in terms of the initial 
and boundary values only and hence can be readily computed for a n y  
given reservoir conditions and nozzle shape. 

7 . 3 .  Discussion of General Correlating Parameters f and ~d 

It has been mentioned earlier that Bray2 has shown that the frozen 
mass fraction, for a given nozzle and gas, correlates very well with reservoir 
entropy alone. Bray concluded this by correlating a number of values of 
af computed for different reservoir conditions using ' sudden freeze ' ana- 
lysis. From the present analysis, it is ~hown formally that the frozen mass 
fraction depends on only one parameter ~d and for a giver] gas and nozzle 
shape xd can be written as 

From eq. (29) it is obvious that the major controlling parameter is the 
reservoir entropy So and for a certain combination of reservoir conditions 
the logarithmic term in eq. (29) could be small so that xd  depend.^ on So 
0111~. Th.% the frozen mass fraction af may not correlate with SO O ~ Y  for 
all possible combinations of reservoir conditions. Again by using a number 
of computed values of aj for different nozzles, Harneys added anofia term 
like log, (I) to the entropy to obtain the necessary correlation. It is noted 
that in the present general correlating parameter ~ d ,  the type of expression 
deduced by Harney appears foqnally and Harney's parameter js not complctc 



in the sense that the general correlatillg parameter should contain addi- 
tional reservoir parameters as given in eq. (28). Ring and Johnson6 used a 
omlation based on two independent parameters, namely So a d  a Don- 
dimensional time rc charactesising the flow expansion rate. It can be 
$hewn formally that thcir parameter Tc is a part of the functjon N, which 

the behaviour of the rate equation and hence the extent of non- 
quilibrium flow in the nozzle. It should be emphasized that all these 

procedures adopted for correlation were thought of on an ad- 
hot basis. In contrast the prescnt analysis is based on formally treating 
fie complete governing equations and it is evident that the general corre- 
lating parameter xd consists of two parts namely Ad and So, the former 
arises from the nondimensionalin~tion or governing equations and the latter 
(a significant part) arises from the 'initial value problem ' consideration. 

, Based on the present analysis the following conclus;ons are noted : 

I .  Sirmlar solntions have been obtained for nonequilibrium nozzle 
flows of oxygen undergoing simultaneous vibrational and disso- 
ciational relaxation by using a new similarity parameter f. 

2. The simdar solutions presented can be used over a wide range of 
Initial conditions and nozzle scale parameters. 

3. The equilibr~um solutions depend on only one parameter f and 
the nonequilibrium solutions depend on two parameters f and 
xd. The frozen species concentration depends on xd only. 

4. The parameters [ and ~d would serve as universal correlating para- 
meters since they contain all the physical quantities of the problem. 
The hitherto used approximate correlating parameters can be 
deduced from the present general correlating parameter xd. 

5. For any given initial conditions the nozzle flow quantities can be 
read off from the graphs without resorting to complex computer 
programmes. 
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NOMENGLATURE 

A area ratio ( A  = A'IA',) 

C, and C, constants i n  7u p' = Cl e-'-C*1'3 

defined ill ref. 9 

defined in ref. 9 

static enthalpy (Iz = h'IRT',) 

total enthalpy (I1 = H'IRT',) 

recombination rate constant (k ,  = kr, 

nozzle scale length ( I  = r'* /tan 0) 

dekled in ref. 9 

atomic weight 

Mach number 

Maximum number of vibrational levels in a cut-off-harlnonic 
oscillator 

pressure (p' = p'lpd) 

entropy 

velocity (u = u' / . \ /RK)  
coupling factor (ref. 9) 

distance along the nozzle 

dissociation mass fraction 

vibrational enerm (E = d/RF,) 

characterisiic vibrational temperature 

vibrational temperature function (4 = B,/T,) 

density @ --- p'/pa) 

defined in eq. (7) 
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reservoir conditions 

t translational temperature 

9 vibrational temperature 

d characteristic dissociation valms 
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