MODAL AND RADIATION CHARACTERISTICS OF THE DIELECTRIC SPHERE EXCITED IN TM SYMMETRIC MODE

R. Chatterjee and À. K. Bhattacharya*
(Dept, of Electrical Communtication Enginteering, Indian Institute of Science, Bangalove 560 012)

Received on March 14, 1977

Abstract

The electromagnetic boundary value problem of the dielectric sphere excited in TM symmetric modes has been solved. Assuming that the fields on a truncated dielectric sphere excited by a coaxial line are the same as those on a complete sphere, the radiation characteristics of such a structure have been derived. Calculated radiation patterns and gains of several structures of varying dimensions have been verified experimentally.

Key words: Modes, Radiation, Dielectric sphere.

1. Introduction

The dielectric sphere has been studied as a lens by workers like Bckefi and Farwell, ${ }^{1}$ Luneberg ${ }^{2}$ and Pieles and Coleman. ${ }^{3}$

The resonant properties of the dielectric sphere has been studied by several workers during recent years. Gastine et al. ${ }^{4}$ have caleulated the resonant frequencies of dielectric spheres for the two extreme cases of $k a$ being finite when $\epsilon_{1} \rightarrow \infty$ and when $k a \rightarrow \infty$ when $\epsilon_{\mathrm{I}} \rightarrow \infty$, where $k_{1}=$ wave number in the dielectric and ' a ' is the radius of the sphere. Sager and Tisi ${ }^{5}$ have studied the eigen modes and forced resonant modes of dielectric spheres. Affolter and Eliasson ${ }^{6}$ have made a study of electromagnetic resonances and Q factors of lossy dielectric spheres. The reconances of a dielectric resonator of very high permittivity and their excitation have been studicd by Van Bladel. ${ }^{78}$

[^0]R. Chatterjee and A. K. Bhatracharya

Chatterjee and others have reported theoretical and experimental work on spherical diclectric antennas excited in hybrid ${ }^{9}$ and on hemispherical dielectric antennas excited in TM_{c} symmetric ${ }^{10}$ modes. Neelakantaswany and Banerjee ${ }^{11}$ and Chatterjee and Croswell ${ }^{12}$ have reported experimental and theoretical work on waveguide-excited dielectric spheres. Chatterjes ${ }^{13}$ has solved the electromagnetic boundary value problem of the dielectric sphere excited by delta-function electric and magnetic sources. In this paper, the modal characteristics of the dielectric sphere excited by a deltan function source in the TM symmetric modes has been studied theoretically and verified experimentally. Assuming that the fields on a truncated dielectric sphere excited by a coaxial line are approximately the same as that on a complete sphere excited in the TM symmetric modes, the radiation characteristics of such truncated dielectric spheres have been derived. The radiation patterns and gain of several such strectures of varying dimensions have been calculated and verified by experiment.

2. Electro-Magnetic Buundary Value Problem of Dielectric Sphere Excited in TM Symmetric Modes

Fig. 1 shows the geometry of the structure. Spherical "olar coordinates R, θ, ϕ are used. A dielectric sphere of radius $a=D / 2$ and constants $\epsilon_{1}, \mu_{1}, a_{1}$ is embedded in another diclectric medium of constants $\epsilon_{0}, \mu_{0}, \sigma_{0}$. This sphere is excited in the TM symmetric modes by an excitation electric field E_{0} exp ($-j \omega t$) applied uniformly in the z direction on an annular ring of radius $a \sin \theta_{1}$ and infinitesimal width $d a \rightarrow 0$. Let E_{0} have components $E_{R_{0}}=E_{0} \cos \theta_{1}$ and $E_{\theta_{0}}=-E_{0} \sin \theta_{1}$, in the R and θ directions respectively. These components $E_{R_{0}}$ and $E_{\theta_{0}}$ can be expanded in a series of spherical harmonies as given below:

$$
\begin{align*}
& E_{R_{0}}(R, \theta, \phi)=-\frac{1}{k_{1}} \sum_{n=0}^{\infty} n(n+1) D_{0 n}(R) P_{n}(\cos \theta) \exp (-j \omega t) \\
& E_{\theta_{0}}(R, \theta, \phi)=-\frac{1}{k_{1}} \sum_{n=0}^{\infty} C_{0 n}(R) P_{n^{1}}(\cos \theta) \exp (-j \omega t) \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
& C_{0 n}(R) \\
& \quad=-\frac{k_{1}(2 n+1)}{2 \pi n(n+1)} \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} E_{\theta_{0}} P_{n}^{2}(\cos \theta) \sin \theta d \theta d \phi \\
& D_{0 n}(R)
\end{aligned}
$$

Fig. 1. Geometry of the Structure.

$$
\begin{equation*}
=-\frac{k_{1}(2 n+1)}{2 \pi n(n+1)} \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} E_{R_{0}} P_{n}(\cos \theta) \sin \theta d \theta d \phi \tag{4}
\end{equation*}
$$

Let E_{0} be a delta-function given by

$$
\begin{equation*}
E_{0}=\frac{-V}{a \triangle \theta \sin \theta_{1}} \text { for } \theta_{1}-\frac{\Delta \theta_{1}}{2}<\theta<\theta_{1}+\frac{\Delta \theta_{1}}{2} \tag{5}
\end{equation*}
$$

and $=0$ for

$$
\begin{equation*}
\theta_{1}-\frac{\Delta \theta_{1}}{2}>\theta>\theta_{1}+\frac{\Delta \theta_{1}}{2} \tag{6}
\end{equation*}
$$

Then

$$
\begin{align*}
C_{0 n}(a) & =\frac{C_{0 n}^{\prime}\left[k_{1} a j_{n}\left(k_{1} a\right)\right]^{*}}{a} \\
& =\frac{-V}{a} \frac{k_{1}(2 n+1)}{2 n(n+1)} \sin \theta_{1} P_{n}^{1}\left(\cos \theta_{1}\right) \tag{7}
\end{align*}
$$

and.

$$
\begin{align*}
D_{0 n}(a) & =D_{0 n} \cdot \frac{j_{n}\left(k_{1} a\right)}{a} \\
& =-\frac{V}{a} \frac{k_{1}(2 n+1)}{2 n(n+1)} \cos \theta_{1} P_{n}\left(\cos \theta_{1}\right) \tag{8}
\end{align*}
$$

The field components inside the sphere in the region $0<r<a$, are

$$
\begin{align*}
& E_{R}^{i}=-\sum_{n=0}^{\infty} n(n+1) A_{0 n} P_{n}(\cos \theta) \frac{j_{n}\left(k_{1} R\right)}{k_{1} R} \exp (-j \omega t)+E_{R_{0}} \tag{9}\\
& E_{\theta}{ }^{i}=-\sum_{n=0}^{\infty} A_{0 n} P_{n}{ }^{1}(\cos \theta) \frac{\left[k_{1} R j_{n}\left(k_{1} R\right)\right]^{\prime}}{k_{1} R} \exp (-j \omega t)+E_{\theta_{0}} \tag{10}\\
& H_{\phi}{ }^{i}=\sum_{k=0}^{\infty} \frac{k_{1}}{j \omega \mu_{1}} A_{0 n} P_{n}^{1}(\cos \theta) j_{n}\left(k_{1} R\right) \exp (-j \omega t) \tag{11}
\end{align*}
$$

and the field components outside the sphere in the region $r>a$ are

$$
\begin{align*}
& E_{R}^{e}=-\sum_{n=0}^{\infty} n(n+1) A_{0 n}{ }^{\prime} P_{n}(\cos \theta) \frac{h_{n}^{(1)}\left(k_{0} R\right)}{k_{0} R} \exp (-j \omega t) \tag{12}\\
& E_{\theta}{ }^{e}=-\sum_{n=0}^{\infty} A_{0 n^{\prime}} P_{n}{ }^{1}(\cos \theta) \frac{\left[k_{0} R h_{n}{ }^{(1)}\left(k_{0} R\right)\right]^{\prime}}{k_{0} R} \exp (-j \omega t) \tag{I3}\\
& H_{\phi}{ }^{e}=\sum_{n=0}^{\infty} \frac{k_{0}}{j \omega \mu_{0}} A_{0 n^{\prime}} P_{n}{ }^{1}(\cos \theta){h_{n}}^{(1)}\left(k_{0} R\right) \exp (-j \omega t) \tag{14}
\end{align*}
$$

where

$$
\begin{aligned}
& k_{1}=\omega \sqrt{\mu_{1}\left(\epsilon_{1}+\frac{j o_{1}}{\omega}\right)} \\
& k_{0}=\omega \sqrt{\mu_{0}\left(\epsilon_{0}+\frac{j o_{0}}{\omega}\right)} \\
& \omega=\text { angular frequency }
\end{aligned}
$$

A_{m} and $A_{0 n}{ }^{\prime}$ are amplitude cocfficients, $P_{n}(\cos \theta)=$ Legendre function, $i_{n}\left(k_{1} R\right)$ and $h_{n}{ }^{(1)}\left(k_{0} R\right)$ are the spherical Bessel and Hankel functions respec tively.

Applying the boundary conditions that

$$
E_{\theta}{ }^{e}=E_{\theta}{ }^{i} \quad \text { and } \quad H_{\phi}^{e}=H_{\phi}{ }^{i} \quad \text { at } \quad R=a
$$

we obtain

$$
\begin{align*}
& \frac{A_{0 n}}{k_{1} a}\left[k_{1} a j_{n}\left(k_{1} a\right)\right]^{\prime}+\frac{C_{0 n}(a)}{k_{1}} \\
& \quad=\frac{A_{0 n}^{\prime}}{k_{0} a}\left[k_{0} a h_{n}{ }^{(1)}\left(k_{0} a\right)\right]^{\prime} \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{k_{1}}{\mu_{1}} A_{0 n j j_{n}}\left(k_{1} a\right)=\frac{k_{0}}{\mu_{0}} A_{0 n}^{\prime} h_{n}^{(1)}\left(k_{0} a\right) \tag{16}
\end{equation*}
$$

Using equation (7) in equations (15) and (16), the amplitude coefficients $A_{0 n}$ and $A_{0 n}$ can be uniquely determined for each value of n. The field is thus uniquely determined both inside and outside the dielectric sphere for each value of n. This shows that $\mathrm{TM}_{0 n}$ modes exist for $n=1,2, \cdots$ etc. for this structure.

If the dielectric sphere is excited in the equatorial plane $\theta_{1}=\pi / 2$, then $P_{n}{ }^{1}(0)=0$ for n even
and

$$
\begin{equation*}
=\frac{j^{n-1} 2^{1-n} n!}{\frac{(n-1)}{2}} \text { for } n \text { odd. } \tag{17}
\end{equation*}
$$

Therefore $C_{0 n}(a)=0$ for n even. Hence only the odd order TM $\mathrm{TM}_{\mathrm{on}}$ modes are excited in the case of equatorial excitation.

3. Theoretical Determination of tme Radiation Field of a Truncated Dielectric Sphere Excited in the TM Symmetric Mobes

Fig. 2 shows the geometry of a truncated dielectric sphere excited in the TM symmetric mode by a coaxial line. Such a structure may be approximately assumed to be excited by a delta-function source in the form given by equations (5) and (6) in the z direction on an angular ring of radias

Fig. 2. Geometry of truncated dielectric sphere excited in TM symmetric mode by coaxial line.
$a \sin \theta_{1}$ and infinitesimal width $d a \rightarrow 0$. Hence it is assumed that the field components inside the dielectric sphere as well as outside the sphere are approximately given by equations (9) to (14).

- In deriving expressions for the radiation field of this structure, Schelr kunoff's equivalence principle has been made use of. This principle states that " a distribution of electric and magnetic currents on a given closed surface S can be found such that outside the surface it produces the same field as that produced by given sources inside S, and also the field inside it is the same as that produced by given sources outside the surface'. These surface electric and magnetic current densities J and M are given by

$$
\begin{align*}
& J=n \times \boldsymbol{H}^{\circ} \\
& \boldsymbol{M}=-n \times \boldsymbol{E}^{\circ} \tag{18}
\end{align*}
$$

wheite $E^{\circ}, \boldsymbol{H}^{\circ}$ are the electric and magnetic fields on the surface S and \boldsymbol{n} is the unit normal to the surface S. The radiation field components at the distant point Q in free space of these electric and magnetic current distributions on S are given by

$$
\begin{align*}
& E_{\theta}=\eta_{0} H_{\phi}=\frac{-j}{2 \lambda_{0} R}\left[\eta_{0} L_{\theta}^{m}+L_{\phi}^{e}\right] \tag{19}\\
& \dot{E}_{\phi}=-\eta_{0} H_{\theta}=\frac{-j}{2 \lambda_{0} R}\left[\eta_{0} L_{\phi}^{m}-L_{\theta}^{e}\right] \tag{20}
\end{align*}
$$

where- $\lambda_{0}=$ free-space wavelength

$$
\beta_{0}=\frac{2 \pi}{\lambda_{0}}=\frac{\omega}{\sqrt{\mu_{0} \epsilon_{0}}}, \eta_{0}=\frac{\mu_{0}}{\epsilon_{0}}=\text { intrinsic }
$$

impedance of free space.
L^{m} and L^{e} are the electric and magnclic radiation vectors given by

$$
\begin{align*}
& L^{e}=\int_{S} e^{j \beta(P Q)} d p^{m} e^{-j w i} \tag{21}\\
& L^{j n}=\int_{s} e^{j \beta_{0}(P Q)} d p^{e} e^{-j w t} \tag{22}
\end{align*}
$$

where $d p^{e}$ and $d p^{m}$ are the momonts of clectric and magnetic current situated at $P\left(R^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$ on surface S, and are given by

$$
\begin{align*}
& d p^{e}=\left(n \times \boldsymbol{H}^{\circ}\right) d a \tag{23}\\
& d p^{m}=-\left(n \times E^{\circ}\right) d a \tag{24}\\
& P Q=R-R^{\prime} \cos \theta \cos \theta^{\prime}-R^{\prime} \sin \theta \sin \theta^{2} \cos \left(\phi-\phi^{\prime}\right) . \tag{25}
\end{align*}
$$

The surface S is selected as a closed surface consisting of the outer surface S_{1} of the truncated dielectric sphere, the outer surface of the dielectric filled cone, the outer surface of the coaxial line and the rectangtilar to com axial adapter, and an infinitely large sphere to close it. The only currents of importance on this surface are the elcctric and magnetic currents on surface S_{1}. These are given by

$$
\begin{align*}
& J=u_{\theta} J_{\theta^{\prime}}=\left(n \times \boldsymbol{u}_{\phi}\right) H_{\phi^{\prime}} \tag{26}\\
& M=\boldsymbol{u}_{\phi} M_{\phi^{\prime}}=-\left(n \times \boldsymbol{u}_{\theta}\right) E_{\theta^{\prime}} \tag{27}
\end{align*}
$$

where H_{ϕ}^{\prime} and $E_{\theta}{ }^{\prime}$ are given by

$$
\begin{align*}
& H_{\phi}^{\prime}=\sum_{n=0}^{\infty} \frac{k_{0}}{j \omega \mu_{0}} A_{0 n^{\prime}} P_{n^{1}}\left(\cos \theta^{1}\right) h_{n}^{(1)}\left(k_{0} a\right) e^{-j w \omega^{t}} \tag{28}\\
& E_{\theta^{\prime}}=\sum_{n=0}^{\infty} A_{0 n^{\prime}} P_{n}^{1}\left(\cos \theta^{\prime}\right) \frac{\left[k_{0} a h_{n}^{1}\left(k_{0} a\right)\right]^{\prime}}{k_{0} a} e^{-j w t} \tag{29}
\end{align*}
$$

Using equations (26) to (29) in equations (19) to (22), we obtain the components of the electric field at the distant point $Q(r, \theta, \phi)$ as

$$
\begin{aligned}
E_{\theta}= & \frac{j \pi a^{2}}{\dot{\lambda}_{0} r} A_{0 n^{1}} \exp \left\{j\left(k_{0} R-\omega t\right)\right\}\left[h_{n}^{(1)}\left(k_{0} a\right)\right. \\
& \left\{\operatorname{con} \theta \int_{\theta^{\prime}=0}^{\theta_{1}} P_{n}{ }^{1}\left(\cos \theta^{\prime}\right) \sin \theta^{\prime} \cos \theta^{\prime} J_{1}\left(k_{0} a \sin \theta \sin \theta^{\prime}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \times \exp \left(-j k_{0} a \cos \theta \cos \theta^{\prime}\right) d \theta^{\prime} \\
& +j \sin \theta \int_{\theta^{\prime}=0}^{\theta_{1}} p_{n}{ }^{1}\left(\cos \theta^{\prime}\right) \sin ^{2} \theta^{\prime} J_{0}\left(k_{0} \mathrm{a} \sin \theta^{\prime}\right) \\
& \left.\times \exp \left(-j k_{0} a \cos \theta \cos \theta^{\prime}\right) d \theta\right\}^{\prime} \\
& -j \frac{\left[k_{0} a h_{n}^{(1)} \frac{\left.\left.k_{0} a\right)\right]^{\prime}}{k_{0}} \int_{\theta^{\prime}=0}\right.}{k_{0} a} p_{n}\left(\cos \theta^{\prime}\right) \sin \theta^{\prime} J_{1}\left(k_{0} a \sin \theta \sin \theta^{\prime}\right) \\
& \left.\times \exp \left(-j k_{0} a \cos \theta \cos \theta^{\prime}\right) d \theta^{\prime}\right] \tag{30}\\
H_{\phi}= & E_{\theta} / \eta_{0} \tag{31}
\end{align*}
$$

and

$$
\begin{equation*}
E_{\phi}=H_{\theta}=0 \tag{32}
\end{equation*}
$$

The directivity of the antemna is given by

$$
\begin{align*}
& D=\frac{\text { Maximum radiation intensity }}{\text { Average radiation intensity }} \\
& =\frac{4 \pi\left|E_{\theta}\right|^{2} \frac{4 \max }{\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi}\left|E_{\theta}\right|^{2} \sin \theta d \theta}}{} \tag{33}
\end{align*}
$$

The radiation efficiency η is given by

$$
\begin{align*}
& =\frac{\text { Total power raciaied }}{\text { Dielectric } \operatorname{locs} W_{L}+\text { Total power radiated }} \\
& =\frac{\frac{\pi}{2 \eta_{\theta}} \int_{\theta==}^{\pi} R^{2}\left|E_{\theta}\right|^{2} \sin \theta d \theta}{\left[\frac{\sigma_{1}}{2} \int_{R=0}^{\theta} \int_{\theta=0}^{\theta_{1}} \int_{\phi=0}^{2 \pi}\left\{\left|E_{R}^{i}\right|^{2}+\left|E_{\theta}^{i}\right|^{2}\right\} R^{2} \sin \theta d \theta d R\right.} \\
& \left.\quad+\frac{\pi}{2 \eta_{0}} \int_{\theta=0}^{\pi} R^{2}\left|E_{\theta}\right|^{2} \sin \theta d \theta\right] . \tag{34}
\end{align*}
$$

Hence the gain of the antenna is given by

$$
\begin{equation*}
G=\eta D . \tag{35}
\end{equation*}
$$

4. Numertcal Calculations and Experimental Verification

The field components on the surface of the antenna have been calculated using equations (28) and (29) for different values of n. The

Frg.3. Normalized $\left|E_{R}\right|^{2}{ }^{2} \theta \theta$ for truncated spheres on cones. $\varepsilon_{r}=2.56: \tan \delta=0.005$; $f=9375 \mathrm{MHz}$.

- Six modes combined;----strongest mode; Experimental points.

Flg. 4. Normalized $\left|E_{\theta}\right|^{2}$ and $\left|H_{\phi}\right|^{2}$ radial decay for truncated spheres on cones.
$\varepsilon_{7}=2 \cdot 56 ; \tan \delta=0.005, f=9375 \mathrm{MHz} ; \theta=45^{\circ}$.

- Six modes combined - . . strongest mode; Experimental points.
value of n for which the amplitude has the maximum value at the frequency considered is called the strongest mode. Figs. 3 and 4. show typical theoretical and experimental curves of $E_{R}{ }^{2}, E_{\theta}{ }^{2}$ and $H_{\phi}{ }^{2}$ as functions of θ and R for the strongest mode as well as for the first six modes combined.

Using expressions (30) to (32) for the radiated field, the radiation patterns have been calculated for different values of n. Figs. 5 and 6 show some typical calculated and experimental radiation patterns.

Fig. 5. $\phi=0^{\circ}$ Plane raciation pittern for spherical dielectric antemna (Theory and experment).
$\varepsilon_{r}=2.56 ; \tan \delta=0.005$.

The gain has been calculated for several antennas of varying dimensions using equation (35). Table I gives the theoretical as well as experimental gains of several antennas.

More details are available in Ref. 14.

5. Conclusions

The following conclusions may be drawn from the present investigations:
(i) The dielectric sphere can be excited in an infinite number of TM symmetric modes by a defta function electric field source.

FIG. 6. Normalized radiation patterns in the $\phi=0^{\circ}$ plane,
$\varepsilon_{r}=2.56 ; \tan \delta=0.005$.
$\ldots-\mathrm{TM}_{03} ;-$ - TM_{05}; —— $\mathrm{TM}_{06} ; \ldots$ Experimental points.

Table I

Theoretical and experimental gain of truncated dietectric spherical antennas
$\mathfrak{z}_{r}=2.56 ; \quad \tan \delta=0.005 ; f=9375 \mathrm{MHz}$

' a ' in cris.	$\begin{gathered} \theta_{1} \text { in } \\ \text { degrees } \end{gathered}$	Theoretical directivity in db for mode						Experimental gain by comparison method
		TM_{01}	TM_{02}	TM_{08}	$\mathrm{TM}_{0_{4}}$	TM ${ }_{\text {o5 }}$	TM ${ }_{00}$	
3.4925	$120 \cdot 3$	$10 \cdot 51$	6.748	$12 \cdot 35$	7.966	$9 \cdot 203$	$9 \cdot 456$	11.25
3.4925	$114 \cdot 3$	8.454	7.6354	$12 \cdot 383$	6.46	9.602	8.76	$9 \cdot 208$
3.33375	107.8	7.994	$7 \cdot 38$	11.767	8.03	9.6714	$10 \cdot 65$	$10 \cdot 0$
3.175	115.8	9.7526	10.257	9.9826	$6 \cdot 52$	11.328	$8 \cdot 316$	$10 \cdot 0$
$3 \cdot 175$	108.2	8.77	$10 \cdot 23$	$10 \cdot 35$	$7 \cdot 85$	11.84	$7 \cdot 783$	$11 \cdot 6$
${ }^{3} \cdot 01625$	122.65	8.998	10.237	9.523	$8 \cdot 07$	$8 \cdot 189$	7.973	$9 \cdot 208$
$3 \cdot 01625$	108.7	9.023	8.958	9.4626	7.425	8.832	10-2	$9 \cdot 3$
3-4925	129.4	12.73	8.347	$12 \cdot 5$	$7 \cdot 24$	7.246	9-2446	9.285
3.175	156.4	9.415	9.625	$7 \cdot 1166$	7.8244	9.134	4.81	8.239
3.175	$150 \cdot 0$	9.675	8.873	7.935	$7 \cdot 73$	9.873	$9 \cdot 83$	8-239
3.175	143.1	9.875	10.05	8.876	$7 \cdot 6797$	$10 \cdot 385$	9.93	11.597
$3 \cdot 175$	195.6	9.76	9. 179	9.667	$7 \cdot 682$	10.24	9.01	7.446
${ }^{3 \cdot 175}$	126.9	9.42	$6 \cdot 382$	10.013	7.65	$9 \cdot 339$	$9 \cdot 1$	10.0
+ 3.01625	151.75	$9 \cdot 35$	9.828	9.47	8.2924	9.027	$9 \cdot 3$	9.01
3.01625	$132 \cdot 5$	9-542	9.874	9.7355	8.2483	9.758	8.5	$10 \cdot 458$

(ii) A truncated dielectric sphere excited by a coaxial line has very nearly the same field configuration of one of the $\mathrm{TM}_{0 m}$ modes.
(iii) Such a structure can be used as an antenna which has a radiation pattern with a null on the axis and two major lobes situated symmetrically with respect to the axis.

Agknowledgement

The authors are grateful to Dr. S. Dhawan, Director of the Indian Institute of Science, for giving all facilities for the work.

References

1. Bekefi, G. and Farwell, G. W.
2. Luneberg, R. K.
3. Pieles, G. D. M. and Coleman, H. P.
4. Gastine, M., Courtois, L. and Dormann, J. L.
5. Sager, O. and Tisi, F.
6. Affolter, P, and Eliasson, B.
7. Van Bladel, \mathbf{J}.
8. Van Bladel, J.
9. Chatterjce, R_{n}, Govind, S. and Vedavathy, T. S.
10. Chatterjee, R. and Bhattacharya, A. K.
11. Neetakantaswamy, P. S. and Banerjee, D. K.
12. Chatterjee, 3. S. and Croswell, W. F.
13. Chatterjec, R.
14. Bhattacharya, A. K.,

A homogeneous dielectric sphere as a microwave lens, Condian Jour. Phys., 1956, 34, 790-803.
Mathematical theory of optics, (Mimeographed lecture notes), Brown Univ. Graduate School, Providence, 1944, R.1., 212-213.

Microwave stepped-index Luneberg lens. IRE Trans., 1958, AP-6, 202-207.
Electromagnetic resonances of free dielectric spheres, IEEE Trans., 1967, MTT-15, 694-700.
On eigen modes and forced resonance modes of dielectric spheres. Proc. IEEE, 1968, 56, 1593-1594 (Letters).
Electromagnetic resonances and Q-factors of Lossy dielectrí spheres, IEEE Trans., 1973, MTT-21 (9), 573-578.
On the resonances of a dielectric resonator of very high permittivity, IEEE Trans., 1975, MTI-23 (2), 199-208.
The excitation of dielectric resonators of very high permittivity, IEEE Trans., 1975, MTT-23 (2), 208-217.
Dielectric spherical aerials excited in the unsymmetric hybid mode at microwave frequencies, Jour. Ind. Inst. Sci., 1973, 55 (1), 5.
Dielectric hemispherical aerials excited in the TM symmetric mode at microwave frequencies. Ind. Jour. Rad. and Space Phys, 1973, 2, 166.
Radiation characteristics of waveguide-excited dielectric spheres with matched sphere-air boundary. Electronics Letfers, 1973,9 (2), 40.
Waveguide excited dielectric spheres as feeds. JEEE Trans. 1972, AP-20, 206-208.
Electromagnetic boundary-Value problem of the dielectric sphere excited by Delta-Function electric and magnetic sources. Jour. Ind. Inst. Sei., 1973, 55 (1), 16-31.
Some investigations on the modal and radiation characteristics of dielectric spheres excited in sywmetric transyerse magnetic modes in the X-band, Bh.D. Thesis, Indian Institute of Science, 1974.

[^0]: * Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, West Bengat.

