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The paper deals with the nature of the spectrum of the differentia operator 
&rived from the pair of first order Dirac type equations 

u ' ( x ) - ( A : + q l ) v ( x ) , = O  . ' r dldx, x G [O, co), 
v ,  (x )  f (A:  + qz) u (-4 = 0 

where 2 is a non-zero complex parameter, 0 < arg < x,  0 < arg ( I  + qj)' < pn,  
0 < p 9 1, and q,, j = 1 ,  2, are real-valued continuous functions of x such that 
q, % L [O, m) buf Y', f L lo, m). 

gey words: Differential operator, Hcmogeneous boundary conditions, Diracs relati- 
vistic wave equation, (Continuous, Discrete, Poi:~t) Spectrum, Metamorphic functions. 

consider the differential operator 

(i) X = p + iv,  v # 0, 0 < arg X < T, 0 < arg (X.+ qj (x))n i pv, for each 
B, o< pG 1, j - 1, 2. 

and [ii) qj (x), q'j (x), j = 1, 2, denote real-valued functions of x such 
Bat @ €E L [0, a) but q'j E L [0, a). 

Futther let qj (x) 
(A) be positive and bounded below, i.e., 0 < k< 9j ( x )  < O G  x< 03, 

Or (B) ten6 to zero as x tends to infinity; 
0' (C) tenH to non-hi-o finite llmits cj, say, as x tends to infinity. 

The homogeneous boundary condition c~nsidered is 
U (0) cos a -i u (0) sin a = 0 (1 - 2) 

W ~ R  a is a real parameter. 



The system (1 . I )  i- a special case of Dirac's relativistic wave equation 
where qj ( x )  are the potential functions. 

In what follows a column vector 1s represented as {u, v). G) - 
Our object in the present paper is to investigate the nature of the spec- 

trum associated with the system (1 . l )  and (1.2). 

The spectrum is defined as usual as the set of values of A which 
contribute to the expansion formula and is characterised, following Everitt 
and Chaudhuril by the properties of m (A), which occurs in a pair 
of Lz-solutions $ (x, A) = 8 (x, A) f m (A) qi (x, A), satisfying the bounda~ 
conditions (1.2). It  may be noted that 4 (x, A) and 8 (x, A)  are the solutioni 
of (1.1) with qi (0, A) = {-- sin a, cos a},  8 (0, A) = { - cos a, - sin a}. 

Thus 

(i) p does not belong to the spectrum iff lirn {im m (A)]=O ; but p belongs 
IY*" . .- 

to the point spectrum iff m (A) -+ 3, as A -f p and .im m (A) + 0 as h tends 
to any point in the neighbourhood of p but excluding p, 

(ji) p belongs to the continuous spectrum iff im 7% (A) does not tend to 
zero as X tends to p for any P E (pl, p2), say, and lirn {im m (A)} is a 

Y-ZO 

continuous, non-vanishing function bounded for all p E (p,, p,), 

(iii) p belongs to the point continuous spectrum iff m (A). tends to 
infinity as A -f p and lirn {im m (A)} is a non-vanishing (unction, continuous 

"+O 

in a neighbourhood of p btot excluding p. 

Finally, the spectrum is baid to be a pure point spectrum or a discrete 
spectrum iff m (A) is meromorphic. 

It may be noted that Conte S .  D. and Sangr:n W. C.2 studied the 
nature of the spectrum associated with the system (1.1) under the boundary 
condition (1.2) with the condition that qj (x), j = 1, 2 belong to L[O, w). 

2. A TRANSFORMATION OF THE BASIC EQUATION 

Let 

E (x) = A-+ ! { (A i ql) (A -I- qa)~*  dt , - T .~ 

7 3  (4 = (A + d-* u, % (4 = (A + 9.2)- * ;> 
(2.11 

4 
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where 

0< a r g h < n ,  O <  arg(A - k q j ( t ) ) p < p ~ ,  O < p < l ,  j = 1 , 2 .  

Then 

im (A -t qj (t))* > 0, fm,t (x) > 0. 
[see 22.26, p. 355 (ref. 5) and § 5.8, p. 120 (ref. 4)]. 

Since &j/df = dq j /d~  . dxldf, it follows by using (1 . l )  and (2.1) at rele- 
vant places that (1 . l )  transforms to 

whe~e Qj = 4 hfqrj/(A + q1)I (A + qJn, j = 1, with I = 312, n = 112 and 
j = 2, with I = 112, n = 312. 

, 
It is easy to verify that Qj E L [0, m) 

(i) for all values of A, 1 h 1 + lc, 

,. (ii);foy all non-~ero values of A,  

and (iii) for all non-zero values of A, I X I $ I c, 1, I cz I, according as the 
conditions (A), (B) and (C), respectively, of 5 1 are satisfied by qj, j = 1, 2. 

Finally, we note that whm any of the conditions (A), (B), (C)  of 9 1 
is satisfied, Qj d[/dt, j = 1, 2, belong to  L[O, m), provided that I A I does 
not assume the value qj a t  any point in (X,, X), where X, is fixed and X is 
large enough. 

Let U I {u, (x, A), u, (x, A)) be a solution of (2.2) such that 

U ( O , A )  5 { -  sin a, cos a) and let 

Q = Q ( 0  3 { Q, ct,, Qz o, 
R = R (t) = {R, (t), R, (t)) 

C 

(UI ( t )  cos (Xf $2 (x, t ) ) ,  uz (t) sin (Af 0 (x, t))},  

S ' S(t)  '.isz ( t ) ,  ~,(t)) 
. .  . ,. 

= {u, ( t )  sin ( ~ i  $2 (x, t ) ) ,  - ua (i> cos (A* 0 (x, t))), 



wb,ere 

Q ( x , t ) = E ( x ) - f t ) -  . 
and 

(Q, R) = Ql ( t )  Rl (0 + Q2 ( t )  R2 ( I ) ,  

with a similar definition for (Q, S).  

Then it follows from ref. 3 that U ( X ,  A) satisfies thc integral equ&iog 

sin (At f ( x )  - a) - (Q ,  R) df/dr dr 
u ( x ,  A) = ( 3 3 = (  C O S ( * ~  (x )  --a) + j ( ~ , s ) d t / a d ~  

(3.1) 
Putting U3 ( X  , A) = Pj ( x )  exp ( im (A* E (x))),  j = 1, 2, where Pj are conti- 
nuous functions of x, i t  follows b y  the application of Conte and Sangfe?'~ 
lemma in ref. 2 that 

where M = 0 (I), for large x.  

Since Q j  df/dt E L [0, a), j = 1 ,  2, when one of the conditions (A), (B), 
(C)  of 5 1 is satisfied, it follows from (3.2) that Pj, j = 1 ,  2, are baunded f ~ &  
all x .  Thus when any one of the conditions stated above is satisfied, we 
have 

Uj (x,  A) 0 = {exp (im (A* 5 (x))& j = 1 ,  2, for largex . 
A similar result holds for a second solution V(x , A) of (2.2) satisfying 
V(0,  A) - {-. cos a ,  - sin a}. 

It may be noted $hat U(x,  A) and V ( x ,  A) are a pair of li,warly inde- 
pendent solutions of (2.2), since the Wronskian 

W(U, V) = U,V, - U& = 1. 

TWO cases arising with real and complex values of A t e  (x )  are now to 
be distinguished. 
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G G(tj = ( 6  cos(haf (tj), Vzdn (h t t  (tj)Z, 

H z H ( t )  - { Vl sin (h" (t)), - V, cos (hat (t))), 

it follows as in Titchmarsh4, as x tends to infinity, that the solution pair 
U(Z,  A), V(x, hj tatisfyining the boundary conditions stated before takcs 

tiie form 

U ( x ,  4 =CG (x,h), u z ( x ~ ~ X ) )  

- cos (A+ f (XI) sin (hfC (4;)) x ( 4  + ( 3 .  3) - ( s i n  (A* I (XI) coS ( ~ f t  (*I)) (Xi (A)) 

03 

-sin a - J (Q, Y) df/dt dt 
0 

cos a - ?(Q, ~j dt 

- cos (hf f (x ) )  sin (A* E (xj) 
- (sin (A* t ( X I )  - cor (A% ((I)) ( $ 0  ( 1  (3-41 

where 

8. pe, il, t2 bemg continuous and bounded 111 h. 
Now 

w(u, Y>= U,vz - u,v, - X Z ~ Z ~ . O ( ~ )  

and from the boundary conditmns W(U, V) c.? 1 .  Thus as x + m, 

xi52 - ~ 2 5 1  = 1. (3.4 b) 

It therefola follows that for the same A, xi, xz or &, la cannot both 
WWh slmultanepusLy. 

Case 11. Let hf f (x) be complex. 

Then lt follows in a manner similar to that of Titchnrarsh4 

u(x, A) = exp (- ~ h f  t (x)) ( k f ( A )  + o (I)), @a 



as x  tends to  infmity, where 

MI (A) 
(A) = (M2 (A)) 

- .  
- .  

- 
sin a i- i cos a - .f (exp (iA* f ( t ) )  (Q,0; - iQ,U,)} -dt 

0 
00 

cos a + i sin a ~ t  J. {exp (ih+ f ( I ) )  (Q2U2- iQ19)} di dt 
0 dt 

Sim~larly for Ll~e solution V ( x ,  A), we h.ave 

V ( x ,  A) = exp{- iAf f ( x ) } ( N ( h )  + o (I)), 

as x tends to infinity, where 

N l ( 4  
(A) = ( N ,  (A)) 

Thus, the solution $ (x, A) = {+I (x ,  A), + ,  (x,  A} = v (x,  A) 4- m (A) u (x, A) 
of (1 .l) which belongs to L2 [O, m), is given by 

4. BEHAVIOUR OF exp ( - iAB 5 ( x ) }  WHERE X IS LARGE 
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~ttherefore follows after sonle easy calculalions +at as x tends to 
infinity, exp {-- iA* E ( 4 1  

(i) tends to infinity, where - k < p < k ;  

.. (ii) tends to infinity, for all p=$ 0 in (- w, w); 
,, ..,. . . .  

(iii) tends to zero when - c, < p < el ; 

(iv) tends to infinity when - a < p < - c, or - c, < p c CQ; 

k and cj being the same as defined in (A) and. (C)  of 9 1. 

It may be noted that qj satisfy the condition (A) of # 1 for (i), the eondi- 
tion (B) of § 1 for (ii) and the condition (C) of B 1 for (iii) rtnd (iv) respeo- 
tively. 

.\ . . 

We establish the following theorem. 

Theorem : The system of first order differential equations (1, l )  
under the boundary conditions (1.2) has a purely continuous spectrum over 
the real A-axis from - k to k (0 < k < w,  k being defined as in (A) of §I), 
if qj (x), j - 1, 2, are positive and bounded below; has a purely continuous 
spcctrum over the entire real A-axis (origin excluded) if qj (x) do not belong 
to L but tend to zero as x tends to  infinity, and has purely continuous spec- 
tntm from - oo to - c, and - c, to  w with a discrete sprclrum in 
(- c,, - cl), (the points - c,, - c ,  being excluded), when qj + cj # 0, as 
x + a. It is given that in every case q'j (x) E L [0, a). -. 

Proof: To study the nature of the spectrum as detailed in 
Titchmarsh4 we study the properties of m (A), 0 < arg A < 7, from the 
fact that $ (x, A) determined by ( 3 . 7 )  belongs to L2 10, w). .TWO. cases 
exp IL iA* f(x)} +O, W, as x tends to infinity, have to be distinguished. 

(a) When exp { -  ih* 5 (x)} tends to  infinity as x tends to i n ~ t y .  
It follows from (3 .7) that 



When qj are bounded below, qj either tend to finite limits (zero or othenvise) 
or tend to infinity. When qj tend to finite limits, m (A) has the form given 
in (5.2) o r  (5.3) according as the limits are zero or otherwise. When q. 
tend to infinity, Qj d&dt defined in (2.2) d o  not belong to L [O, cm) and t6i: 
case is left out. 

Now let A tend to p. 

 hen lim M z  (A) = ( x ,  - ix~) and 
X+P 

lim NZ (A) = f(L- it), 
A - W  

where xi, 5j, .j= 1, 2, are given by (3 .3  a) and ( 3 . 4  a) respectively. 

%here as usual (x, 0 = x151 f X& and / x 1' = xI2 + xZz and the same 
Bj represent the &iffere limits to which qj tend, as x tends to infinity, ib 
cases (A), (B) and (C) of 5 1. Thus 

whhh is a non-vanishing continuons, bounded function of p. Ther&e& 
m (A) does not tend to any real limit nor has it any pole for p E (-k, k) or 
p E (-m, w), p# 0 or p E (- a,- c,) and p E (- el, w) according gs 
the condition (A) or (B) or (C)  is satisfied. The spectrum is continuous 
over each of these ranges. 

(bj When exp{- iAf E (x)} tends to  zero as x tends to infinity. 

, In this case it follows from (3.7) and tb,e relation 

t&t lirn {im m (A)) = 0 for sufficiently large x and that m (A) is a melo- 
X-W 

morphic function of A. 

from 5 4 (iii) and 6 1, there exists a discrete spectrum on the * &axis in (- Cz, - el). The theorem i s  therefore completely proved. 
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