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ABSTRACT

The paper deals with the nature of the spectrum of the differential operator
derived from the pair of first order Dirac type. equations

wE) —(A+g)o® =0 ; __
() + (i + g u () =0 = djdx, xe[0,00),

where 1 is a non-zero complex parameter, 0 < arg A << @, 0 < arg (A + g;)* < pm,
0<p<l, and q;, j = 1,2, are real-valued continuous functions of x such that

4 & LD, o) but g’y € L]0, o0).
Keéy words: Differential operator, Hemogeneovs boundary conditions, Diracs relati-
vistic wave equation, (Continuous, Discrete, Poi:nt) Spectrum, Mesomorphic functions,

1. INTRODUCTION

Consider the differential operator
v gc)) +8 T o g))))‘;gg To (U =ddx), 0<x<o),  (L.1)
where
O A=p+iv, v#0,0< arg A< 7, 0< arg (\-+ gj ()P < pm, for each
pO< pgl, j=1,2,
and ({i) 45 (x), ¢'5(x). j =1, 2, denote real-valued functions of x such
fat ¢5& L0, o0) but g5€ L0, co).
Futther let g5 (x)
(&) be positive and bounded below, .., 0 < k<< gj (x) < coon O x < 003
or (B) tend to ze¢ro as x tends to infinity;
or (C) tend to non-Zéro finite limits c;, say, as x tends to infinity.
The homogeneous boundary condition censidered is
4(@cosa + v (0)sine =0 a.2
where o is a real parameter.
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The system (1.1) i a special case of Dirac’s relativistic wave equation
where gj (x) are the potential functions.

In what follows a column vector (g) is represented as {u,v).

Our object in the present paper is to investigate the nature of the spec-
trum associated with the system (1.1) and (1.2).

The spectrum is defined as usual as the set of values of A whih
contribute to the expansion formula and is characterised, following Bveritt
and Chaudhuri® by the properties of m (A), which occurs in a pair
of L2-solutions ¢ (x, 3) = 6 (x, A) + m (X ¢ (x, A), satisfying the boundary
conditions (1.2). It may be noted thaté (x, A) and 6 (x, A) are the solutions
of (1.1) with ¢ (0,2 ={—sin a, cos a}, 6 (0,A) ={—cosa, —sind.
Thus C
(i) pdoes not belong to the spectrum iff hm{ im m (A\)}=0 ; but pbelongs

to the point spectrum iff m (4) — oo, as A -—>pz and imm () -0 as Atends
to any point in the neighbourhood of p but excluding u,

(ii) p belongs to the continuous spectrum iff im m (A) does not tend to
zero as A tends to p for any p € (uy, pp), say, and 11'rn {imm (M)} is a

continuous, non-vanishing function bounded for all B e ([,zl, y,z),

(1ii) p belongs to the point continuous spectrum iff m()\) tends to
infinity as A — g and lim {im m (\)}is a non-vanishing function, continuous
¥->0

in a neighbourhood of p but excluding p.

Finally, the spectrum is said to be a pure point spectrum or a dlscrete
spectrum iff m (1) is meromorphic.

It may be noted that Coente S. D. and Sangr:n W. C.? studied the
nature of the spectrum associated with the system (1.1) under the boundary
condition (1.2) with the condition that gj (x), j =1, 2 belong to L[0, o),

2. A TRANSFORMATION OF THE BAsic EQUATION

v f) =23 I{(M—ql)u+q2)}*dt NN . L

B =04 ety =0 +qis, @D
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where
o< arg A <m, 0< arg(X + q; ()P < pr, 0<p<1, j=1,2
Then
m(A+ gi (D >0, imé (x) >0.
[See §22.26, p. 355 (ref. 5) and § 5.8, p. 120 (ref. 4)].
Sincé dyy/dé = dnjldx . dx/dé, it follows by using (1.1) and (2.1) at rele-
vant places that (1.1) transforms to
\ %—Aiﬂz"“gl(x)’h:o
%24‘ Mg+ Qe (x) e =0
where Q0 = % Mg5/(0 + gV (A 4 g)®, j=1, with I =32, n=1/2 and
j=2, with [ =1/2, n=3/2.
It is easy to verify that Qje L {0, co)
(i) for all values of A, | A [k,
R (i) for all non-zero values of A,
and (ﬁi) for all non-zero values of A, |A |# | ¢ |, | |, according as the
conditions (A), (B) and (C), respectively, of § 1 are satisfied by ¢4,/ =1, 2.
Finally, we note that wh=n any of the conditions (A), (B),(C) of §1
is satisfied, Qj d/dt, 7 = 1, 2, belong to L0, oo), provided that | 2| does
not assume the value ¢j at any point in (Xp, X), where X; is fixed and X is
large enough. ‘

2.2

3. ON A PAIR OF L?-SOLUTIONS OF THE SYSTEM (2.2)
Let Us={u (%%, u (xA)} be a solution of (2.2) such that
U (03?\)'5 {—sing,cosa} and let v
O= Q(’) = {Ql (), @: (D)}
R=R@={R (), R}
{u (D) cos (AF 2 (x, 1), u, () sin (AF 2 (x, N},
§=50) ={5). 5, (1)}
= {t () sin Q* 2 (x, 1)), — u, (H) cos (AF 2(x, D)}

)
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where
QQx, 1) =£ (x) — EQt)
and
(2, R) = Q1 (D Ry () + Qo (1) Re (1),
with a similar definition for (Q, S).
Then it follows from ref. 3 that U (x, A) satisfies the integral equaﬁoq

w(x, [0OFEC) —a) — [0, Ry dgara

U(x, A) = == .
(“z = %) cos (B¢ () — ) + [ (Q, ) dgards

3.0
Putting Uj(x, }) = Pj (x) exp (im ¥ £(x))), = 1,2, where P; are conti-
nuous functions of x, it follows by the application of Conte and Sanggn's
lemma in ref. 2 that

| P < Mexp [ (| Quaesar| + | Qagiar)) at, 6.9
where M = O (1), for large x.
Since Q; déj/dte L [0, o), j =1, 2, when one of the conditions (A), (B)

s

{C) of § 1 is satisfied, it follows from (3.2) that Pj, j =1, 2, are bounded fof
all x, Thus when any one of the conditions stated above is satisfied, we
have

U (x, D O ={exp(im(A¥{ (0))},  j=1, 2, forlargex.

A similar result holds for a second solution V(x, ) of (2.2) satisfying
V{0, 2) = {— cos «, — sin a}.

It may be noted that U(x, A} and F(x, A) are a pair of ligearly inde-
pendent solutions of (2.2), since the Wronskian

WU, V)= UV, — OV =

Two cases arising with real and complex values of A¥¢ (x) are now to
be distinguished.

Case I Let Adg (x) be real,

Putting ' : '

Y= Y(t) = {Ucos (A (1), — Usin (A £(D)}
Z=Zy) = {Usin (B¢ (1), Uypoos (¢ (D)
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G= G ={Veos (A ), Vesin(d¥¢ O,

H=H@) ={Visin(A*¢ (1), — Vecos (@)},
it follows as in Titchmarsh?®, as x tend s to infinity, that the solution pair
U, N, Vix, A satisfying the boundary conditions stated before takes
the form

Ux, H ={U (%), Us(x,A)}

¢ cos (M £ () sin (B E DN [ a0 (N ‘
- ( §(x); cos (A¥£ (x))) Xz(,\)) +o) B.3

where
—sina — | (Q, ¥)dE/dt dr
Xz (A) — ow( (3 3 a)
xe () cos a — T(Q, Z) dejdt ds
and
Vix, ) ={V (x A), Vatx, D}
_ (o5 (A £(®) sin(R LN LW ‘
B (sin (M £ () — cos (M £ (x))) (Zz (/\)) +o (1) (3;4)
where
LYy _ -—COoSs @ — { (0, G) déjdt dt »
L () —sina — | (Q, H) deldt dt G449

i» ¥» L Lo being continuous and bounded in A
Now
W(U, V)= UV, — UV; = x: 6 — xela T o (1)
and from the boundary conditions W (U, ¥) = 1. Thus as x — oo,
x1le — x2ly = 1. 3.4
1t therefors follows that for the same A, xi, xz 0F &, {, cannot both
vanish simultanepusly.
Case II. Let M £(x) be complex. .
Then it follows in a manner similar to that of -Titchmarsh® that‘

Ux, ©) = exp(— it £ () (M D+ (1), R )
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as x tends to infinity, where

My (M)
M, (M)

. Sin a7 cos a T foxp (0 £(0) (@0 — 10,0 % g
cos a + 7sin et O;[‘?{cxp (l‘){k & (f)) (QzUa— i0,U)} gé dt

Similarly for the solution ¥V (x, X), we have

M) =

N =

V(x, A) = exp{— iX £ ()} (V (A) + 0 (1)), 3.9
as x tends to infinity, where
e (M
N =

cos a — isina— | {exp (N £(0) (QuV; — iQs 2)}~dt

1
2\ _ina +icosa ?{cxp (A (D) (@2 — inVl)}'dT‘ dr

Thus the solution 4 (x, A) = {yy (x, A), ¢, (x, A} = v (x, A} + m (N ulxd)
of (1. 1) which belongs to L2 [0, oo0), is given by -

M) My ¢ (At gt
(=2 ¢ (3 3 (A)) (m o g 0]

G.7)

4. BEHAVIOUR OF exp{— iA¥ £(x)} WHERE x IS LARGE
Putting A =p + iv, p= 0 and v >0 but sufficiently small, it follows from‘
(2.1) that
iM £ (x)

f [{+ (w @) e+ QP

—IpQut gt @ (—a— e+ D
+ O+ g g2 (V4 (— g — ) (s + @)Y

when gj, j =1, 2, satisfy any of the conditions (A), (B) or (C) of §1 and
et q) (w4 qo) is bounded away from zero for all x in 0<{x < Q. and
this is satisfied if | A | cocs not assume the values ¢, ¢, at any point in
0K X< oo, - : o
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Tt therefore follows after some easy calculations that as x tends to
infinity, exp{— ¥ € ()}

* (i) tends to infinity, where — k<< p< k;

(ii) tends to infinily, for all p= 0 in (— oo, oo);

(iii) tends to zero when — << p< &3 '

(iv) tends to infinity when — co< p<< — ¢y of — /< p< oo
k and cj being the same as defined in (A) and (C) of § 1.

It may be noted that gj satisfy the condition (A) of § 1 for @), the condi-
tion (B) of § 1 for (i) and the condition (C) of § 1 for (iii) and (iv) respes-
tively.

5. TBE BASIC THEOREM

We establish the following theorem.

Theorem : ‘The system of first order differential equations (1,1)
under the boundary conditions (1.2) has a purely continuous spectrum over
the real A-axis from — k to k& (0 <k < oo, k being defined as in (A) of §1),
if g5 (%), j = 1, 2, are positive and bounded below; has a purely continuous
spectrum over the entire real A-axis (origin excluded) if ¢; (x) do not belong
to L but tend to zero as x tends to infinity, and has purely continuous spec-
Jium from — oo to — ¢y and — ¢; to oo with a discrete spectrum  in
(— €2 — &), (the points — ¢;, — c, being excluded), when g; — cﬁé 0, as
x> oo It is given that in every case g'j(x)e L[0, c0). .

Proof: To study the nature of the spectrum as detailed in
Titchmarsh® we study the properties of m (A), 0< arg A<C =, from the
fact that ¢ (x, A) determined by (3.7) belongs to L2[0, cc). Two. cases
exp {— it £(x)} >0, oo, as x tends to infinity, have to be distinguished,

(@) When exp{— iA* £ (x)} tends to infinity as x tends to infinity.
1t follows from (3.7) that

m@A)y = — im {2 + g2 Ny (V/(A + g0t My (W}
= — Hm {Q + @A N /A + @) ML) CRY;
where A =p 44y, y >0.

Therefore, when g; -0, as x tends to infinity,
Q) = — N, )/ M, () S . Cl 452
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and when g; —¢j# 0, as xtends to oo,
mO) = = O+ e Ny (/O + ) My (D 63

When g; are bounded below, gj either tend to finite Limits (zero or otherwise)
or tend to infinity. When g; tend to finite limits, » (d) has the form given
in (5.2) or (5.3) according as the limits are zero or otherwise. Whep g
tend to infinity, Q; d¢/d¢ defined in (2.2) do not belong to L [0, co) and this
case is left out.

Now let A tend to p.
Then lim M, () = % —x:) and LIm Ny () = G~ ity),
N> A~sth
where xj, &, j=1, 2, are given by (3.3 ) and (3.4 a) respectively.

}\l_ﬁl}} mQ) = — (f[’—}‘—*‘ﬂl)* {f]_}_{}_;_%g + ZT—XI—Tz} , by (3.45)

where as usual (x, £) = x381 + x28s and | x |2 = x? -+ x,® and the same
Bj represent the different limits to which ¢; tend, as x tends to infinity, it
cases (A), (B) and (C) of §1. Thus
! +
: . X = — © o /32 2
])gr’:zmm() (Mm—f-ﬁ) [ x I3

whi¢h is a non-vanishing continuous, bounded function of p. Theréfotk,
m (A) does not tend to any real limit nor has it any pole for p € (—k, k) o1
# € (—oo, 00), u5%0 or p € (— oo,— ¢y) and u € (— ¢, oo) according &
the condition (A) or (B) or (C) is satisfied. The spectrum is continuous
over each of these ranges.

() When exp{— At £ (x)} tends to zero as x tends to infinity.

In this case it follows from (3.7) and the relation
N 1 - - ’
imm Q) = — 5. (b (% Vo (5, ) — g (5, 1) G (3 D)

- thiat 1}1:{)!}‘ {im m (M)} = 0 for sufhiciently large x and that m (A) is a mero-

morphic function of A.

Hence from § 4 (ii) and § 1, thete exists a disorete spectrum on the
xgal daxis in (— ¢ —¢;). The theorem is therefore completely proved.

2
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