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ABSTRACT

Large amplitude vibrations of an isotropic clamped circular plate with variable
rigidity has been investigated by Galerkin procedure applied to Berger's approxi-
mate method for large deflections. The non-linear second order differential equation
thus obtained for the unknown time function is solved in terms of Jacobian élliptic
JSunctions.

Resulls obtained from numerical calculations are presented graphically.
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1. INTRODUCTION

The general theory of transverse vibrations of circular plates was obtained
by Kirchoff.* Vibration problems of various members have also teen
investigated by Lord Rayleigh® Non-linear vibration problems have
been solved using the method of multiple time-scales by Nayfeh,® Kevor-
kian* and Atluri.®

Grigoliuk® investigated non-linear vibrations of beams and shallow
axially symmetrical shells employing Galerkin procedure to a set of equa-
tions representing generalisation of von Karmén® equations in their dyna-
mical form. Hu-nan-chu and Herrmann® applied the dynamic counter-
part of von Kérmén”? equations to the study of large vibrations of rectangular
plates supported freely along the boundary using perturbation procedure
and the principle of conservation of energy. Nowinski? investigated larg
amplitude vibrations of ciroular plates using von Ké4rméan? dynamic equa-
tions in combination with an orthogonalisation procedure.

For such moderately large deflections, the strain of the middle plane
of the plate must be considered which, however, is ignored in the investiga-
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tion of small deflection problems. But analytical investigation of large
deflections by including the strain of the middle plane of the plate, parti-
cularly having variable rigidity, seldom lend themselves to exact analysis.’®

Recourse must then be had to an approximate method, such as that
of Berger.’! Berger’s method™ is essentially based on the meglect of the
second invariant, in comparison to the first invariant, of the middle surface
strains in the expression for the total potential energy of the system. Thus
the variation of potential energy with respect to the in-plane displacements
leads to the drastic simplification that the first invariant of the middle
surface strain is constant. Thus the resulting differential equations for
deflection, though approximate, are still non-linear and may be decoupled
in such a manner that they may be readily solved.®® The fact that the
first invariant is a constant'! is consistent with the results of exact solu-
tions,'*** though at present no completely satisfactory physical explana-
tion 1s available.'t’

Nash and Modeer™ extended Berger’s*™ method to the investigation of
non-linear- behaviour of vibrating rectangular plates with hinged restrained
edges, and of circular plates with periphery somewhat elastically restrained
against rotation.® Berger’s’' method has been used by Nowinski® to the
case of orthotroplc plates.

The same approximate method of Berger™ has been adopted by the
present author too to investigate the amplitude frequency characteristics
of large ‘transverse vibrations of clamped isotropic elastic circular plates
of variable - rigidity.

[ N

2. ANALYSIS

The transverse deflections of the plate under investigation is assumed
to be of the order of the plate thickness. For analysis of such moderately
large deflections, we neglect the second invariant of the middle surface

Stfﬁin,“ and thus the potential energy of the system, in polar co-ordinates,
will bel4:

_1 12 2(1—v) dw d2w
ves S ol e AR F G ] O
i,nhwhich the @ co-ordinate does not occur due to circular symmetry, and
Where

sy P Rotential energy,
D = flexural rigidity, variable,



494 B. M. KARMAKAR

k== plate thickness, variable,

w = deflection, normal to plate-plane,

r == any radius of the plate, (0 << r<C a, a = radius),
v = Poisson’s ratio,

e, == first invariant of the middle surface strain.

Transformed to polar co-ordinates, ¢, is given by,

a=ara=G4te (3 o
where
u == displacement along radial direction,

€, € = unit elongations respectively along radial and cross-radial
directions.

The kinetic enexgy of the plate, in polar co-ordinates, is given by*

T = Ph f(u2 - w2 dr (6]

where p = density of the plate material, and the dots represent derivatives
with respect to time.

The Lagrangian function may now be formed from the sum of the
bending energies in conjunction with the expression for the kinetic energy
and then application of Hamilton’s principle and Euler’s variational equa-
tions will yield:

‘3
DV — a2 Dy f () V2 w+2”fz,1r) ddra
&Ew (34vdD  &Dy 2 dwdD
dr® rodr U ade? ) r: dr dr
v d*D dw a*w 4)
T Ge @ TR gm =0 @
»with
— 2h0 : o)
helﬁh[ +3 (dr)] F{0)

where V2, ¢ are Laplacian operators and @ is a real normalised constant
of integration.
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Let the rigidity be considered now to vary according to the equation?®
A
D;<D0[1~~5] (6

where
. Ehg?®
Do=—571 =% @

where
) =a positive constant determining the variation of plate thickness
a =radjus of the plate, ’

E = Young’s modulus,
he = maximum plate thickness at centre.

It is to be noted that such a variation in rigidity corresponds to a
thickness variation given by,*®

A
=ho[1-7] ®
where 0 <A < /iy

The solution to the governing differential eq. (4) is sought, in conjunc-
tion with (5), in the form

w = wy (2) [l — {;]2 )]

where wo? (£) = f(£) and u == wo?(¢) £(¥), for immovable clamped edges,
the boundary conditions of which are given by

e =0 = (49, o
:Now from (5) one gets
FO - [ i g Bt rs(l—;)dr+c' an
12(1 + )

where ¢ is a constant of integration which can be determined for f(r) = 0

it r=a Thus u(r) is determined. Also, since f(r)=0 at r= 0, the
relation determining o becomes

' _ AweRA? 12

T hFat A —log (I T W] 2
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which in the limit A —0 (i.e., for uniform thickness of the plate) reduces to

2 . M -
T @k (13)

Now applying Galerkin procedure to eq. (4) and putting the value of
a? from eq. (12), the equation for the time-function is obtained in the form

o+ ywo + dwo® = 19
where
_20D,(h+ D
) YA EE) a9
5 _ 40D, az m)z
} = Sphgat (B + DA—1og (1 + ] \io &
where again,
2563 | (2—wX | RT—NA_6v (A, 16
b=y + 77 T3 T3 (§ + B) o
128A
by = €93 - 19
Thus from eqs. (15) and (16), the ratio .
82 2 (™ g
s mrrotearm Go) )
is obtamed, which in the limit A -0 reduces to
5 _1(w
1 =3 G @)

The solution to eq. (14) may be represented, as usual, in terms of the
cosine-type Jacobian elliptic function, as

wo (2) = cn (w* t, k%) X))
where cn is Jacobi’s elliptic. function,

and
Wy 18 @
_ 5 o
k"“z(,,_;.s_) . .‘(‘)

where again,
== fyndamental frequency of non-lmear free vibration, -



Vibrations of Circular Plates of Variable Rigidity 497

- fundamental frequency of linear free vibration,
1* = modulus of the elliptic function.

Now insertion for y and & from egs. (15) and (16) respectively, into
eq (22) leads to the relation

w0>2_ 3 [A—logd + )]

ko) ~ 40 D, Az
X [pho at (By -+ %) w** — 20 Do (b + 3)] (24
which, in the limit A -0, may be conveniently put in the form:
4:4/5 TTWeNE |
* .
kv p/zo «/ ( ) + 4. (25)
The period T#* of non-linear vibration is given by '
4K 4K
K e oy e
=W T psE @9
apd the period T of linear vibration by
_& @D

so that their ratio is
%"_* 2K 28

where y and & are respectively given by eqgs. (15) and (16), and K is the
complete elliptic integral of the first kind.

For A >0, eq. (28) reduces to
™ 2K ©9

d [“"2 h.,)]

X ‘The result, corresponding to eq. (29), obtained by Nowinski® under
similar boundary conditions is

Zl_t 2K/m ‘ (0)

=[—0531 )]
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where Ti*, T3, w; and & are respectively the same as T, T, w, and kg of
eq. (29).

Rejecting the non-linear term of eq. (14), the equation governing linear
oscilltion is obviously obtained; and thence the fundamental frequency®
for a plate of constant thickness (A —0) is found to be

8 «/5 /D, o
P o= Y. 13
Vg a? /3 oko . (€}

Plates of constant thickness find extensive use in telephone industries;?
whereas plates of variable thickness find application as parts of various
machines.’®

The numerical coefiicient, corresponding to that in eq. (31), computed
by Nowinski? is 10-38; and that by Timoshenko,® as a first approximation,
is 10-33.

It may be noted that eq. (31) may «lso be had from eq. (25), by putting
the amplitude equal to zero.

Fig. 1 displays the relative period against the relative amplitude
according to egs. (2R) and (29). For the sake of comparison, the results
of Nowinski® have also been shown in the same Fig. 1.

The amplitude frequency variation given by egs. (24) and (25) are graphi-
cally presented in Fig. 2.

{o—
25l NUWINSK‘IX ]
- Pl‘- ( A=0 )
—_— i i d
e} o5 e ’20
o >

Fic. 1. Relative period vs. relative amplitude.
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NOTATIONS

The following symbols have been adopted:

a, radius. of- the plate,
flexural rigidity of. the plate,

E Young’s modulus

& first invariant of. middle surface strains,

&y maximum plate thickness at centre,

Uy displacements -along radial and cross radial directions, respectively,

&, € unit elongations along.radial and - cross-radial directions, respec-
tively,

4 strain energy,

W deflection, normal: to plate plane,

v Poisson’s ratio,

A a constant determining. the variation of plate thickness,

W fundamental frequency.of non-linear vibration.

18C—15
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