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Large amplitude vibrations of an isotropic clamped circular plate with variable 
rigidity has been investigated by  Galerkin procedure applied to Berger's approxi- 
mate method for large dejections. The non-linear second order differential equatlon 
thus obtained for the unknown time function is solved in terms of Jacobian &tic 
functions. 

Results obtained from numerical calculations are presented graphically. 

Key words: Amplitude-frequency, Galerkin procedure, Berger's method; transverk 
vibrations, Jacobian functions. 

The general theory of transverse vibrations of circular plates was obtained 
by Kirch0ff.l Vibration problems of various members have also been 
investigated by Lord Rayleigbz. Non-linear vibration problems have 
been solved using the method of multiple time-scales by Nayfeh,s Kevor- 
k i d  and A t l ~ r i . ~  

Grigoliuke investigated non-linear vibrations of beams and shallow 
axially symmetrical shells employing Galerkin procedure to a set of equa- 
tions representing generalisat~on of von Karm&n7 equations in their d p -  
mica1 form. Hu-nan-chu and Herrmanno applied the dynamic counter. 
part of von K9rm4n7 equations to the study of large vibrations of rectangular 
plates supported freely along the boundary using perturbation procedure 
and the principle of conservation of energy. NowinsW investigated large 
amplitude vibrations of circular plates using yon K6,rmiin7 dynamic equa- 
tions in combination with an orthogonalisation procedure. 

For such moderately large deflections, the strain of the middle plane 
of the plate must be considered which, however, is ignored in the in~estiga- 
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tion of small deflection problems. But analytical investigation of large 
defiections by including the strain of the middle plane of the plate, parti- 
cularly having variable rigidity, seldom lend themselves to exact analysis.l0 

Recourse must then be had to an approximate method,lO snch as that 
of Berger.ll Berger's method1l is essentially based on the neglect of the 
second invariant, in colllparison to the first invariant, of the middle surface 
strains in the expression for the total potential energy of the system. Thus 
the variation of potential energy with respect to the in-plane displacements 
leads to the drastic simplification that the first imariant of the middle 
surface strain is constant. Thus the resulting differential equations for 
deflection, though approximate, are still non-linear and may be decoupled 
m such a manner that they may be readily solved.ll The fact that the 
first invanant 1s a constantll is consistent with the results of exact solu- 
tions,12-l3 though at present no completely satxifactory physical explana- 
tion is available.ll 

Nash and Modeer14 extended Berger'sl1 method to the investigation of 
non-linear. behaviour of vibrating rectangular plates with hinged restrained 
edges, and of circular plates with periphery somewhat elastically restrained 
against ~otation.~ Berger'sl1 method has been used by Nowins l~ i~~  to the 
case of orthotropic plates. 

r . l  

The same approximate method of Bergerl1 has been adopted by the 
present author too to investigate the amplitude frequency characteristics 
06 large Ckansveree vibrations of clamped isotropic elastic circular plates 
d variable rigikty. 

8 ,  

The transverse deflections of the plate under investigation is assumed 
to be of the order of the plate thickness. For analysis of such moderately 
large deflections, we neglect th.e second invariant of the middle surface 
strain,'' and thus the'potential energy of the system, in polar co-ordinates, 
will beu : 

in which th.e co-ordinate does not occur due to circular symmetry, and 
where 

. ::. :,a i K:p, pteptial energy, 

D = flexural rigidity, variable, 



h = plate thickness, variable, 

w = deflection, normal to plate-plane, 

r - any radius of the plate, (0 < r < a, a = radius), 

v = Poisson's ratio, 

el = first invariant of the middle surface strain. 

Transformed to polar co-ordinates, el is given by,'* 

du u 1 dw 
e, = er + E 0 - .- - .+ + ,. + 3 ( a F ) 2  (2) 

where 

u - displacement along radial direction, 

E T ,  E O  = unit elongations respectively along radial and cross-radial 
dirzctions. 

Th.e kinetic energy of the plate, in polar co-ordinates, is given by" 

T - $ l j  (U2 + U2) dr (3) 

where p =density of the plate material, and the dots represent derivatives 
with respect to time. 

The Lagrangian function may now be formed from the sum of the 
bcnding energies in conjunction with the expression for the kinetic energy 
and then application of Hamilton's principle and Euler's variational equa- 
tions will yield14r 

dD d " w  D V 4 w a 2 D O f ( t ) V 2 w + 2 -  
dr dr3 

v dz D dw +,  -- - - + p h . d 2 - , ,  
r dr2 dr dt" (4) 

vith 

(9 ' 

where V 2 ,  XI4 are Lapladan opcmtors and a is a real normabed conYini 1 
of integration. 1 



where 
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~ e t  the rigidity be considered now to vary according to the equation" 

where 

A = a  positive constant determining the variation of plate thickness 

a = rad~us of the plate, 

E = Yohng's modulus, 
ho =maximum plate thickness at centre. 

It is to be noted that such a variation in rigidity corresponds to a 
thickness variation given by,lo 

where 0 _< h 2 /lo 

The solution to the governing differential eq. (4) is sought, in conjunc- 
tion with (5), in the form 

where w,"t) = f ( t)  and u = wO2 ( t)  f (r), for ilnmovable clamped edges, 
the boundary conditions of which are given by 

.Now from (5) one gets 



which in the limit h + 0 (i.e., for uniform thickness of the plate) reduces 

Now applying Galerkin procedure to eq. (4) and putting the value ,,f 
,z from eq. (12). the equation for the time-function i s  obtained in the form 

i3,,+ y w o + 8 w 0 3  = O  

where 

where again, 

Thus from eqs. (15) and (16), the ratio 

is obtained, which in the limit h +O reduces to 

The solution to eq. (14) may be represented, as usual, in terms of the 
cosinetype Jacobian elliptic function, as 

wo ( t )  = cr? (w* f ,  k*) . OJl 
where cn is Jacobi's elliptic function, 

an& 

w * % = y  + 6  

where again, 

w* = fundamental frequency of non-hear free vibration, 
I 
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y6, fundamental frequency of linear free vibration, 

k* = modulus of the elliptic function. 

Now insertion for y and 8 from eqs. (15) and (16) respectively, into 
,q. (22) leads to the relation 

x [ p l ~ ~ d ( b z  33 )  ~ * ~ - 2 0 D o ( b =  +:)I 
which, in the limit X -2 0, may be conveniently put in th.e form : 

The period T* of non-linear vibration is given by 

and the period T of linear vibration by 

so that their ratio is 

where y and 6 are respectively given by eqs. (15) and (16), and K is the 
complete elliptic integral of the first kind. 

For h + 0, eq. (28) reduces to  

The result, corresponding to eq. (B), obtained by Nowinskis under 
similar boundary conditions is 



where q*, T,, w, and h are respectively the same as T*, T, w, and h, of 

eq. (29). 

Rejectkg th.e non-linear term of eq. (141, the equation governing linear 
oscdt~on is obviously obtained; and thence the fundamental frequencyt 
for a plate of constant thickness (A +O) is found to be 

Plates of constant thickness find extensive use in telephone industries;a 
whereas plates of variable thickness find application as parts of various 
machines.j6 

The numerical coefficient, corresponding to that In eq. (31), computed 
by Nowinskis is 10.38; and that by Timoshenko,16 as a first approximation, 
is 10.33. 

It may be noted that eq. (31) ma> also be had from eq. (25), b:~ putting 
the amphtude e q ~ a l  to zero. 

Fig. 1 displays the relative period against the relative amplitude 
according to eqs. (2.5) and (29). For the sake of comparison, the results 
of Nowinskis hale also been sbown in the same Fig. 1.  

The amplitude frequency variation given by eqs. (24) and (25) are graphi- 
cally presented in Fig. 2. 

I I I 
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FIG. 1. Relative period us. relative amplitude. 
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(5:) -. 
FIG. 2. Frequency vs. amplitwie relation. 

The following symbols have been adopted: 

a ,  radius of the plate, 
D flexural rigidity of. the plate, 
E Young's modulus 

el first inrianiant of, middle sulifaoe strains, 

h, maximum plate thickness at centre, 

u, v displacements along radial and cross radial directions, respectively, 

el, €8 unit elongations along. radial and crowradial dirwtions, respec- 
tively, 

V strain energy, 
w deflection, normal. to plate plane, 
v Poisson's ratio, 

a constant determining the variation of plate thickness, 
W* fundamental frequency of non-linear vibration. 
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