ON THE THEORY OF TRANSFORMS ASSOCIATED
 WITH EIGENVECTORS (I)

S. Tiwari
(Department of Mathematics, P.G. Wint of M.B.B. College, Agartala, Tripura 799004, India)

Received on January 24, 1977
Abstract
In this paper the author studies a transform theory based on the solutions of the differential system

$$
(L-\lambda I) \dot{\phi}=0
$$

where

$$
L=\left(\begin{array}{rc}
-d^{2} / d x^{2}+p(x) & r(x) \\
r(x) & -d^{2} / d x^{2}+q(x)
\end{array}\right)
$$

and ϕ is a two component colum vector function.
A pair of solutions of the above system in the interval $[0, b]$ containing scalars $l_{r}(\lambda)(r, s=1,2)$ is obtained. A matrix $\left(\rho_{r_{g}}(\lambda)\right),(r, s=1,2)$ consisting of step-functions is defined with the help of residues of $l_{s s}$ (2). The expansion formula and Parseval formula are then expressed in the form of Stielte's integrals involving the functions pre. Further results are first obtained in the interval $[0, b]$ and then b is made to tend to infinity for the study of the singular case $[0, \infty)$. The transform $F(u)=\left\{F_{1}, F_{2}\right\}$ of $f(x)=\left\{f_{1}, f_{2}\right\}$ and the reverse transform $f(x)$ of $F(u)$ are obtained as

$$
F_{r}=\int_{0}^{\infty} \phi_{r}^{T}(0 \mid x, \lambda) f(x) d x \quad(r=1,2)
$$

$a n d$

$$
f(x)=\sum_{r=1}^{2} \int_{-\infty}^{\infty} \phi_{r}(0 \mid x, u) F^{T}(u) d \rho_{r}(u)
$$

respectively, where $\phi_{r}(0 \mid x, \lambda),(r=1,2)$ are the boundary condition vectors at $x=0$ and ρ_{r} denotes the $r^{t_{h}}$ column of $\left(\rho_{\mathrm{rs}}(u)\right)$. A good number of theorems are proved which ultimately lead to the following:

Theorcm. A necessary and sufficient condition that $f \in L^{2}$ is that $F \in \mathcal{L}^{2}$.

Some of the results obtained are generalisations of those of Titchmarsh.
Key words: Boundary condition vectors, Bilinear concomitant, Wronskian, L^{2}-solution, residue, orthonormal, singular surface, transform, reverse transform, convergence in mean.

1. INTRODUCTION

The object of this paper is to develop a transform theory basec on the solutions of the differential system.

$$
\begin{equation*}
(L-\lambda I) \phi=0 \tag{1.1}
\end{equation*}
$$

where

$$
L=\left(\begin{array}{rc}
-d^{2} / d x^{2}+p(x) & r(x) \tag{1.2}\\
r(x) & -d^{2} / d x^{2}+q(x)
\end{array}\right)
$$

$\phi=\phi(x)=\{u(x), v(x)\}$ is two component column vector; λ is a variable parameter real or complex; $p(x), q(x)$ and $r(x)$ arc all real valued and continuous functions of x throughout the interval $[\|0, b\|]$ and b will be ultimately made to tend to infinity. The boundary conditions are

$$
\left.\begin{array}{l}
a_{j_{1}} u(0)+a_{j_{2}} u^{\prime}(0)+a_{j_{3}} v(0)+a_{j_{4}} v^{\prime}(0)=0 \tag{1.3}\\
b_{j_{1}} u(b)+b_{j_{2}} u^{\prime}(b)+b_{j_{3}} v(b)+b_{j_{4}} v^{\prime}(b)=0
\end{array}\right\}
$$

$" j=1,2$; accents denoting differentiation with respect to x, and the selfs adjointness conditions are given by

$$
\left.\begin{array}{l}
a_{11} a_{22}-a_{12} a_{21}+a_{13} a_{24}-a_{14} a_{23}=0 \tag{1.4}\\
b_{11} b_{22}-b_{12} b_{21}+b_{13} b_{24}-b_{14} b_{23}=0
\end{array}\right\}
$$

2. Notations and Preliminaries

If $\phi_{j}=\left\{u_{j}, v_{j}\right\}$ and $\phi_{k}=\left\{u_{k}, v_{k}\right\}$ be two column vectors, then we define their 'Bilinear Concomitant' as

$$
\left[\phi_{j}, \phi_{k}\right]=\left|\begin{array}{cc}
u_{j} & u_{k} \\
u_{j}^{\prime} & u_{k}^{\prime}
\end{array}\right|+\left|\begin{array}{cc}
v_{j} & v_{k} \\
v_{j}^{\prime} & v_{k}^{\prime}
\end{array}\right|
$$

We represent, after Chakrabarty ${ }^{1}$, any vector $\phi(x)$ whose component together with their first derivatives assume prescribed values at $x=\xi$ by the symbol $\phi(\xi \mid x)=\{u(\xi \mid x)$, $v(\xi \mid x)\}$. It follows, in usual manner, that there exist vectors $\phi_{j}(0 \mid x, \lambda), j=1,2 ; \phi_{k}(b \mid x, \lambda), k=3,4$, which are solutions of (1.1) and are such that

$$
\begin{aligned}
& u_{j}(0 \mid 0, \lambda)=a_{j 2} ; u_{j}^{\prime}(0 \mid 0, \lambda)=-a_{j 1} ; v_{j}(0 \mid 0, \lambda)=a_{j_{4}} ; \\
& v_{j}^{\prime}(0 \mid 0, \lambda)=-a_{j_{3}},(j=1,2) ; u_{k}(b \mid b, \lambda)=b_{j_{2}} \\
& u_{k}^{\prime}(b \mid b, \lambda)=-b_{j_{1}} ; v_{k}(b \mid b, \lambda)=b_{j_{4}} ; \\
& v_{k}^{\prime}(b \mid b, \lambda)=-b_{j 3}(k=3, j=1 ; k=4, j=2)
\end{aligned}
$$

These vectors will be called the 'boundary condition vectors' at $x=0$ and $x=b$ respectively.

If $\phi=\phi(\xi \mid x, \lambda)$ be any vector satisfying (1.3) and ϕ_{j}, ϕ_{k} be the boundary condition vectors then (1.3) and (1.4) respectively may be expressed in the following alternative 'Kodaira form '2:

$$
\begin{equation*}
\left[\phi, \phi_{j}\right]=0, \quad\left[\phi, \phi_{k}\right]=0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\phi_{1}, \phi_{2}\right]=0, \quad\left[\phi_{3}, \phi_{4}\right]=0 . \tag{2.2}
\end{equation*}
$$

If we denote by $D(\lambda)$ the Wronskian of the boundary condition vectors then

$$
\begin{equation*}
D(\lambda)=\left[\phi_{1}, \phi_{3}\right]\left[\phi_{2}, \phi_{4}\right]-\left[\gamma_{1}, \phi_{4}\right]\left[\phi_{2}, \phi_{3}\right] \tag{2.3}
\end{equation*}
$$

is an entire function of λ, independent of x and takes real values when λ is real.

For column vectors y and $z ;(y, z)$ denotes $y^{T} z ;\langle y, z\rangle_{0, x}$ stands for $\int_{0}^{1}(y, z) d t$, and $\|y\|_{0, x}$ for $\langle y, y\rangle_{0, x}=\langle y, \tilde{y}\rangle_{0, x}$ when y is complex. When $x=b,\langle y, z\rangle$ and $\|y\|$ stanc for $\langle y, z\rangle_{0, b}$ and $\|y\|_{0, b}$ respectively. If $F(u)=\left\{F_{1}(u), F_{2}(u)\right\}, G(u)=\left\{G_{1}(u), G_{2}(u)\right\}$ and columns of

$$
\left(\begin{array}{ll}
K_{11}(u) & K_{21}(u) \\
K_{12}(u) & K_{22}(u)
\end{array}\right)
$$

are denoted by $K_{r}(u)=\left\{K_{r_{1}}(u), K_{r a}(u)\right\}, r=1,2$, then $\langle F, G, d K\rangle_{c, d}$ stands for

$$
\sum_{r=1}^{2} \sum_{s=1}^{2} \int_{0}^{d} F_{r}(u) G_{S}(u) d K_{r s}(u)=\sum_{r=1}^{2} \int_{0}^{d} F_{r}(u)\left(G(u), d K_{r}(u)\right)
$$

and $\|F, d K\| \|_{c}, d$ for $\langle F, F, d K\rangle_{c, d}$.
Further $\langle F, G, d K\rangle_{-\infty, \infty} ;\|F, d K\|_{-\infty, \infty}$ are denoted by $\langle F, G, d K\rangle ;\|F, d K\|$ respectively. Let

$$
\begin{align*}
& \left.\psi_{1}(x, \lambda)=\left(\left[\phi_{2}, \phi_{4}\right)\right] \phi_{3}(b \mid x, \lambda)-\left[\phi_{2}, \phi_{3}\right] \phi_{4}(b \mid x, \lambda)\right) / D(\lambda) \\
& \left.\left.\psi_{2}(x, \lambda)=\left(\left[\phi_{1}, \phi_{3}\right)\right] \phi_{4}(b \mid x, \lambda)-\left[\phi_{1}, \phi_{4}\right] \phi_{4}(b \mid x, \lambda)\right) / D(\lambda)\right\} . \tag{2.4}
\end{align*}
$$

Corresponding to the boundary condition vectors $\phi_{j}(0 \mid x, \lambda), j=1,2$, let us choose two solutions $\theta_{k}=\theta_{k}(0 \mid x, \lambda)(k=1,2)$ of (1.1) such that

$$
\begin{equation*}
\left[\phi_{j}, \phi_{k}\right]=\delta_{j k}(j, k=1,2) \quad \text { and } \quad\left[\theta_{1}, \theta_{2}\right]=0 \tag{2.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\psi_{k}(x, \lambda)=\sum_{r=1}^{2} l_{k r}(\lambda) \phi_{r}(0 \mid x, \lambda)+\theta_{k}(0 \mid x, \lambda), \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& {\left[\psi_{r}(x, \lambda), \theta_{s}(0 \mid x, \lambda)\right]=I_{r s}(\lambda),(r, s=1,2) .} \tag{2.7}\\
& \left\langle\psi_{r}\left(x, \lambda_{1}\right), \psi_{s}\left(x, \lambda_{2}\right)\right\rangle=\frac{l_{r s}\left(\lambda_{2}\right)-l_{r s}\left(\lambda_{1}\right)}{\lambda_{1}-\lambda_{2}} . \tag{2.8}
\end{align*}
$$

Also, $l_{r s}(\lambda)$ have an infinite number of simple poles at the zeros of $D(\lambda)$. If λ_{n} be a simple pole of $I_{r s}(\lambda)$ with residue $R_{r s}(n)$, then we have to considet the following cases:

Case 1. Let λ_{n} be a simple zero of $D(\lambda)$, then

$$
\begin{equation*}
R_{11}(n) R_{22}(n)=R^{2}{ }_{21}(n)=R_{21}^{2}(n) \tag{2,9}
\end{equation*}
$$

and the corresponding normalised eigenvector, say $\psi_{n}(x)$, may be expressed as

$$
\begin{equation*}
\psi_{n}(x)=\sum_{r=1}^{2} R_{r r}^{\downarrow_{r}(n) \phi_{r}\left(0 \mid x, \lambda_{n}\right)} \tag{2.10}
\end{equation*}
$$

Case II. Let λ_{n} be a double zero of $D(\lambda)$, then

$$
\begin{equation*}
R_{1 I}(n) R_{22}(n)-R_{12}{ }^{2}(n)=1 \mid\left(I_{11} I_{22}-I_{12}{ }^{2}\right)>0, \tag{2.11}
\end{equation*}
$$

where

$$
I_{r s}=\left\langle\phi_{r}(0 \mid x, \lambda), \phi_{s}(0 \mid x, \lambda)\right\rangle \quad(r, s=1,2)
$$

and there are two orthogonal normalised eigenvectors, say $\psi_{n}{ }^{(1)}(x)$ and $\psi_{n}{ }^{(2)}(x)$, which may be expressed as

$$
\begin{aligned}
& \psi_{n}^{(1)}(x)=R_{11}^{-\frac{1}{1}}(n) \sum_{r=1}^{2} R_{1 r}(n) \phi_{r}\left(0 \mid x, \lambda_{n}\right) \\
& \psi_{n}^{(2)}(x)=-R_{11}^{-1}(n)\left\{R_{11}(n) R_{22}(n)-R_{12}^{2}(n)\right\}^{\frac{3}{2}} \phi_{2}\left(0 \mid x, \lambda_{n}\right) .
\end{aligned}
$$

In this case, any suitable linear combination of $\psi_{n}{ }^{(1)}(x)$ and $\psi_{n}{ }^{(2)}(x)$ may be taken as the normalised eigenvector. We choose this vector as follows:

Let $f(x)$ be any two component column vector such that $(f(x), f(x)) \in L[0, b]$. Let

$$
A_{n}=\left\langle\psi_{n}^{(1)}, f\right\rangle, \quad B_{n}=\left\langle\psi_{n}^{(2)}, f\right\rangle
$$

Then

$$
\begin{equation*}
\psi_{n}(x)=\left\{A_{n} /\left(A_{n}^{2}+B_{n}^{2}\right)^{\frac{1}{2}}\right\}, \psi_{n}^{(1)}(x)+\left\{B_{n} /\left(A_{n}^{2}+B_{n}^{2}\right)^{\frac{1}{2}}\right\} \psi_{n}^{(2)}(x) \tag{2.12}
\end{equation*}
$$

is our nomalised eigenvector in this case.
The eigenvectors $\psi_{n}(x)$ given by (2.10) or (2.12) form an orthonormal system of vectors. If $f(x)$ possesses continuous derivatives upto the second order in $[0, b]$, satisfies the boundary conditions (2.1) and c_{n}, \tilde{c}_{n} denote the Fourier coefficients of $f(x)$ and $L f(x)$ respectively, then

$$
\begin{equation*}
\tilde{c}_{n}=\lambda_{n} c_{n} \tag{2.13}
\end{equation*}
$$

3. The Matrix $\rho(u)$

We now extend the finite interval $[0, b]$ to the infinite interval $[0, \infty)$, keeping in view that the functions $p(x), q(x)$ and $r(x)$ in the operator L are well behaved at all points of the infinite interval $[0, \infty)$. We tackle the problem of this extension by considering the problem of the interval $[0, b]$ (to be referred to as the b-case) and then making $b \rightarrow \infty$. For this purpose, we assume that the conditions of the previous section remain valid for every $b>0$ and we introduce b as a parameter in the entities of $\S 2$ to enable us to study the implications of making $b \rightarrow \infty$. For example, by $D(b, \lambda)$ we mean $D(\lambda)$ defined by (2.3) and similarly for other entities. Some of the results obtained here are generalisations of those of Titchmarsh in Chapter VI of Ref. 3.

Let $\lambda_{n} b$ denote the eigenvalues for the b-case. Let us define a matrix

$$
\rho(b, t)=\left(\rho_{r s}(b, t)\right)=\left(\begin{array}{ll}
\rho_{11}(b, t) & \rho_{21}(b, t) \\
\rho_{12}(b, t) & \rho_{22}(b, t)
\end{array}\right)
$$

consisting of non-decreasing step-functions $\rho_{r s}(b, t),(r, s=1,2)$ which satisfy the following conditions:
$\rho(b, 0)=0$ and $\rho_{r s}(b, t)$ increases by $R_{r s}(b, n)$ when t increases through the value $\lambda_{n b}$; otherwise $\rho_{r s}(b, t)$ remains constant. The value at the discontinuity is given by

$$
\rho_{r s}\left(b ; \lambda_{n b}\right)=\frac{1}{2}\left[\rho_{r s}\left(b ; \lambda_{n b}-0\right)+\rho_{r s}\left(b ; \lambda_{n b}+0\right)\right] .
$$

Let $f(x)=\left\{f_{1}, f_{2}\right\}$ be integrable over $[0, b]$. Let

$$
F(b ; u)=\left\{F_{1}(b ; u), F_{2}(b ; u)\right\}
$$

where

$$
\begin{equation*}
F_{r}(b ; u)=\left\langle\phi_{r}(0 \mid x, u), f(x)\right\rangle \quad(r=1,2) . \tag{3.1}
\end{equation*}
$$

Let $\lambda_{n b}$ be a simple zero of $D(b ; \lambda)$, then the For rier coefficients of $f(x)$ are given by

$$
\begin{equation*}
c_{n b}=\left\langle\psi_{n}(b ; x), f(x)\right\rangle=\sum_{r=3}^{2} K_{r r^{\frac{3}{2}}}\left(b ; \cdots F_{r}\left(b ; \lambda_{n b}\right) .\right. \tag{3,2}
\end{equation*}
$$

The expansion formula may be expressed as

$$
\begin{align*}
f(x) & =\sum_{n=-\infty}^{\infty} c_{n} b \psi_{n}(b ; x) \\
& =\sum_{n=-\infty}^{\infty} \sum_{r=1}^{2} \sum_{i=1}^{2} \phi_{r}\left(0 \mid x, \lambda_{n} b\right) F_{s}\left(b ; \lambda_{n} b\right) R_{r s}(b ; n) \\
& =\sum_{r=1}^{2} \sum_{s=1}^{2} \int_{-\infty}^{\infty} \phi_{r}(0 \mid x, u) F_{s}(b ; u) d \rho_{r s}(b ; u) \\
& =\sum_{r=1}^{2} \int_{-\infty}^{\infty} \phi_{r}(0 \mid x, u)\left(\left(F(b ; u), d \rho_{r}(b ; u)\right) .\right. \tag{3,3}
\end{align*}
$$

The Parseval formula may be written as

$$
\begin{align*}
\|f\| & =\sum_{n=-\infty}^{\infty} c^{2}{ }_{n b}=\sum_{n=-\infty}^{\infty} \sum_{r=1}^{2} \sum_{k=1}^{2} F_{r}\left(b ; \lambda_{n b}\right) R_{r s}(b ; n) F_{s}\left(b ; \lambda_{n b}\right) \\
& =\|F(b ; u), d \rho(b ; u)\| \tag{3.4}
\end{align*}
$$

The Parseval formula for $\tilde{f}(x)=L f(x)$ becomes

$$
\begin{align*}
\|\tilde{f}\| & =\sum_{n=-\infty}^{\infty} \stackrel{2}{\lambda}_{n b}\left[\sum_{r=1}^{2} \sum_{n=1}^{2} F_{r}\left(b ; \lambda_{n b}\right) F_{s}\left(b ; \lambda_{n b}\right) R_{r s}(b ; n)\right] \\
& =\|u F(b ; u), \quad d \rho(b ; u)\| \tag{3.5}
\end{align*}
$$

If $\lambda_{n b}$ is a double zero of $D(b, \lambda)$ and the corresponding normalised eigenvector is given by (2.12), then the Fourier Coefficients of $f(x)$ are given by

$$
c_{n b}=\left(A_{n}^{2}+B_{n}^{2}\right)^{\frac{1}{2}}
$$

where

$$
\begin{aligned}
& A_{n}=R_{11}^{-\frac{1}{1}}(b ; n) \sum_{r=1}^{2} R_{1 r}(b ; n) F_{r}\left(b ; \lambda_{n b}\right) \\
& B_{n}=-R_{11}^{-1}(b ; n)\left[R_{11}(b ; n) R_{22}(b ; n)-R_{12}{ }^{2}(b ; n)\right]^{\frac{1}{2}} F_{2}\left(b ; \lambda_{n b}\right) .
\end{aligned}
$$

It can be easily verified that even in this case the expansion formula, the Parseval formula and the Parseval formula for $\tilde{f}(x)$ reduce to (3.3), (3.4) and (3.5) respectively.

Theorem (3.1). The functions $\rho_{r s}(b ; u)(r, s=1,2)$ are bounded over any fixed finite u-interval, independently of b.
 Fourier coefficients of $\psi_{r}(b ; x, \lambda)$ and $\psi_{s}(b ; x, \bar{\lambda})(r, s=1,2)$ respectively, we obtain

$$
\left\langle\psi_{r}(b ; x, \lambda), \bar{\psi}_{s}(b ; x, \lambda)\right\rangle=\sum_{n=-\infty}^{\infty} R_{r s}(b ; n) /\left\{\left(\mu-\lambda_{n b}\right)^{2}+v^{2}\right\}
$$

if $D(b ; \lambda)$ has a simple zero at $\lambda=\lambda_{n b},(\lambda=\mu+i v)$; and

$$
\left\langle\psi_{r}(b ; x, \lambda), \quad \bar{\psi}_{s}(b ; x, \lambda)\right\rangle>\sum_{n=-\infty}^{\infty} R_{r s}(b ; n) /\left\{\left(\mu-\lambda_{n b}\right)^{2}+v^{2}\right\}
$$

if $D(b, \lambda)$ has a double zero at $\lambda=\lambda_{n b}$.
Therefore, from (2.8), we get

$$
\begin{equation*}
-\frac{I_{m} l_{r s}(b ; \lambda)}{v} \geqslant \int_{-\infty}^{\infty} \frac{d \rho_{r s}(b ; u)}{(\mu-u)^{2}+v^{2}} \tag{3.6}
\end{equation*}
$$

By arguments similar to those of Chakrabarty ${ }^{4}$ and Titchmarsh ${ }^{3}$ it follows that $l_{r s}(b ; \lambda)$ are bounded as $b \rightarrow \infty$ through a suitable sequence if $v \neq 0$. Hence, putting $\mu=0$ and $v=1$ in (3.6), we obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d \rho_{r s}(b ; u)}{u^{2}+1} \leqslant K \tag{3.7}
\end{equation*}
$$

where K is independent of b. So

$$
\begin{equation*}
\int_{-U}^{U} \frac{d \rho_{r s}(b ; u)}{u^{2}+1} \leqslant K \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{r s}(b ; U)=\int_{0}^{U} \rho_{r s}(b ; u) \leqslant K\left(U^{2}+1\right) \tag{3.9}
\end{equation*}
$$

which proves the theorem.

In view of the above theorem, we can apply Helly's selection theorem to define a set of functions $\rho_{r s}(u)(r, s=1,2), u \geqslant 0$, such that $\rho_{r s}(b ; u) \rightarrow \rho_{r s}(u)$ as $b \rightarrow \infty$ through. a suitable sequence, say W. Let $\left(u_{1}, u_{2}\right)$ be any finite interval and $f(u)=\left\{f_{1}, f_{2}\right\}$ any continuous vector, then as $b \rightarrow \infty$ we obtain from Helly-Bray theorem

$$
\begin{equation*}
\int_{u_{1}}^{w_{1}}\left(f(u), d \rho_{r}(b ; u)\right) \rightarrow \int_{u_{1}}^{n_{2}}\left(f(u), d \rho_{r}(u)\right) \tag{3.10}
\end{equation*}
$$

Further, let $w_{1}=\max \left(u_{1}, v_{1}\right)$ and $w_{2}=\min \left(u_{2}, v_{2}\right)$, where w_{1} and w_{2} are the points of continuity of $\rho_{T S}(u)$. Then as $v \rightarrow 0$

$$
\begin{equation*}
\left.\int_{u_{1}}^{u_{2}} d \rho_{r s}(u) \int_{v_{1}}^{v_{3}} \frac{v d \mu}{(\mu-u)^{2}+v^{2}} \rightarrow \pi\left[\rho_{r s}\left(w_{2}\right)-\rho_{r s}\left(w_{1}\right)\right]\left(w_{1}<w_{2}\right)\right\} \tag{3.11}
\end{equation*}
$$

4. The Transform

Let $f(x)=\left\{f_{1}, f_{2}\right)$ be the integral of an absolutely continuous vector and $\left.\left(f^{\prime \prime}(x)\right), f^{\prime \prime}(x)\right) \in L[0, c]$. Let $f(x)=\{0,0\}$ for $x \geqslant c$ and let $f(x)$ satisfy the boundary conditions of our problem at $x=0$. Let

$$
F(u)=\left\{F_{1}(u), F_{2}(u)\right\}
$$

where

$$
\begin{equation*}
F_{r}(u)=\left\langle\phi_{r}(0 \mid x, u), f(x)\right\rangle_{0, \infty} . \tag{4.1}
\end{equation*}
$$

Then, if $b>c$, we obtain

$$
\begin{aligned}
& \|F(b ; u), d \rho(b ; u)\|_{-\infty},-v+\|F(b ; u), d \rho(b ; u)\|_{U, \infty} \\
& \quad \leqslant U^{-2}\left[\|u F(b ; u), d \rho(b ; u)\|_{-\infty,--v}+\| u F(b ; u), d \rho\left(b ; u \|_{v, \infty}\right]\right. \\
& \quad \leqslant U^{-2}\|u F(b ; u), d \rho(b ; u)\| \leqslant U^{-2}\|\tilde{f}\|_{0, \infty}
\end{aligned}
$$

since (3.5) holds in this case. Also, for fixed U and $b>c$

$$
\| F(b ; u), d \rho\left(b ; u\left\|_{-u, u}=\right\| F(u), d \rho(b ; u)\left\|_{-U, u} \rightarrow\right\| F(u), d \rho(u) \|_{-u, u}\right.
$$

by making $b \rightarrow \infty$ through a suitable sequence. First making $b \rightarrow \infty$ for fixed U and then making $U \rightarrow \infty$, it follows that

$$
\|F(b ; u), d \rho(b ; u)\| \rightarrow\|F(u), d \rho(u)\|
$$

Hence

$$
\begin{equation*}
\|f\|_{0, \infty}=\|F(u), d \rho(u)\| \tag{4.2}
\end{equation*}
$$

for our special class of vectors $f(x)$.

Now, let $f(x)$ be any two component column vector such that $(f(x), f(x))$ $\in L[0, \infty)$. Then a sequence of vectors $f^{(n)}(x)=\left\{f_{1}^{(n)}(x), f_{2}^{(n)}(x)\right\}$ can be determined such that each $f^{(n)}(x)$ belongs to the special class and that

$$
\lim _{n \rightarrow \infty}\left\|f-f^{(n)}\right\|_{0, \infty}=0
$$

Let

$$
F^{(n)}(u)=\left\{F_{1}^{(n)}(u), F_{2}^{(n)}(u)\right\},
$$

where

$$
F_{r}^{(n)}(u)=\left\langle d_{r}(0 \mid x, u), f^{(n)}(x)\right\rangle_{0, \infty} .
$$

Then, from (4.2) we obtain

$$
\left\|\left(F^{(m)}(u)-F^{(n)}(u)\right), d \rho\right\|=\left\|f^{(m)}-f^{(n)}\right\|_{0, \infty}
$$

which tends to zero as m and n tend independently to infinity. Hence the sequence of vectors $F^{(n)}(u)$ converges in mean with respect to $\rho(u)$, say to $F(u)$, leading to

$$
\|F(u), d \rho(u)\|<\infty
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(F-F^{(n)}\right), d \rho\right\|=0 \tag{4.3}
\end{equation*}
$$

Further

$$
\begin{aligned}
& \|\|F, d \rho\|-\| F^{(n)}, d \rho\| \| \\
& \quad \leqslant \|\left\langle F, F-F^{(n)} d \rho\right\rangle+\left\langle F^{(n)} F-F^{(n)}, d \rho\right\rangle \mid \\
& \leqslant\left\{\left[\|F, d \rho\|\left\|F-F^{(n)}, d \rho\right\|\right]^{2}\right. \\
& \left.\quad+\left[\left\|F^{(n)}, d \rho\right\|\left\|F-F^{(n)}, d \rho\right\|\right]^{\frac{1}{2}}\right\} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, in view of the above results.
[cf. Hardy, Littlewood and Polya ${ }^{5}$, § 29, p. 33]. Hence

$$
\|F, d \rho\|=\lim _{n \rightarrow \infty}\left\|F^{(n)}, d \rho\right\|
$$

Therefore from (4.2), $\forall f(x) \in L^{2}[0, \infty)$, we obtain the Parseval formula

$$
\begin{equation*}
\|F(u), d \rho(u)\|=\|f(x)\|_{0, \infty} . \tag{4.4}
\end{equation*}
$$

We call the vector $F(u)$ the Transform of $f(x)$.

If $g(x)=\left\{g_{1}(x), g_{2}(x)\right\}$ be another vector of $L^{2}[0, \infty)$ and $G(u)$ be its transform, then $F(u)+G(u)$ is the transform of $f(x)+g(x)$ and using (4.4) we obtain

$$
\begin{equation*}
\langle F, G, d \rho\rangle=\langle f, g\rangle_{0, \infty} \tag{4.5}
\end{equation*}
$$

Theorem (4.1). Let $f(x)=\left\{f_{1}(x), f_{2}(x)\right\} \in L^{2}[0, \infty)$, and let

$$
F_{a}(u)=\left\{F_{1 a}(u), F_{2 a}(u)\right\}
$$

where

$$
\begin{equation*}
F_{r a}(u)=\left\langle\phi_{r}(0 \mid x, u), f(x)\right\rangle_{0, a},(r=1,2) \tag{4.6}
\end{equation*}
$$

Then $F_{a}(u)$ converges in mean with respect to $\rho(u)$ to $F(u)$, as $a \rightarrow \infty$, i.e.,

$$
\begin{equation*}
\left\|F(u)-F_{a}(u), d \rho(u)\right\| \rightarrow 0 \text { as } a \rightarrow \infty \tag{4.7}
\end{equation*}
$$

Proof: We have

$$
F_{r}(u)-F_{r a}(u)=\left\langle\phi_{r}(0 \mid x, u), f(x)\right\rangle_{a, \infty} .
$$

Thus $F(u)-F_{a}(u)$ is the transform of $f(x)$ in $[a, \infty)$ and that of $\{0,0\}$ in $[0, a]$. Hence we obtain from (4.4)

$$
\left\|F(u)-F_{a}(u), d \rho(u)\right\|_{1}=\|f(x)\|_{a, \infty},
$$

where the right hand side tends to zero as $a \rightarrow \infty$.
Theorem (4.2). Let $F(u)$ be the transform of $f(x)$, where $(f(x), f(x)) \in L[0, \infty)$ and let

$$
\begin{equation*}
f_{a}(x)=\left\{f_{1 a}(x), f_{2 a}(x)\right\}=\sum_{r=1}^{2} \int_{-a}^{a} \phi_{r}(0 \mid x, u)\left(F(u), d \rho_{r}(u)\right) \tag{4.8}
\end{equation*}
$$

Then as $a \rightarrow \infty, f(x)$ is the limit in man of $f a(x)$;
i.e.,

$$
\begin{equation*}
\left\|f(x)-f_{a}(x)\right\|_{0, \infty} \rightarrow 0, \quad \text { as } \quad a \rightarrow \infty \tag{4.9}
\end{equation*}
$$

Proof: Let $G(u)$ be the transform of $g(x)$, where $(g(x), g(n)) \in L[0, X]$ and $g(x)=\{0,0\}$ for $x>X$. Let $G_{a}(u)=\left\{G_{1 a}(u), G_{2 a}(u)\right\}$, where

$$
\begin{aligned}
& G_{r a}(u)=\left\langle\phi_{r}(0 \mid x, u), g(x)\right\rangle_{0, a}=\left\langle\phi_{r}(0 \mid x, u), g(x)\right\rangle_{0, x} \\
&(a>X),(r=1,2)
\end{aligned}
$$

If $G(u)=\left\{G_{1}(u), G_{2}(u)\right\}$, then we obtain from (4.6)

$$
G_{r}(u)=\left\langle\phi_{r}(0 \mid x, u), g(x)\right\rangle_{0, x},(r=1,2)
$$

Therefore,

$$
\begin{align*}
& \left\langle f_{a}(x), g(x)\right\rangle_{0, x}=\left\langle\sum_{r=1}^{2} \int_{-a}^{a} \phi_{r}(0 \mid x, u)\left(F(u), d \rho_{r}(u)\right), g(x)\right\rangle_{0, x} \\
& \quad=\left\langle F_{,} G, d \rho\right\rangle_{-a, a} \tag{4.10}
\end{align*}
$$

Now, from (4.10) and (4.5), we obtain

$$
\begin{align*}
& \left.\left[\left(f(x)-f_{a}(x)\right), g(x)\right\rangle_{0, x}\right]^{2}=\left[\langle F, G, d \rho\rangle_{-\infty,-a}+\langle F, G, d \rho\rangle_{a, \infty}\right]^{2} \\
& \leqslant\left[\|F, d \rho\|_{-\infty,-a+}+\|F, d \rho\|_{a, \infty}\right]\|G, d \rho\| \\
& \leqslant\left[\|F, d \rho\|_{-\infty,-a}-\mid\|F, d \rho\|_{a, \infty}\right]\|g\|_{0, x} \tag{4.11}\\
& \quad\left(c f . \text { Levinson, }{ }^{6} \text { p. } 307\right) .
\end{align*}
$$

Let $g(x)=f(x)-f_{a}(x)$ for $x \leqslant X$. Then

$$
\left\|f(x)-f_{a}(x)\right\|_{0, x} \leqslant\|F, d \rho\|_{-\infty,-a}+\|F, d \rho\| a, \infty
$$

Making X arbitrarily large

$$
\|f(x)-f a(x)\|_{0, \infty} \leqslant\|F, d \rho\|_{-\infty,-a}+\|F, d \rho\|_{a, \infty}
$$

which yields the desired result.

5. Analogy witt Fourier Transforms

(I) Let X be fixed. Then

$$
\begin{aligned}
\int_{0}^{x} f(x) d x= & \operatorname{lom}_{a \rightarrow \infty} \int_{0}^{x} f_{a}(x) d x \\
& =\lim _{a \rightarrow \infty} \sum_{r=1}^{z} \int_{-\infty}^{a}\left(F(u), d \rho_{r}(u)\right) \int_{0}^{x} \phi_{r}(0 \mid x, u) d x \\
& =\lim _{a \rightarrow \infty} \sum_{r=1}^{2} \int_{-\infty}^{a} \tilde{\phi}_{r}(X, u)\left(F(u), d \rho_{r}(u)\right),
\end{aligned}
$$

where

$$
\ddot{\phi}_{\mathbf{r}}(\boldsymbol{X}, u)=\int_{0}^{X} \phi_{r}(0 \mid x, u) d x
$$

Hence

$$
\begin{equation*}
f(x)=d \mid d x \sum_{r=1}^{2} \int_{-\infty}^{\infty} \tilde{\phi}_{r}(x, u)\left(F(u), d p_{r}(u)\right) \tag{5.1}
\end{equation*}
$$

almost everywhere.

$$
\text { (TI) } \begin{aligned}
\int_{0}^{U}(F & \left.(u), d \rho_{r}(u)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{s=1}^{2} \int_{0}^{U} F_{s \pi}(u) d \rho_{r s}(u) \\
& =\lim _{n \rightarrow \infty} \sum_{s=1}^{2} \int_{0}^{U} d \rho_{r s}(u) \int_{0}^{n}\left(\phi_{s}(0 \mid x, u), f(x)\right) d x \\
& =\lim _{n \rightarrow \infty}\left\langle f(x), W_{r}(x, U)\right\rangle_{0, n},
\end{aligned}
$$

where

$$
\begin{equation*}
W_{r}(x, U)=\sum_{s=1}^{2} \int_{0}^{U} \phi_{S}(0 \mid x, u) d \rho_{r s}(u) \tag{5,2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left(F(u), \rho_{r}^{\prime}(u)\right)=d \mid d u\left\langle f(x), W_{T}(x, u)\right\rangle_{0, \infty} \tag{5.3}
\end{equation*}
$$

at the points where $\rho_{r}^{\prime}(u)$ exists.

$$
\text { 6. The Vectors } \chi_{r}(x, \lambda), r=1,2 \text {. }
$$

By arguments similar to those of Chakrabarty ${ }^{4}$, it follows from (2.6) by making $b \rightarrow \infty$ through a suitable sequence, that

$$
\psi k_{\mathrm{k}}(x, \lambda)=\sum_{r=1}^{2} m_{k r}(\lambda) \phi_{r}(0 \mid x, \lambda)+\theta_{k}(0 \mid x, \lambda), \quad(k=1,2)(6.1)
$$

where

$$
m_{k j}(\lambda)=\lim _{b \rightarrow \infty} l_{k j}(b, \lambda), \quad m_{k j}(\lambda)=m_{j k}(\lambda)
$$

the convergence to limits of various entities being uniform. Also

$$
\begin{equation*}
\left\|\psi_{k}(x, \lambda)\right\|_{0, \infty} \leqslant-\operatorname{Im} m_{k k}(\lambda) \mid v \tag{6.2}
\end{equation*}
$$

Thus $\psi_{k}(x, \lambda) \in L[0, \infty)$. Adopting the analysis of Everitt, ${ }^{7}$ we obtain

$$
\begin{equation*}
m_{11}(\lambda) m_{22}(\lambda)-m_{12}^{2}(\lambda) \neq 0, \quad(\operatorname{Im}(\lambda) \neq 0) \tag{6.3}
\end{equation*}
$$

The following Lemma has been obtained by Bhagat. ${ }^{8}$
Lemma (6.1). The matrix

$$
\begin{equation*}
K(\lambda)=\left(K_{r s}(\lambda)\right)=\left(\lim _{v \rightarrow 0} \int_{0}^{\lambda}-\operatorname{Im} m_{r s}(\mu+i v) d \mu\right) \tag{6.4}
\end{equation*}
$$

exists for all real λ; each. $K_{r s}(\lambda)$ is a function of bounded variation and

$$
\begin{equation*}
K_{r s}(\lambda)=\frac{1}{2}\left\{K_{r s}(\lambda+0)+K_{r s}(\lambda-0)\right\} \tag{6.5}
\end{equation*}
$$

Also

$$
\begin{equation*}
\lim _{y \rightarrow 0} \int_{0}^{\lambda}-\operatorname{Im} \psi_{r}(x, \mu+i v) d \mu=\sum_{s=1}^{2} \int_{0}^{\lambda} \phi_{s}(0 \mid x, \mu) d K_{r s}(\mu) \tag{6.6}
\end{equation*}
$$

Further we note from (6.2) that $-\operatorname{Im} m_{r r}(\mu+i v)>0$ if $\nu>0$ and therefore $K_{r r}(\lambda)$ are non-decreasing functions of $\lambda(r=1,2)$.

Theorem (6.1). Lel

$$
\begin{equation*}
\chi_{r}(x, \lambda)=\left\{\chi_{r 1}(x, \lambda), \quad \chi_{r 2}(x, \lambda)\right\}=\sum_{s=1}^{2} \int_{0}^{\lambda} \phi_{s}(0 \mid x, u) d K_{r s}(u) \tag{6.7}
\end{equation*}
$$

where $r=1,2$ and λ is real. Then

$$
\left(\chi_{r}(x, \lambda), \chi_{r}(x, \lambda) \equiv L[0, \infty)\right.
$$

Proof: If $\lambda_{n} b$ be an eigenvalue and $\psi_{n}(b ; x)$ be corresponding cigenvector in the b-case, then

$$
\begin{equation*}
\left.\left\langle\psi_{n}(b ; x), \quad \psi_{r}(b ; x, \lambda)\right\rangle=R^{\frac{1}{2}} r \boldsymbol{r}(b ; n) \right\rvert\,\left(\lambda-\lambda_{n b}\right) . \tag{6.8}
\end{equation*}
$$

Hence, if $\lambda=\mu+i v$, the Parseval formula yields

$$
\begin{equation*}
\left\|\psi_{r}(b ; x, \lambda)\right\|={\underset{n}{1}}_{\infty}^{\infty} R_{r r}(b ; n) /\left\{\left(\mu-\lambda_{n b}\right)^{2}+v^{2}\right\} \tag{6.9}
\end{equation*}
$$

If $\lambda=i$, then the left hand side of (6.9) is bounded as $b \rightarrow \infty$ through a suitable sequence. Therefore

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} R_{\tau r}(b ; n) \mid\left(\lambda^{2} n b+1\right)=0(1) \tag{6.10}
\end{equation*}
$$

If λ is real and lies in fixed interval, we obtain from (6.8)

$$
\left\langle\psi_{n}(b ; x), \quad \int_{0}^{\lambda} \operatorname{Im} \psi_{r}(b ; x, \mu+i v) d \mu\right\rangle=0\left(R_{r r}^{i}(b ; n) \mid\left(\lambda^{2}{ }_{n \delta}+1\right)\right)
$$

Hence using Parseval formula and then making $b \rightarrow \infty$ through a suitable sequence, we obtain

$$
\left\|\int_{0}^{\lambda} \operatorname{Im} \psi_{r}(x, \mu+i v) d \mu\right\|_{0, \infty}=0(1)
$$

Finally, making $v \rightarrow 0$ and using (6.6), we have

$$
\left\|\sum_{i=1}^{2} \int_{0}^{\lambda} \phi_{s}(0 \mid x, \mu) d K_{r s}(\mu)\right\|_{0, \infty}=0(1)
$$

which yields the desired result.

7. Relation between $X_{r}(x, u)$ and $W_{r}(x, u)$

Making $b \rightarrow \infty$ through a suitable sequence and then $U \rightarrow \infty$ in (3.8) it follows that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d \rho_{r s}(u)\left(u^{2}+1\right) \leqslant K . \tag{7.1}
\end{equation*}
$$

By Green's theorem

$$
\begin{aligned}
& \left(\lambda-\lambda_{n b}\right)\left\langle\phi_{\boldsymbol{r}}\left(0 \mid x, \lambda_{n b}\right), \psi_{1}(b ; x, \lambda)\right\rangle \\
& \quad=\left\langle\phi_{r}\left(0 \mid x, \lambda_{n b}\right), L \psi_{1}(b ; x, \lambda)\right\rangle-\left\langle\psi_{1}(b ; x, \lambda), L \phi_{r}\left(0 \mid x, \lambda_{n b}\right)\right\rangle \\
& \quad=\left[\psi_{1}(b ; x, \lambda), \phi_{r}\left(0 \mid x, \lambda_{n b}\right)\right](b)-\left[\psi_{\mathbf{a}}(b: x, \lambda), \phi_{r}\left(0 \mid x, \lambda_{n b}\right)\right](0) .
\end{aligned}
$$

The second term on the right hand side

$$
\begin{array}{ll}
=-1, & \text { if } r=1 \\
=0, & \text { if } r=2 .
\end{array}
$$

The first term on the right hand side is zero because $\left.\psi_{1}(b ; x, \lambda)\right), \psi_{n}(b ; x)$, $\psi_{n}{ }^{(1)}(b ; x)$ and $\psi_{n}{ }^{(2)}(b ; x)$ satisfy the same boundary conditions at $x=b$ and it follows from the exprossions for $\psi_{n}(b ; x), \psi_{n}^{(1)}(b ; x)$ and $\psi_{n}{ }^{(2)}(b ; x)$ that $\phi_{\boldsymbol{r}}\left(0 \mid x, \lambda_{\boldsymbol{n} b}\right)(r=1,2)$ also satisfy the same boundary conditions at $x=b$.

Hence

$$
\begin{array}{rlrl}
\left\langle\phi_{r}\left(0 \mid x, \lambda_{n b}\right), \psi_{2}(b ; x, \lambda)\right\rangle & =1 /\left(\lambda-\lambda_{n b}\right), & & \text { if } r=1 \\
& =0, & \text { if } r=2 . \tag{7.2}
\end{array}
$$

Thereforc, the transform of $\psi_{1}(b ; x, \lambda)$ in $[0, b]$ is $\{1 /(\lambda-u), 0\}$.
Similarly the transform of $\psi_{2}(b ; x, \lambda)$ ib $[0, b]$ in $\{0,1 \mid(\lambda-u)\}$. The formula (4.5), thercfore, yields

$$
\left\langle\psi_{r}\left(b ; x, \lambda_{1}\right), \psi_{s}\left(b ; x, \lambda_{2}\right)\right\rangle=\int_{-\infty}^{\infty} d_{\rho_{r s}}(b ; u) \mid\left(\lambda_{1}-u\right)^{\prime}\left(\lambda_{2}-u\right),
$$

$t, s=1$, 2. Putting $\lambda=\lambda_{1}=\mu+i v, \bar{\lambda}=\lambda_{2}=\mu-i v$ and using (2.8), we obtain

$$
\begin{equation*}
\left.-\frac{\operatorname{Im} l_{r s}(b, \lambda)}{v}=\int_{-\infty}^{\infty} d \rho_{r s}(b ; u) \right\rvert\,\left\{(\mu-u)^{2}+v^{2}\right\} . \tag{7.3}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& \operatorname{Im} l_{r s}(b ; i)-\operatorname{Im} I_{r s}(b ; \lambda) / v \\
& \quad=\int_{-\infty}^{\infty}\left\{\frac{1}{(\mu-u)^{2}+v^{2}}-\frac{1}{u^{2}+1}\right\} d \rho_{r s}(b ; u)
\end{aligned}
$$

Making $b \rightarrow \infty$ through a suitable sequence, we obtain

$$
\int_{u_{1}}^{u_{2}}-\operatorname{Im} m_{r s}(\lambda) d \mu=\int_{-U}^{v} d \rho_{r s}(u) \int_{u_{3}}^{u_{3}} v d \mu\left\{\left\{(\mu-u)^{2}+v^{2}\right\}+0(v)\right.
$$

where $U>u_{2}$ and $-U<u_{1}$ (cf. Titchmarsh ${ }^{3}$; p. 137).
Making $v \rightarrow 0$ and using (3.11) the right hand side tends to

$$
\pi\left[\rho_{r s}\left(u_{2}\right)-\rho_{r s}\left(u_{21}\right)\right]=\pi \int_{u_{2}}^{u_{2}} d \rho_{r s}(u)
$$

where u_{1} and u_{2} are the points of continuity of $\rho_{r s}(u)$.
Now, it follows from the definitions of functions $K_{r s}(u)$ and $\rho_{r s}(u)$ that

$$
\begin{equation*}
K(u)=\pi \rho(u) \tag{7.4}
\end{equation*}
$$

Further

$$
\begin{align*}
\chi_{r}(x, \lambda) & =\sum_{s=1}^{2} \int_{0}^{\lambda} \phi_{s}(0 \mid x, u) d K_{r s}(u) \quad(\lambda \text { real }) \\
& =\pi \sum_{s=1}^{2} \int_{0}^{\lambda} \phi_{s}(0 \mid x, u) d \rho_{r s}(u)=\pi W_{r}(x, \lambda) . \tag{7.5}
\end{align*}
$$

8. Singular Surfaces

Following Everitt ${ }^{2}$ and Bhagat ${ }^{8}$ we get the generalization of Wayls circle obtained by Titchmarsh ${ }^{3}$ for our boundary value problem. We only mention the relevant results required for the purpose of our tranform theory and omit the details. Let us define

$$
\begin{equation*}
S_{r}\left(b, \lambda, b_{j k}\right)=S_{r}(b)=-i\left[\psi_{r}(b, x, \lambda), \bar{\psi}_{r}(b, x, \lambda)\right]_{x=b}=0 \tag{8.1}
\end{equation*}
$$

$r=1,2$. For fixed b and $\lambda=\mu+i v(v \neq 0)$, as $b_{j k}$ vary, the point $\left(I_{r_{1}}, l_{r_{2}}\right)$ describe a surface in the two-dimensional complex space, whose equation is expressed as

$$
S_{r}(b)=0 \quad(r=1,2) .
$$

We call these surfaces the singular surfaces of our problem. These surfaces are 'central surfaces' which tend to a limit surface $S_{r}(\infty)=0$ as $b \rightarrow \infty$, The surface $S_{r}(\infty)=0$ is also a central suriace and $l_{r s}(b, \lambda) \rightarrow m_{r s}(\lambda)$ as $b \rightarrow \infty$ through a suitable sequence; the point

$$
\left(m_{r 1}(\lambda), m_{r_{2}}(\lambda)\right) \in S_{r}(\infty)=0
$$

Let $\left(M_{r_{1}}(b), M_{r_{2}}(b)\right)(r=1,2)$ denote the centre of the singular surface $S_{\mathrm{r}}(b)=0$ in the two-dimensional complex space and let $\left(Z_{T}, Z_{r 2}\right)$ be any point on this surface, then the range of the values of $Z_{r s}$ is completely determined by

$$
\begin{align*}
& \left|Z_{r s}-M_{r^{s}}^{(s)}\right|^{2} \\
& \quad \leqslant \frac{\left\|\phi_{3-r}(0 \mid x, \lambda)\right\|\left\|\phi_{3-s}(0 \mid x, \lambda)\right\|}{4 v^{2}\left[\left\|\phi_{1}(0 \mid x, \lambda)\right\|\left\|\phi_{2}(0 \mid x, \lambda)\right\|-\left|\left\langle\phi_{1}(0 \mid x, \lambda), \bar{\phi}_{2}(0 \mid x, \lambda)\right)\right|^{2}\right]^{2}}, \tag{8.2}
\end{align*}
$$

where

$$
\begin{equation*}
\left[1-\left|\left\langle\phi_{1}, \bar{\phi}_{2}\right\rangle\right|^{2} /\left\|\phi_{1}\right\|\left\|\phi_{2}\right\|\right]>0 . \tag{8.3}
\end{equation*}
$$

for all $b>0$.

9. The Reverse Transform

We define the following two classes of vectors:
(i) The class of vectors

$$
\begin{equation*}
\left.f(x)=\left\{f_{1}(x), f_{2}(x)\right\} \in L^{2} \quad \text { if } \quad\|f\|_{0, \infty}<\right\rangle \infty \tag{9.1}
\end{equation*}
$$

(ii) The class of vectors

$$
\begin{equation*}
F(u)=\left\{F_{1}(u), F_{2}(u)\right\} \in \mathcal{L}^{2} \quad \text { if }\left\|F, d_{\rho}\right\| \ll \infty . \tag{9,2}
\end{equation*}
$$

Theorem (9.1). If $F(u) \in \mathcal{L}^{2}$. Then it has a 'reverse transform' $f(x) \in L^{2}$.

Proof : Let us define $f_{a}(x)$ by (4.8). Let
$g(x)=\left\{g_{1}(x), g_{2}(x)\right\} \in L^{2}[0, X]$ and $g(x)=\{0,0\}$ for $x>X$, and let $G(u)$ be its transform.

Then the conditions leading to (4.10) are satisfied, and hence, if $0 \leqslant a<b$, we obtain

$$
\begin{aligned}
& {\left[\left\langle\left(f_{a}(x)-f_{b}(x)\right), g(x)\right\rangle_{0, x}\right]^{2} \leqslant\left[\|F, d \rho\|_{1-b,-a}\right.} \\
& \left.\quad+\|F, d \rho\|_{a}, b\right]\|g(x)\|_{0, x}
\end{aligned}
$$

Putting $g(x)=f_{a}(x)-f_{b}(x)$ in $(0, X)$ and then making $X \rightarrow \infty$, we get

$$
\begin{equation*}
\left\|f_{a}(x)-f_{b}(x)\right\|_{0, \infty} \leqslant\|F, d \rho\|_{-b,-a}+\|F, d \rho\|_{a, b} \tag{9.3}
\end{equation*}
$$

Hence the sequence of vectors $f_{a}(x)$ converges in mean over $[0, \infty)$, say, to $f(x)$. Putting $a=0$ and making $b \rightarrow \infty$ in (9.3), it follows that

$$
\begin{equation*}
\|f(x)\|_{0, \infty} \leqslant\|F, d \rho\| \tag{9.4}
\end{equation*}
$$

$f(x)$ is the reverse transform of $F(u)$.
Thus, starting from a vector $f(x)$ of L^{2} with transform $F(u)$, it follows that $F(u)$ has the reverse transform $h(x)$ such that $f(x)$ and $h(x)$ are the limits in mean of the sequence of vectors $f_{a}(x)$ defined by (4.8). Hence

$$
h(x)=f(x) \quad \text { almost everywhere }
$$

Lemma (9.1)

$$
\begin{equation*}
\left.\lim _{x \rightarrow \infty} \| \psi_{r}(b, x, \lambda)-\psi_{r}(x, \lambda)\right) \|=0 \tag{9.5}
\end{equation*}
$$

$(\operatorname{Im}(\lambda) \neq 0)$ as $b \rightarrow \infty$ through a suitable sequence.
Proof: For simplicity we evaluate the limit when $r=1$. We have

$$
\begin{aligned}
& \left\|\psi_{1}(b, x, \lambda)-\psi_{1}(x, \lambda)\right\| \leqslant\left|l_{11}-m_{11}\right|^{2}\left\|\phi_{1}\right\|+ \\
& \quad 2\left|l_{11}-m_{11}\right|\left|l_{12}-m_{12}\right|\left|\left\langle\phi_{1}, \bar{\phi}_{2}\right\rangle\right|+\left|l_{12}-m_{12}\right|^{2}\left\|\phi_{2}\right\| .(9.6)
\end{aligned}
$$

If ϕ_{1} and $\phi_{2} \in L^{2}[0, \infty)$ then the right hand side tends to zero as $b \rightarrow \infty$ through a suitable sequence, for $l_{r s}(b, \lambda) \rightarrow m_{r s}(\lambda)$ and the lemma follows. When ϕ_{1} and ϕ_{2} both do not belong to $L^{2}[0, \infty)$, using (8.2) in (9.6), we obtain

$$
\begin{aligned}
& \left\|\psi_{1}(b, x, \lambda)-\psi_{1}(x, \lambda)\right\| \\
& \leqslant \begin{array}{c}
\left.2\left\{\| \phi_{2} \mid\right\}^{2}\left\|\phi_{1}\right\|+2\left\|\phi_{2}\right\|\left\{\left\|\phi_{2}\right\| \| \phi_{1}| |\right\}^{2} \mid\left\langle\phi_{1}, \bar{\phi}_{2}\right\rangle\right] \\
4 v^{2}\left[\alpha_{1} ; \alpha_{1}\right.
\end{array} \\
& \leqslant \frac{1}{\nu^{2}\left\|\dot{\phi}_{1}\right\|\left[1-\mid\left\langle\psi_{1}, \overline{\phi_{2}}\right\rangle{ }^{2} /\left\|\phi_{1}\right\| \|{\left.\overline{\phi_{2}} \|\right]^{2}}^{\text {a }}\right.}
\end{aligned}
$$

which tends to zero as $b \rightarrow \infty$ if $\phi_{1} \not L^{2}[0, \infty)$, since (8.3) holds for all values of $b>0$. Similarly

$$
\left\|\psi_{2}(b, x, \lambda)-\psi_{2}(x, \lambda)\right\| \rightarrow 0 \quad \text { as } \quad b \rightarrow \infty \text { if } \phi_{2} \notin L^{2}[0, \infty)
$$

'Lemma (9.2)
. (i) $\left(W_{r}(x, u), W_{r}(x, u)\right) \in L[0, \infty)$ in x.
(ii) $\sum_{s=1}^{2}\left\langle W_{r}\left(x, u_{2}\right)-W_{r}\left(x, u_{1}\right), W_{s}\left(x, v_{2}\right)-W_{s}\left(x, v_{1}\right)\right\rangle$

$$
\left.\begin{array}{ll}
=\sum_{s=1}^{n} \int_{w_{2}}^{w_{2}} d p_{r s}(u), & \left(w_{1}<w_{2}\right) \tag{9.7}\\
=0, & \left(w_{1} \geqslant w_{2}\right),
\end{array}\right\}
$$

where $w_{1}=\max \left(u_{1}, v_{1}\right), w_{2}=\min \left(u_{2}, v_{2}\right)$ are the points of continuity of frs (u).

Proof: Let

$$
W_{r}(b ; x, u)=\sum_{v=1}^{2} \int_{0}^{u} \phi_{s}(0 \mid x, t) d \rho_{r s}(b ; t) .
$$

Then

$$
\begin{align*}
W_{1}(b ; x, u)= & \sum_{0 \leqslant \lambda_{n} \leqslant u}^{\prime}\left(\phi_{1}\left(0 \mid x, \lambda_{n b}\right) R_{1 .}(b ; n)+\phi_{2}\left(0 \mid x, \lambda_{n b}^{\prime}\right), \cdot\right. \\
& \left.\times R_{12}(b ; n)\right), \tag{9.8}
\end{align*}
$$

where the dash denotes that the terms with $\lambda_{n b}=0$ or u are halved. Two cases arise according as $D(b ; \lambda)$ has a simple or a double zero at $\lambda=\lambda_{n b}$.

CASE I. Let $D(b ; \lambda)$ have a double zero at $\lambda=\lambda_{\text {nb }}$. Then from (9.8) and (2.11)

$$
\begin{align*}
W_{1}(b ; & x, u) \\
= & \sum_{0 \leqslant \lambda_{n i} \leqslant u} R_{11}^{1_{11}}(b ; n) \psi_{n}^{(1)}(b ; x) \\
= & \sum_{0 \leqslant \lambda_{n b} \leqslant u} R_{11}^{1_{11}}(b ; n)\left(A_{n}\left(A_{n}^{2}+B_{n}^{2}\right)^{-\frac{1}{2}} \psi_{n}^{(1)}(b ; x)\right. \\
& \left.+B_{n}\left(A_{n}^{2}+B_{n}^{2}\right)^{-\frac{1}{2}} \psi_{n}^{(2)}(b ; x)\right) \\
= & \sum_{0 \leqslant \lambda_{n \varepsilon} \leqslant 4} R_{11}^{1_{11}}(b ; n) \psi_{n}(b ; x), \tag{9.9}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{n}=\left\langle\psi_{n}^{(1)}(b ; x), \quad \psi_{1}(b ; x, \lambda)\right\rangle=R_{11}^{1}(b ; n) /\left(\lambda-\lambda_{n b}\right) \\
& B_{n}=\left\langle\psi_{n}{ }^{(2)}(b ; x), \quad \psi_{1}(b ; x, \lambda)\right\rangle=0
\end{aligned}
$$

CASE-II. Let $D(b ; \lambda)$ have a simple zero at $\lambda=\lambda_{n b}$. Then from (9.8), (2.9) and (2.10)

$$
W_{1}(b ; x, u)=\sum_{0 \leqslant \lambda n b \leqslant u} R_{11}(b ; n) \psi_{n}(b ; x)
$$

which is of the same form as (9.9). Hence if $u>0$

$$
\begin{equation*}
\left\|W_{1}(b ; x, u)\right\|=\sum_{0 \leqslant \lambda n b \leqslant u}^{\prime \prime} R_{11}(b ; n) \leqslant \rho_{11}(b ; u) \tag{9.10}
\end{equation*}
$$

where double dash denotes a factor $\frac{1}{4}$ at the ends. Therefore, if $c<b$

$$
\left\|W_{1}(b ; x, u)\right\|_{0, c} \leqslant \rho_{11}(b ; u) \leqslant K(u),
$$

where K is independent of b and c. Making first $b \rightarrow \infty$ and then $c \rightarrow \infty$ we obtain

$$
\begin{equation*}
\left\|W_{1}(x, u)\right\|_{0, \infty} \leqslant K(u) \tag{9.1I}
\end{equation*}
$$

and similatly if $u<0$.
Again

$$
\begin{aligned}
W_{2}(b ; x, u) & =\sum_{0 \leqslant \lambda_{n b} \leqslant x}^{\sum_{1}}\left(\phi_{:}\left(0 \mid x, \lambda_{n b}\right) R_{21}(b ; n)+\phi_{2}\left(0 \mid x, \lambda_{n b}\right) R_{22}(b ; n)\right)_{\ddots} . \\
& =\sum_{0 \leqslant \lambda_{n b} \leqslant n}^{\sum_{22}} R^{\frac{1}{2}}(b ; n) \psi_{n}(b ; x)
\end{aligned}
$$

by (2.9) and (2.10) if $\lambda_{n b}$ is a simple zero of $D(b ; \lambda)$.

If $\lambda_{n b}$ be a double zero of $D(b ; \lambda)$, we have

$$
\begin{aligned}
W_{2}(b ; x, u)= & \sum_{0 \leqslant \lambda_{n b} \leqslant u}^{\prime} R_{22}^{\frac{1}{2}}(b ; n)\left(A_{n}\left(A_{n}^{2}+B_{n}^{2}\right)^{-\frac{1}{2}} \psi_{n}^{(1)}(b ; x)\right. \\
& \left.+B_{n}\left(A_{n}^{2}+B_{n}^{2}\right)^{-\frac{1}{2}} \psi_{n}^{(2)}(b ; x)\right) \\
= & \sum_{0 \leqslant \lambda_{n b} \leqslant u} R_{22}^{\frac{1}{2}}(b ; n) \psi_{n}(b ; x)
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{n}=\left\langle\psi_{n}^{(1)}(b ; x), \psi_{2}(b ; x, \lambda)\right\rangle=R_{21}(b, n) \left\lvert\, R^{\frac{1}{11}}(b ; n)\left(\lambda-\lambda_{n b}\right)\right. \\
& \dot{B}_{n}=\left\langle\psi_{n}^{(2)}(b ; x), \psi_{2}(b ; x, \lambda)\right\rangle=-\left\{R_{11}(b ; n) R_{22}(b ; n)-R_{12}^{2}(b ; n)^{2}\right. \\
& R_{11}^{1}(b ; n)\left(\lambda-\lambda_{n b}\right)
\end{aligned} .
$$

The analysis now proceeds as in the case of $W_{1}(b ; x, u)$ and first part of the lemma follows. Let $\operatorname{Im}(\lambda)>0$. Then

$$
\begin{aligned}
& \left\langle\left(W_{1}\left(b ; x, u_{2}\right)-W_{1}\left(b ; x, u_{1}\right)\right), \psi r(b ; x, \lambda)\right\rangle \\
& =\sum_{u_{1} \leqslant \lambda_{n b} \leqslant u_{2}}^{\dot{S}}\left[R_{11}(b ; n)\left\langle\phi_{1}\left(0 \mid x, \lambda_{n b}\right), \not \psi_{r}(b ; x, \lambda)\right\rangle\right. \\
& \quad \\
& \left.\quad+R_{12}(b ; n)\left\langle\phi_{2}\left(0 \mid x, \lambda_{n b}\right), \psi_{r}(b ; x, \lambda)\right\rangle\right] \\
& = \\
& \sum_{u_{1} \leqslant \lambda b b} \sum_{u_{2}} R_{1 r}(b ; n) /\left(\lambda-\lambda_{n b}\right)=\int_{u_{1}}^{u_{2}} d \rho_{1 r}(b ; t) \mid(\lambda-t)
\end{aligned}
$$

by arguments similar to those leading to (7,2). Hence

$$
\begin{align*}
& \sum_{r=1}^{2}\left[\left\langle\left(W_{1}\left(b ; x, u_{2}\right)-W_{1}\left(b ; x, u_{1}\right)\right), \psi_{r}(b ; x, \lambda)\right\rangle\right] \\
& =\sum_{r=1}^{2} \int_{u_{1}}^{u_{2}} d \rho_{1 r}(b ; t) \mid(\lambda-t) \tag{9.12}
\end{align*}
$$

From (9.5), (9.10) and the Schwarz inequality for vectors, we obtain

$$
\lim _{b \rightarrow \infty}\left\langle W_{1}(b ; x, u), \quad\left(\psi_{r}(b ; x, \lambda)-\psi_{r}(x, \lambda)\right)\right\rangle=0 .
$$

Also, since $W_{1}(b ; x, u) \in L^{2}[0, \infty)$ for some b-sequence and

$$
\begin{aligned}
& W_{1}(b ; x, u) \rightarrow W_{1}(x, u) \in L^{2}[0, \infty) \\
& \lim _{u \rightarrow \infty}\left\langle\left(W_{\mathbf{1}}(b ; x, u)-W_{1}(x, u), \quad \psi_{r}(x, \lambda)\right\rangle=0\right.
\end{aligned}
$$

Hence

$$
\sum_{r=1}^{2}\left[\left(\left(W_{1}\left(x, u_{2}\right)-W_{1}\left(x, u_{1}\right)\right), \quad \psi_{T}(x, \lambda)\right\rangle_{0, \infty}\right]=\sum_{r=1}^{2} \int_{u_{1}}^{w_{2}} d \rho_{1 r}(t) /(\lambda-t)
$$

Therefore

$$
\begin{gathered}
\sum_{r=1}^{2}\left[\left\langle\left(W_{1}\left(x, u_{2}\right)-W_{1}\left(x, u_{1}\right)\right), \int_{w_{1}}^{v_{2}}-\operatorname{In} \psi_{r}(x, \mu+i v) d \mu\right\rangle_{0, \infty}\right] \\
\quad=\sum_{r=1}^{2} \int_{u_{1}}^{u_{2}} d \rho_{1 r}(t) \int_{v_{1}}^{v_{2}} v d \mu /\left\{(\mu-t)^{2}+v^{2}\right\} .
\end{gathered}
$$

Kaking $v \rightarrow 0$, using the relations (6.7), (7.5) on the left hand side and he relation (3.11) on the right hand side, we obtain

$$
\left.\begin{array}{rl}
\sum_{r=1}^{2}[& \left.\left[\left(W_{1}\left(x, u_{0}\right)-W_{1}\left(x, u_{1}\right)\right), \quad\left(W_{r}\left(x, v_{2}\right)-W_{r}\left(x, v_{1}\right)\right)\right\rangle_{0, \infty}\right] \\
& =\sum_{r=1}^{2} \int_{w_{1}}^{w_{1}} d \rho_{1 r}(t) \\
\quad=0 & \left(w_{1}<w_{2}\right) \\
& \left(w_{1} \geqslant w_{2}\right)
\end{array}\right\} .
$$

For the justification of the limiting process under the sign of integration, ve note that

$$
\int_{0}^{\sigma}-\operatorname{Im} \psi_{r}(x, \mu+i \delta) d \mu=x_{r}(x, \sigma+i \delta) \epsilon L^{2}[0, \infty)
$$

or $\delta=\delta_{1}, \delta_{2}, \delta_{3} \ldots \quad$ and as $\delta \rightarrow 0, \quad \chi_{r}(x, \sigma+i \delta) \rightarrow \chi_{r}(x, \sigma) \in L^{2}[0, \infty$ imilar arguments apply when we start with $W_{2}(b ; x, u)$ and (ii) follows.

We now start for the reverse transform by considering two column ectors $F(u)$ and $G(u)$ defined as follows:

$$
\begin{aligned}
& F(u)=\left\{M_{1}, M_{2}\right\} \text { in } u_{1} \leqslant u \leqslant u_{2} ; \\
& G(u)=\left\{N_{1}, N_{2}\right\} \text { in } v_{1} \leqslant v \leqslant v_{2} \\
& F(u)=\{0,0\}=G(u) \text { otherwise },
\end{aligned}
$$

here M_{1}, M_{2}, N_{1} and N_{2} are constants.
The reverse transforms of $F(u)$ and $G(u)$ respectively are then given by

$$
\begin{aligned}
f(x) & =\sum_{r=1}^{2} \int_{-\infty}^{\infty} \phi_{r}(0 \mid x, u)\left(F(u), d \rho_{r}(u)\right) \\
& =\sum_{r=1}^{2} \sum_{s=1}^{2} M_{r} \int_{u_{1}}^{m_{2}} \phi_{S}(0 \mid x, u) d \rho_{r S}(u) \\
& =\sum_{r=1}^{2} M_{r}\left(W_{r}\left(x, u_{2}\right)-W_{r}\left(x, u_{1}\right)\right)
\end{aligned}
$$

and

$$
g(x)=\sum_{r=1}^{2} N_{r}\left(W_{r}\left(x, v_{2}\right)-W_{r}\left(x, v_{1}\right)\right)
$$

Hence

$$
\left.\begin{array}{rl}
\langle f, g\rangle_{0, \infty}= & \left\langle\sum_{r=1}^{2} M_{r}\left(\dot{W}_{r}\left(x, u_{2}\right)-W_{r}\left(x, u_{1}\right)\right), \sum_{s=1}^{2} N_{s}\left(W_{s}\left(x, v_{2}\right)\right.\right. \\
& \left.\left.-W_{s}\left(x, v_{1}\right)\right)\right\rangle_{0, \infty} \\
= & \sum_{r=1}^{2} \sum_{s=1}^{2} M_{r} N_{s} \int_{w_{1}}^{w_{2}} d \rho_{r s}(t) r \tag{9.13}\\
=0 & \left(w_{3}<w_{2}\right) \\
=0 & \left(w_{1} \geqslant w_{2}\right)
\end{array}\right\}
$$

by (9.7), whare $w_{1}=\max \left(u_{1}, v_{1}\right), w_{2}=\min \left(u_{2}, v_{2}\right)$ are the points of continuity of $\rho_{r s}(t)(r, s=1,2)$. Also

$$
\left.\begin{array}{rlrl}
\langle F, G, d \rho\rangle & =\sum_{r=1}^{2} \sum_{s=1}^{2} M_{r} N_{s} \int_{w_{1}}^{w_{1}} d p_{r s}(t) & & \left(w_{1}<w_{2}\right) \tag{9.14}\\
& =0 . & & \left(w_{1} \geqslant w_{2}\right)
\end{array}\right\} .
$$

It fullows from (9.13) and (9.14) that the Parseval formula

$$
\left\langle F, G, d_{f}\right\rangle=\langle f, g\rangle_{0, \infty}
$$

holds in this case.
Thus, defining a step-vector as one each of whose components is a step function, we obtain, by addition of vectors, such as $F(u)$ and $G(u)$ above, the Parseval formula when $F(u)$ and $G(u)$ are any step-vectors with two components having their steps at the points of continuity of ($\left.\rho_{\tau s}(u)\right)$, and $F(u)=(0,0)=G(u)$ outside finite intervals. Now, let $F(u)$ be any vector of \mathcal{L}^{2}. Then we can define a sequence of step-vectors $F^{(n)}(u)$, each of the previous type, such that

$$
\left\|F-F^{(n)}, d \rho\right\| \rightarrow 0
$$

Let $f^{(n)}(x)$ be the reverse transform of $F^{(n)}(u)$. Then $\left(f^{(m)}(x)-f^{(n)}(x)\right.$ is the reverse transform of $\left(F^{(m)}(u)-F^{(n)}(u)\right)$, and

$$
\left\|f^{(m)}-f^{(n)}\right\|_{0, \infty}=\left\|F^{(m)}-F^{(n)}, \dot{d} \rho\right\| \rightarrow 0
$$

as m and n tend to infinity independently of each other.

Hence $f^{(n)}(x)$ converge in mean to $f^{\prime}(x)$, say. Then $f(x)$ is the reverse transform of $F(u)$, and

$$
\begin{equation*}
\|F, d \rho\|=\|f\|_{0, \infty} \tag{9.15}
\end{equation*}
$$

phich may be termed 'reverse Parseval formula'.
It follows from the arguments used in $\$ 4$ that the reverse transform defined in the above manner is equal almost everywhere to that defined in 84.

Theorem (9.2). If $F(u)$ is a given two component column vector of $\mathscr{L}^{2}, f(x)$ is its reverse transform, and $H(n)$ is the transform of $f(x)$, then $H(u)$ is equivalent to $F(u)$ in the sense that

$$
\begin{equation*}
\left\|F-H, d_{\rho}\right\|=0 \tag{9.16}
\end{equation*}
$$

Proof: Let

$$
F_{r a}(u)=\left\langle\phi_{r}(0 \mid x, u), f(x)\right\rangle_{0, a} .
$$

Then the reverse transform of $F_{a}(u)=\left\{F_{1 a}(u), F_{z a}(u)\right\}$ is $f(x)$ in $[0, a]$ and $\{0,0\}$ in $[a, \infty)$. Therefore the reverse transform of $\left(F(u)-F_{a}(u)\right)$ is $\{0,0\}$ in $[0, a]$ and $f(x)$ in $[a, \infty)$.

Hence, by the reverse Parseval formula (9.15)

$$
\left\|F-F_{a}, d_{p}\right\|=\|f\|_{a, \infty} .
$$

Therefore $F_{\mathfrak{a}}(u)$ converges in mean with respect to $\rho(u)$ to $F(u)$. Further, by the arguments of $\S 4, F_{a}(u)$ converges in mean with respect to $\rho(u)$ to $H(u)$.

Hence (9.16) follows.
Combining the relevant results of $\S 4$ and $\S 9$, we obtain the following:
Theorem (9.3). A necessary and sufficient condition that $f(x) \in L^{2}$ is that $F(u) \in \mathcal{C}^{2}$.

Materials of the present paper are taken from the author's $\mathrm{Ph} . \mathrm{D}$. thesis ${ }^{9}$ Written under the supervision of Dr. N. K. Chakrabarty, to whom the author expresses his deep gratitude.

S. Tiwari

References

1. Chakrabarty, N.K. $\begin{aligned} & \text { Some problerns in eigenfunction expansions (1). Quart. J. } \\ & \text { of Math. (Oxford), 1965, 16 (2), 135-150. }\end{aligned}$
2. Kodaira, K.
3. Titchmarsh, E. C.
4. Chakcabarty, N. K.
5. Hardy, G. H., Littlewood, J. L, and Polya, G.
6. Levinson, N.
7. Everitt, W. N.
8. Bhagat, B.
9. Tiwari, S.

On ordiuary differential equations of any even order and the corresponding eigenfunction expansion. Amer. J. Math, 1950 , 72, 502-544.
Eigenfunction Expansions Associated with Second-order Differential Equations, Part I, 2nd ed., Clarendon Press, Oxford 1962.

Some problems in eigenfunction expansions (IIT), Quan. J. of Math. (Oxford), 1968, 19 (2), 213-224.

Inequalities, Cambridge University Press, 1952.
The expansion theorem for singular self-adjoint difieratial operator. Amn. Math., 1954, 59 (2), $300-315$.
Fourth order singular differential equations, Mah. Ann, 1963, 149, 320-340.
A Thesis for the Degree of Doctor of Pkilosophy, (unpublshei), Patna University, 1966.
On Eigenfimetion Expansions Associated with Differentiol Equations, Thesis (unpublished), University of Calcutta. 1971.

