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dz this paper the uuthor studies a transform zheory based on the solutions c f  
the dijjerential systcr~z 

(L  - 11) 4', = 0, 

where 

rind 4 is a two conzponenf colnrn~z vector fzmction. 

A pair of solutions of the above system in thc interval [O, b] containing scalars 
!,,(A) (r, s = 1, 2) is obtained. A matrix (p, ,  (A)), (r, s = 1,2) consisting ofstep-func- 
lions is defined with the help of residues of I ,  (1.). The expansion formula and Par- 
seml formula are then expressed in the form of Stielte's integrals involving the fmc- 
lions p,,. Further results arc first obtained in the interval [0, b] and then b is made 
lo fend to infinity for tlze study of the singular case [O, co). The transform 
"a) = {F1, F,)  o f f  ( x )  -- { f , ,  f ,) and the reverse transform f (x)  of F(u)  are 
obtained as 

resPectzveb, where 4, (0 I x ,  a), (r ; 1, 2)  are the boundary condrtion vectors at  
%'O and p, denotes the 7% column of (p,,(u)). Agoodntmber of theorems are 
Proved which ultzmatcly lead to the following: 

Theorem. A necessary and suficient condition that f EL' is that F E  ka. 
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Some of the results obtained are generalisations of tlzose of Titcjmarsh8, 

Key words: Boundary condition vectors, Bilinear concomitant, Wronskian 
&solution, residue, orthonormal, singular surface, transform, reverse transform: 
convergence in mean. 

The object of th.is paper is to  develop a transform theory base6 on the solu. 
tions of the differential system 

(L - XI)+ = 0, (1.1) 
where 

Q = 4 (x) = {LL (x), v (x)} is two component column vector; A is a v&able 
parameter real o r  complex; P (x), q(x) and (x) arc all real valued and 
continuous functions of x th.rough.out the interval [ 110, 611 1 and b will be 
ultimately made to  tend to infinity. The boundary conditions are 

' j  = 1, 2 ;  accents denoting differentiation with respect to x, and the selfs 
adjointness conditions are given by 

2. NOTATIONS AND PRELIMINARIES 

If + j  = {uj, vj} and 4 k  = {uk. VJC} be two column vectors, then we define 
their ' Bilinear Concomitant ' as 

We repiesent, after Chakrabartyl, any vector 4 (x) whose component 
together with their first derivatives assume prescribed values at  x = f bY tbc 
symbol d ( E  / x) = {u (t / x), v (I j x)}. It follows, in usual manner, that 
t h e  exist vectors + j (0 j x, A), j = 1, 2 ; 4 ( b  1 x, A), k = 3, 4, which are 
solutions of (1.1) and are such that 
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uj(0 10,A) =aj,;u'j(O 10, A) = --ajl;vj(O I0,A) =aj,; 

v'j (0 10, A) = - aj3, (j = 1,2); uk ( b  I b, A) = bj , ;  

u'k (b  1 6, A)  T= - bjl ; v k  ( b  I b, A) = bjq; 
u'k (b / b, A )  = - bj, (k  = 3, j = I ; kc = 4, j= 2). 

These vectors will be called the ' boundary condition vectors ' at x = O  
x = b respectively. 

I f  4 - 4  (6 1 x, A) be any vcctor satisfying (1 .3) and + j ,  +k be the 
boundary condition vectors then (1.3) and (1.4) respectively may be 
expressed in the following altzrnative ' Kodaira form '2 : 

14,i jI  = o ,  [$,J.kI - 0 (2.1) 
and 

141, $ 2 1  0, [#~3,4141 = 0. ( 2 . 2 )  

If we denote by D (A) the Wronskian of the boundary condition vectors 
then 

D ( A )  = I$,,$J [+z,.bnl - [ ~ 1 , $ 4 l  [42,4:J (2.3) 

1s an entire funct~on of A, ~ndepenclent of x and takes real valucs when X 
1s real. 

For column vectors y and z ;  (y, z)  denotes yTz ;  (y,  Z)&= stands for 

2 Sd FT (u) Gs (u) dKj-8 (u) = f Fr (u) (G (u), dK, (u)) 
.El %=I . r=x o 

and 11 K W l , d  for (F, F, d f ~ ) ~ , d .  

Further (F,  G, dK)-,, , ; / /  F, dK 1 1  _,,, are denoted by (F, G, dK) ; 11 F, dKll 
respectively. Let 

h (x,  A) =([42, 4.4)~ $3 ( b  1 X ,  A) - [$z ,$J  $4 (b I X ,  A))/D (A) 
$2 (x* 4 = (&, $& $& @ 1 x, 4 - [ $ I ,  4 J  4 4  @ 1 x, 4 ) / D  (All' (2'4) 



Corresponding to the boundary condition vectors dj (0 1 x, A), j = 1,2, 
let us choose two solutions 6k = 61, (0 I x, A) (k = 1, 2) of (1 .l) such that 

[ 4 ~ ,  &] = 6jk ( j ,  k = 1, 2) and h 0 2 1  = 0. (2.5) 

Then 

Also, l,, (A) have an infinite number of simple poles a t  the zeros of D(h), 
If An be a simple pole of Zrs (A) with residue RTs (n), then we have to consider 
the following cases: 

Crrse I. Let A, be a simple zero of D (A), then 

and the corresponding normalised eigenvector, say #, (x), may be expressed 
as 

2 

#n (4 = Z R%T (n) 4~ (0 1 X, &I). (2.10) 
I-1 

and. there are two orthogonal normalised eigenvectors, say 4%"' (x)  and 
#n '" (x), which may be expressed as 

In this case, any suitable linear combination of &(l) (x) and 4nc" (2) may 
be taken as the normalised eigenvector. We choose this vector as follows: 
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Let f (x) be any two colnpotlcnt colun~n vector such that 
(f ( x ) , f ( x ) ) E  L[O,'!'l. Let 

An=(#n(",f) ,  B n ~ ( $ n ( " , , / ' ) ,  

Then 
#n (x) = {Anl(An2 f BnB)'? $ n") ( x )  + {Bnl(An2 + Bn2)*}4n(') (XI 

(2.12) 
is our normalised eigenvector in this case. 

The eigenvectors $n (x) given by (2.10) or (2.12) form an orthonormal system 
of vectors. Iff (x) possesses continuous derivatives upto the second order 

in [0, b], satisfies the boundary conditions (2.1) and c,, & denote the 
Fourier coefficients of f(x) and L f (x) respectively, then 

We now extend the finite interval [0, b] to the infinite interval [0, w), 
keeping in view that the functions p (x), q (x) and r (x) in the operator L 
are well behaved at all points of the infinite interval [0, w). We tackle the 
problem of this extension by considering the problem of the interval [O, b] 
(to be referred to as the 6-case) and then making b + w. For this pur- 
pose, we assume that the conditions of the previous section remain valid 
for every b > 0 and we introduce 6 as a parameter in the entitiee of 52 to 
enable us to study the implications of making b +oo. For example, by 
D(b, h) we mean D (A)  defined by (2.3) and similarly for other entities. 
Some of the results obtained here are generalisations of those of Titchmamh 
in Chapter VI of Ref. 3. 

Let bb denote the eigenvalues for the b-case. Let us define a matrix 

consisting of non-decreasing step-functions pTs (b, t), (r, s = 1, 2) which 
the following conditions : 

(b,0) = 0 and prs (6, t )  increases by RTs (b, n) when t increases through 
the value &; oth.erwise p,, (b, t )  remains constant. The value at the 
discontinuity is given by 

PPs (b; A n d  = 3 [prs (b; hnb - 0) $. Prs (b; hnb f 0)1. 



Let f (x) = { f l , . f  be integrable over 10, b]. Let 
F (b ; u) = {F, ( b  ; u), F, ( b  ; u)). 

where 
FT ( b ; ~ )  = ( & ( o  I x , u ) , J ' ( x ) )  ( r = 1 ; 2 ) .  

The expansion formula may be expressed as 

The Parseval formula may be written as 

The Parseval formula foi f (x )  = L f ( x )  becomes 
2 2 

!I~"II = inb [ 2 Fr ( b ;  Xnb) Fs { b ;  Anb) R T ~  ( b ;  n)l 
*=-00 1.-1 1=1 

= ll uF(b;  4, dp  ( b ;  u) ll (3.5) 

If hnb is a double zero of D (6, A) and the corresponding norinalised eigen- 
vector is given by (2.12), then the Fourier Coefficients of f' ( x )  are given 
by 

cnb = (AnZ -t BnZ)*, 
where 

An = R;? ( b ;  n) 2 R,, ( b ;  n) F, ( b ;  hnb) 
.-1 

Bn = - R;! (b ; n) [R,, ( b  ; n) R,, (b ; n) - RIz2 (b  ; n)]f Fz (b ;  And. 
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tt be easily verified thal even in this case the expansion formula, tl;c 

parsevat formula and the Paraeval formula for f ( x )  reduce to (3.3), (3.4) 
and (3.5) respectively. 

THEOREM (3 .I). The functions prs (b  ; u) (r ,  s= 1, 2) are bounded over 
,,y fixed finite u-interval, independcnlly of b. 

Proqf: Since R f  r (b ;  n)l(A - A,b) and R*,, (b;  n)/(X - Anb) are the 
Fourier coefficients of (6 ;  x, A) and (b;  X, A) (r, s = 1,  2) respectively, 
we obtain 

ca 

( & (b ; s, A), (b  ; x, A) ) = .Z Rys ( 6 ;  a)/{@ - A,# i v2] 
ern-c.3 

if D ( b ;  A) has a simple zero at A = Xnb, (A = p 4- j v ) ;  and 

if D (b, A) has a double zero at h = Anb. 

Therefore, from (2.8), we get 

By arguments similar to thosc of Chakrabarty4 and Titchmarshvt follows 
that I,, (b; A) are bounded as b -t co through a suitable seqnence if v # 0. 
Hence, putting p = 0 and v = 1 in (3.6), we obtain 



In view of the above theorem, we can apply Hclly's selectmn theorem 
to define a set of functions PTS ( 1 ~ )  (r,  - 1 ,  2), u > 0,  such slat 
prs ( b ,  u) --prs (u) as b -> oo through a .;utable sequence, say w ht 
(q, u2) be any lin~te rnie~val and J (u)  = {&,a any ~ o n t r ~ ~ ~ o u ~  vector, 
then as b i cc we obtam from Helly-Bray theorem 

? (J. (4 dpr ( b ;  u)) + '? (f ( c ~ ) ,  d ~ r  ( ~ 1 ) .  

Further, let w1 = max (u,, v,) and w, = min (u, . v,), where w, and I.", are 
the points of continulty of p,, (u). Then as v - > O  

v Q  

Y, 0 otherwise 

Let f (x )  = {h, j,) be the Integral of an absolutely contmuous vector and 
(f "(x)), f " (x)) E L [O, c]. Let f (n) = {O, 0)  tor x 2 c and let f (x)  sat~sfj 
the boundary cond~tro~~s of our problcm at x -= 0. Let 

F(z1) = (u), F, (u)}, 
wherz 

FT ( 4  = (4, (0 I x, u), f (a) )o, ,. (4.1) 

Then, if b > c, we obtain 

ll F @ ;  u), dp ( b ;  4 Il-,, -U 4- ll F ( b ;  4, dp ( b ;  u) I/,, 
< U-a [I/ u F @ ;  u), dp ( b ;  U )  I IL, u + /I uF(b;  u), dp (b ;  ull~,.l 

<U-211~~(b;u),d~(b;u)! l< ~ - 2 ~ 1 ~ 1 1 ~ ,  
since (3.5) holds in this case. Also, for fixed U and b >c  

II F ( b ;  u), dp ( b ;  u  l l-, u = ll F(u),  d, ( b ;  u) !I-, u +ll p(t0, dp(u) II-U.~ 

by making b i oo through a suitable sequence. First making b + w  
for fixed U and then making U -+ w, it follows that 

II F(b ;  4, dp ( b ;  u) I1 +Il F ( 4 ,  dp (4 I/. 
Hence 

ll f Ilo,, = ll F(u),  dp (u) 1 1  
for our special class of vectors f (x). 
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xow, let f (x) be any two component column vector such that (,f (x), J (x)) 
L [ O ,  CO). Then a sequence of vectors f (") (x) = { f ( x ) , f  2 ( n )  (x)] can 

be determined such th.at each f In'  (.\.I bclongs to the special claes and th.at 

Then, from (4.2) we obtain 

11 (FIm1 (u) - FLn' (Eo) ,  4 / I  = / I  f Irn1 -f 110, .. 
which tends to zero as m and n tend independently to infinity. Hence the 
sequence of vectors FIeJ (u) converges in mean with respect to p (u), say to 
F(u), leading to 

I1 F(4 ,  dp (4 ii < a 
and 

lim 11 (F - F(n)) ,  dp / /  = 0. 
n+aO 

Further 

as n +- a, in view of the above results. 
Id H ~ d y ,  Littlewood and Polya5, 29, p. 331. Hence 

We call the vector F (u) the Transform of f (x). 



~f g (x )  = {g, (x ) ,  g, (x)]  be another vector of LYO, oo) and G (u) be its 
transform, then F(u)  + G ( u )  is the transform o f f  ( x )  + g ( x )  and using 
(4.4) we obtain 

( F , G , d p ) = ( f , g ) o , -  (4.5) 

THEOREM (4.1). Let f  ( x )  = (h f ;x) , f  2 E L  [o, w ) ,  and let 

Fa (u)  = {Fm (4. Fza (u)13 
where 

FTu (u) -: ( 4 7  (0 I X, ~ ) $ f  ( 4  )a, a, (r = 1, 2). (4.6) 

Then Fa (u)  converges in mean with respect to p (u) to F(u), as a 4 W, i.e., 

I ] F ( ~ ) - - F a ( ~ ) , d p ( u ) l /  +O as a + m .  (4.7) 

Thus F(u)  - Fa (u)  is th.e transform o f f  ( x )  in [a, w )  and that of {0, 0) in 
[O,a]. Hence we obtain from (4.4) 

I 1  F ( 4  - Fa (u), 4 (u) I/ = I l  f IIa, m ,  

where the right hand side tends to zero as a + w. 

THEOREM (4.2). Let F ( u )  be the transform o f f  (x ) ,  where 

( f ( x ) , f ( x ) )  E L [ O , 4  and let 

Then as a + oo, f ( x )  is the limit in man of fa(x);  

i.e., 

Ilf ( x )  - f ~ ( x ) 1 / 0 , ~  +0, as a + w. (4.9) 

Proof: Let G (u) be the transform of g (x ) ,  where ( g  (x),  g(n)) E L [0, XJ 
and g (x)  = (0, 0) for x > X. Let Ga (u)  = {GIa (u), Gza (u)}, where 

G a  (u) = ( 4r (0 I x, 4, g )a, a = ( 47 (0  I X ,  u), g (x )  )a, X, 

(a > X),  (r = I t  2) 

If G (u) = {GI (u), G, (u)), then we obtain from (4.6) 



0 1 1  the Tl~eory of Trm~forms ( I )  

(F. G, 4 - a , a .  ( 4  .lo) 

Making X arbitsai-ily large 

l l f  ( x )  - f a  ( x )  llo,,< II 4 ll-,,-a + !I .F, dp lla,.. 
which yields the desired result. 

5. ANALOGY WITH FOURIER TRANSFORMS 

(I) Let X be fixed. Then 

T f ( x )  dx = lorn SXfa ( x j  dx 
o .+a o 

- lim 2 (F(u) ,  dpT (u))  i4, (0 [ x ,  u) dx 
.-)oo r - l  -0 



where 

6.  THE VECTORS XT (x, A), r =1,2. 

By arguments similar to those of Chakrabarty4, it follows from (2.6) by 
making b -+ oo tbrough a suitable sequence, that 

* 
#k (& A) = mkT (A) 47 (0 I x, A) + ok (0 1 x, A), ( k  = 1, 2) (6.1) 

r-1 

the convergence to limits of various entities being unifmm. Also 

11 #k (x, A) 110,- < - mkk (A) I v .  (6 9 

Thus #k (x, A) EL [0, m). Adopting the analysis of E ~ e r i t t , ~  we obtain 

( 1  z 0 )  - ( A  + 0 (Im (A) + 0). (6.3) 

The following Lemma has been obtained by Bhagat.8 

Lemma (6.1). The matrix 

K(A) = (K,, (A)) = (lim fX- Im m,, 01. Jr iv) d p )  (6.4) 
U 3 9  0 
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ex;sts for real A ;  each KTS (A) is a function of bounded variation and 

K,., (A) = I,{KTs (A 3. 0) t KTS (A - 0)). (6.5) 

X 
lim I - 

Y-tO 0 

Further we note from (6.2) that - Jm ?+T (p f iv) > O  if v > 0 and 
therefore Krr (A) are non-decreasing functions of h (r = 1, 2). 

THEOREM (6.1). Let 

where r = I ,  2 and h is real. Then 

(xT (4 A), XT (x, A) E 4 10, m). 

Proof r If Anb be an eigenvalue and II., (b ;  x) be corresponding eigen- 
vector in the b-case, then 

Hence, if A = p i iv, thc Parseval formula yields 

If A = i, then the left hand side of (6.9) is bounded as b  -t. ca through a 
suitable sequence. Therefore 

If is real and lies in fixed interval, we obtain from (6.8) 

($n (b ; x), Sh Im &. (b ; x, p + iv) dp) = 0 (RbT (b  ; 4 I(A2nb $. 1)). 
0 

Hence using Parseval formula and then making b  + oo through a suitable 
Sequence, we obtain 



Finally, making v + 0 and using (6. G), we have 

which yields the desired result. 

7. RELATION BETWEEN Xr (x, U) and Wr (x, u) 

Making b -t oo through a suitable sequence and then L: -r min (3.8) 
it follows that 

The second term on the right hand s ~ d e  

= - I ,  d v - 1  

- 0, lf 1 = 2. 

The first term on the right hand bide is zero because (b ;  x, A)), (b;  x), 
#,'1) (6 ;  x) and '/'nL2' (b; X )  satisfy the same boundary conditions at x =  b 
and it follows from the expressions for 4, (0; x), ,hn('' ( b ;  x) and t /~, , '~)(b;x) 
that $r (0 I x, hnb) (u=l, 2) also satisfy the samc boundary conditions at x=b. 

Hence 

Tllereforc, the transform of ( 6 ;  x, A) in [0, b] is { l / (A  -- u), 01. 

Similarly the transform of $I, (b ;  x, h) ib [O, b] in {0, I l(h - u)). The 
formula (4 5), ihercfore, yields 
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Making 6 -z oo through a suitable sequence, we obtain 

where U > u, and - U <  y (q': 'Iitchmarsh3, p. 137). 

Making v -20 and using (3.11) the right hand side tends to 

where u, aud u, are the points of continuity of prs (u). 

Now, it follows from the definitions of functions Km (u) and PTS (u) that 

K (4 = njo ( 4  (7.4) 

Further 

Following Everitt7 and Bhagat8 we gel the generalization of WLY~'s 
circle obtained by Titchmarsh3 for our boundary value problem. We only 
mention the relevant results required for the purpose of our tranform theory 
and omit the details. Let us define 

ST (6, A, bjk) = Sr (b) = - i [A  (b, X, A), 4r (b, x, A)lx=b = 0 (8 .1)  



r = 1 , 2 .  W r  fixed b a n d  h = p f  iv (vf  0), as b. 3k V W ' ,  the points 
(I,,, I,,) describe a surface in the two-dimensional complex space, whose equa- 
tion is expressed as 

ST (b) = 0 (r = 1, 2). 

We call these surfaces tb.e singular surfaces of our problem. These surfaces 
are 'central surfaces ' which tend to a limit surface S, (m) = 0 as b + m, 
The surface ST (w) = 0 is also a central surface and I,, (b, A)+%, ( A )  as 
b -t oo through a suitable sequence; the point 

(mrl (A), m,, (4) E ST (a) = 0. 

~ e t  (M,, (b), M,, (b)) ( r  = 1, 2) denote the centre of the singular 
surface S, (b) = 0 in the two-dimensional complex space and let (zn, 2,~ 
be any point on this surface, then therange of the values of Z,, is completely 
determined by 

1 Zvs - MY 1 '  

(8.3 

where 

We define the following two classes of vectors: 

(ii) The class of vectors 

F(u) = {F, (M), F, (u)) E P~ if 11 F, dp Il < ( m. e.2) 
THEOREM (9.1). If F (u) E P2. Then it has a ' reverse trilnsfm' 

f (x)  E LZ. 
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pj-oof'l Let us define fu ( x )  by (4.8). Let 

,(x) = {gl (x), gz (x)} E L2 101 a and &' (x )  = {O,O) for x  > X, and let G (u) 
be its transform. 

Then the conditions leading to ( 4 . 1 0 )  are satisfied, and hence, if 
0~ a <  b, we obtain 

[((fa (x ) - fb  ( 4 ) .  g (x))o, x12< [il K d~ ll-a, -a 

+ I1 F, dp Ila, bl ll g ( x )  110, x. 

Putting g (x)  = fu ( x )  - f b  ( x )  in ( 0 ,  X )  and then making X+ co, we get 

Hence the sequence of vectors fa ( x )  converges in mean over [0, w), say, to 
f (x). Putting a = 0  and making b + oo in (9 .3 ) ,  it follows that 

f (x) is the reverse transform of F(u) .  

Thus, starting from a vector f ( x )  of L2 with transform F(u), it follows 
that F(u).has the reverse transform h (x )  such that f (x) and h (x)  are the 
limits in mean of the sequence of vectors fa ( x )  defined by (4 .8 ) .  Hence 

h (x)  = f ( x )  almost everywhere. 

Lemma (9.1) 

lim ll $T (b, x, 4 - 4~ (x, 4) II = 0  
6.)- 

(Im(h)f 0 )  as b -t oo through a suitable sequence. 

Proof: For simplicity we evaluate the limit when r = 1. 
We have 

If 41 and 4, E L2 [0, 00) then the right hand side tends to zero as b + oo 

through a suitable sequence, for IT, (6, A) -t m,, (A)  and the lemma follows. 
VJhen 41 and 4, both do not belong to LZ [O, m), using (8.2)  in (9.6), we 
obtain 



which tends to zero as b -t if 4, cE L2 [O, w), since (8.3) holds for all 
values of b > 0. Similarly 

where w,' =,max (u,, vl), -w, = min (u,, v,) are the points of continuity of 
PIS (4. 

Proof : Let 

R,, (b ; n)), (9. 81 

where the dash' denotes that the terms with Xnb = 0 or u are halved. TWO 
cases arise according as D (b ; A) h.as a simple or a double zero at X = bb. 

CASE 1. Let D (b ;  A) have a double zero at h = A,,,. Then from (!@) 
and (2.11) 

.. . , .-, f '  
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CASE-11. Let D ( b ;  A) have a simple zero at X = ,Anb. Then from 
(9.8), (2.9) and (2.10) 

Wi (b; X, U) = Z R+Ll (b ; n) 4n (b  ; X )  
04XnlCtl  

which i s  of the same form as (9.9). Hence if u > 0 

where double dash denotes a factor ) at the ends. Therefore, if c< b 

where Kis independent of b and c. Making first b  + oo and then C +- CQ 

we obtain 

11 wi (x, U )  Ho, ol < K(u) (9.1 1 )  

and similarly if u c 0. 



If ANb be a double zero of D ( b ;  A), we havc 

The analysis now proceeds as in the caae of W, (b;  x, u) and first part of 
the lemma follows. Let Im ( A )  > 0. Then 

Also, since Wl (b;  x, u) E L2 [O, W) for some b-sequence and 

WI (b ; X,  U) -t wl (x, U) F L2 [o, a), 
lim ((% (b ; x,u) - W, (x, u), tjT (x, A)) = 0. 
P + o o  
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Hence 
2 U, 

[((Wl (x, 4 - W I  (x, U L ) ) ,  $T (x, i)h, m] = 27 S dplr (t)/(h-t). 
,-x ,=I "I 

= j dp l r  ( t )  j vdp/{(p - t )2  $. YY. 
r- l  "1 

ming v 4 0 ,  using the relations (6.7), (7.5) on the left hand side and 
he relation (3.11) on the right hand side, we obtain 

:or the justification of the limiting process under the sign of integration, 
re note that 

or 6 = s 1 , ~ 2 , 6 ~ . . .  and as b + O ,  ~ , ( x , ~ $ . i h ) + ~ , ( x , o ) ~ L ~ [ O , w  
imilar arguments apply when we start with W, (b ;  x,  u) and (ji) follows. 

We now start for the reverse transfornl by considering two column 
ectors F(u) and G (u) defined as follows : 

G (u) = {Nl, N2} in v, < v < v 2  
F(u) = {0, 0) = G (u) otherwise, 

b e  M,, Mz, N1 and N, are constants. 
'he reverse transforms of F(u) and G (u) respectively are then given by 
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and 

by (9.7), whcre w, = max (u,, v3, w, =- min ( Z I ~ ,  v,) arc the points of conti- 
nuity of prs ( t )  (r, s = 1, 2). Also 

It f~l lows from (9.13) and (9.14) that the Parseval formula 

holds in this case. 

Thus, dcfining a step-vector as onc each of whose componctits is a step 
function, we obtarn, by addition of vectors, such as F(u)  and G(u)  above, 
the Parseval formula when F(u)  and G ( u )  are any step-vectors with two 
components having their steps at  the points of continu~ty of (p,, (u)), and 
F ( u )  = (0, 0) - G (u) outside finite intervals. Now, let F(u) be any vector 
of 8% Then we can define a sequence of step-vectors FLnJ (u), each of 
the previous type, such that 

as m and n tend to infinity indcpcndently of each other. 
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Hence f ("1 ( x )  converge in mean to f ( x j ,  say. Then f ( x j  is the reverse 
transform of F(4, and . , .  . . 

!! F, dp II llf 110, m (9.15) 

may be termed ' reverse Parseval formula '. 

~t follows from th.e arguments used in $ 4 that the reverse transform 
&hed  in th.e above manner is equ:rl ril~nosi everywhere to that Cefined 
in 8 4. 

THEOREM (9.2). Tf F ( u )  is a given two component column vccior 
of P ~ ,  f (xj IS its reverse transform, and H (rr) is the transform of f (x) ,  
then H(u) is equivalent to F(u)  in the sense that 

/ I F - H ,  dpII =0. (9.16) 

Then the reverse transform of Fa (u) = {F,, (u), EAa (u)) is f ( x )  in [0, a] 
and {0, 0) in [a, a ) .  Therefore the reverse transform of ( ~ ( u )  - Fa (uj) 
n {O, 0) in 10, U] and f ( x )  in [a, a). 

Hence, by the reberse Parseval formula (9.15) 

i l  F -  Fa, dp / I  = / I  J /la, ,. 

Therefore Fa (uj converges in mean with respect to p (u)  Lo F(u). Further, 
by the arguments of 5 4, Fa (uj converges in mean with respect to p (u) to 
H(4. 

Hence (9.16) follows. 

Combining the relevant results of 5 4 and 8 9, we obtain the following: 

A necessary and sufficient condition that f (x) E L2 

Materials of the preselrt paper a1.e taken from the author's Ph.D. tb.esiss 
under the supervision of Dr. N. K. Chakrabarty, to whom the 

author expresses his deep gratitude. 
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