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ABSTRACT

In this paper the author studies a transform theovy based on the solutions cf
the differential system
(L—AD ¢ =0,
where

= ddx® + p(x) r(x)
L= ( r(x) — d3dx® + g (:c))

wd ¢ is a two component column vector function.

A pair of solutions of the above system in the interval [0, b] containing scalars
L) (r,s = 1,2) is obtained. A matrix (p,, (%), (r, s = 1, 2) consisting of step-func-
tions is defined with the help of residues of 1,,(%). The expansion formula and Par-
seval formula are then expressed in the form of Stielte’s integrals involving the func-
tions py,. Further results are first obtained in the interval [0, b] and then b is made
to tend to infinity for the study of the singular case [0, co). The transform
F@) ={F, R} of £ (x) = {f1,fa} and the reverse transform f (x) of F(u) are
obtained as ’

Fo= T 65.0]x 05 (9 ax (r=1,2

ad

o= 2T 6,0]|x0F@de 6@

respectively, where ¢, (0| x, 1), (r=1,2) are the boundary condition vectors at
*=0and p, denotes the r* column of (py.(4)). A good mumber of theorems are
proved which ultimazely lead to the following:

Theorem. A necessary and sufficient condition that fel? is that Fe £%
501
IL8e~-16
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Some of the results obtained are generalisations of those of Titchmarsh

Key words: Boundary condition vectors, Bilinear concomitant, Wronskian
L2-solution, residue, orthonormal, singular surface, transform, reverse transform,
convergence in rmean. . !

1. INTRODUCTION

The object of this paper is to develop a transform thcory based on the solu.
tions of the differential system

(L — Al =0, Ly
where

Bt )
L= (e a)" (19

¢ =g (x) = {u(x), v (x)} is two component column vector; A is a variable
parameter real or complex; p(x), ¢(x) and 7 (x) arc all real valued and
continuous functions of x throughout the interval [([0, b} ] and b will be
ultimately made to tend to infinity. The boundary conditions are

ajy (0) + ajz ' (0) + a3 v (0) + a5, v (0) = 0}
bj u (B) + bijs ' (B) -+ bjs v (D) + by, v (B) =0

“j =1, 2; accents denoting differentiation with respect to x, and the selfs
adjointness conditions are given by

a3

yy Qg — (o Ay + Gug Gpg — G1q dag = 0} (14
byy bay — bia by + byg by — byy byy = 0f° '

2. NOTATIONS AND PRELIMINARIES

If ;5 = {u;, vs} and $x = {uk, vr} be two column vectors, then we define
their ¢ Bilinear Concomitant’ as

i = [ 0| |08 2 .

Wy el vy vk

We repiesent, after Chakrabarty®, any vector ¢ (x) whose component
together with their first derivatives assume prescribed values at x = £ by the
symbol ¢ (€[ x) = {u(£]x), v (£]x)} It follows, in usual manger, that
there exist vectors ¢;(0 |x, X),7 =1, 2; ¢5 (b | x, X), k = 3, 4, which art
solutions of (1.1) and are such that
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4 (0 [0,4) = ajp; w5 (0]0, 1) = — ajy ;9 (0] 0, ) = a3,;
50010, ) = — ajg, (=1, 2); ux (b | b, 2) = bjy;

Wi (b b, 2) =~ bji; vk (b | b, 2) = bjs;

v (BB A)=—buk=37=1 sk =4,j=2).

These vectors will be called the ‘boundary condition vectors’ at x =0
and x = b respectively.

Fé=¢ (] x,X) be any vector satisfying (1.3) and ¢;, ¢ be the
boundary condition vectors then (1.3) and (1.4) respectively may be
expressed in the following alternative ° Kodaira form *2:

4,651 =0, [¢,dxl=0 @.1

and
[$1, 21 =0,  [ds¢y] =0. 2.2

If we denote by D (A) the Wronskian of the boundary condition vectors
then .

D(X) =g b3l [¢s sl — [71, Pal [, 5] (2'3)
is an entire function of A, independent of x and takes real values when A
is real.

For column vectors y and z; (v, z) denotes " z; (¥, 2)o,z stands for
P02 dr, and [ ¥lloe for (r, Yoz = (FPow When y is  complex.
When x = b, {y,z) and || ¥ || stand for {y, 2)e,bp and || y flo,b respectively. If
F@) = {F, (), F, ()}, G() ={G, (), G, (w} and columns of

K (1) Ky ()

Kz (W) Ky ()
?Ie denoted by Ky () = {Kpy (), Kry W)}, ¥ = 1, 2, then (F, G, dK)c,a stands
or

I 3§ P G (w) dKrs (1) = § DJ‘! Fr ) (G (@), dKr ()

™=l =1 ¢
and || F, dKfc,q for (F, F, dK)c,q.
Further (F, @, dK)_,,, o5 | F, @K ||w,. are denoted by (F, G, dK); | F, dK|
respectively.  Let

b6, ) = ([de, d)) b2 (b | X, 1) — [ $al #a (0 | X, D)/D (A)} .49
Fo (6 0 == (s, $0)] 64 (0 | %, ) — [$1, $al #a (6 | %, VYD (VS
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Corresponding to the boundary condition vectors %3 (0 | x, A, 1—12
let us choose two solutions 8 = 65 (0 | x, X) (k= 1, 2) of (1.1) such that

o dil b3 Gk =1,2)  and  [65,0,] =0, 9
Then

Jes N = 3 b Wer © %)+ 060 | 5,2, 8
where

[ (5 0, 0 (0 | 35 W] = rs 0, (5 = 1, 2). e

R S = X

Also, ks (%) have an infinite number of simple poles at the zeros of D()
If A, be a simple pole of /s (A) with residue Rys (1), then we have to consider
the following cases:

Case I. Let My be a simple zero of D (1), then
Ryy (1) Rop (1) = R%; (m) = R%; (m) (2.9

and the corresponding normalised eigenvector, say ¢y (x), may be expressed
as

W@ = Z Rin@ér O] % M. @19

Case II. Let A, be a double zero of D (}), then
Riy (1) Rop () — Ryp® (1) = 1|(Jua oo — 112 > 0, 2.1
where
Lrs = (620 [ %, 0,450 [x, ) (ns=1,2)

and there are two orthogonal normalised eigenvectors, say #a™ (¥)and
Yn @ (x), which may be expressed as

Fn® () = R (1) £ Rir ) $r (O | %, 2n)
PP (x) = — Rzt (1) {Ryy () Ryy (1) — Ryp® W}F (0 [ % M)

In this case, any suitable linear combination of ¢, ¥ (x) and ¢q® (x) 0af
be taken as the normalised eigenvector. We choose this vector as follows:
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Iet f (x) Dbe any two component column vector such that

(f (), f(®)e L]0, £]. Let
An = (¥ ) Bu = ($a3, /).

Then
o () = {An/(An? + BuDE} $a® (X) + (Bu/(An® + BpDHPdhn™ (x)
(2.12)
is our normalised eigenvector in this case.

The eigenvectors ¢, (x) given by (2.10) or (2.12) form an orthonormal system
of vectors. If f (x) possesses continuous derivatives upto the second order

in [0, 8], satisfies the boundary conditions (2.1) and ¢y, én denote the
Fourier coefficients of f(x) and L f(x) respectively, then

(2.13)

Cp = An Cn.

3. THE MATRIX p ()

We now extend the finite interval [0, 4] to the infinite interval [0, o),
keeping in view that the functions p (x), ¢ (x) and r (x) in the operator L
are well behaved at all points of the infinite interval [0, oo). We tackle the
problem of this extension by considering the problem of the interval [0, b}
(to be referred to as the #-case) and then making & —>co. For this pur-
pose, we assume that the conditions of the previous section remain valid
for every b >0 and we introduce b as a parameter in the entities of §2 to
enable us to study the implications of making b ->co. For example, by
D(5,%) we mean D ()) defined by (2.3) and similarly for other entities,
Some of the results obtained here are generalisations of those of Titchmarsh
in Chapter VI of Ref. 3.

Let np denote the eigenvalues for the b-case. Let us define a matrix

PO 0=t = (e G 10D

cousisting of non-decreasing step-functions prs (5,7), (,s = 1,2) which
satisfy the following conditions :
p(,0)=0and pps (b, ) increases by Rrs (b, #) when z increases through
the value Anp; otherwise prs (b, ¢) remains constant. The value at the
discontinuity is given by

prs (b5 Mnp) = % [ors (B3 dnp — 0) + prs (05 Ant + O,
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Let f (%) ={f1./s be integrable over [0, b]. Let
F(b;u) = {F (b;u), Fy (b; w)}

where
Fr (b;0) ={(¢, 0 x,u).f (x)) (r=1,2). (3.1

Tet App be a simple zero of D (b; A), then the Fourier coefficients of f &)
are given by

2
enb = (g (B3x), [ (X)) = mzl' Ep® (b;0) Fy (5; 2mp). (3.2)
The expansion formula may be expressed as

F@ =3 cunln®:9)

= Z Z' S‘?Sr(olx Anb) Fs (B; Anb) Rys (B3 1)

n=—ca eml =1

i

25 T ¢r|x u) Fs (b3 u) dors (b3 1)

=1 g=1 —

;; i 32 (0 | %) ((F (B3 ), dor (B3 ). 6.3

i

The Parseval formula may be written as

I = E cinp = 2 2 2 Fr (5, Anb) Res (B 1) Fs (B Anb)

AE—=CO 1 gwy

= Il F (byu), do(bs )l (34
The Parseval formula for f (x) =Lf (x) becomes
1A = 2 At [2 z: Fr (b5 Anb) Fs(b; And) Rrs (53 1)]

= | uF(b; ), dp(b,u) Il ¢.9

I App is a double zero of D (5, ) and the corresponding normalised eigen-
vector is given by (2.12), then the Fourier Coefficients of f (x) are given
by

enb = (An®-F Ba2?,
where

2
An =R} (b;n) Z; Ry (b3 m) Fr (b3 Anp)
Bp = — R} (b3 #) [Ry (b; 1) Ryy (b5 1) — Rys® (b3 m) Fy (B3 wd):
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It can be easily verified that even in this case the expansion formula, thc
Parseval formula and the Parseval formula for f? 1x) reduce to (3.3), (3.4
and (3.5) respectively.

TaporeM (3.1). The functions pyg (b;u) (r, s=1, 2) are bounded over
any fixed finite w-interval, independently of &,

Proof: Since Réer (b;m)|(A — Anp) and Rigs (b; mi(A — dnp) are the
Fourier coefficients of r (55X, A) and s (b5 %, Q) (r, 5 = 1, 2) respectively,
we obtain

s G300, ds (b3 %, 0 = T Ros (b3 0)ffls — dn)® + v}

if Dib; ) has a simple zero al A = App, (A = g + #v); and
- [==]
(dr (b3, 8), s (b;x,0)) > Z Rys (b; W — Anp)* + v}
if D(b,2) has a double zero at A = App.

Therefore, from (2.8), we get

ks @3N o [ dors (b3 )

¥ = f (p — w2 -y’ G-6)
By arguments similar to those of Chakrabarty* and Titchmarsh® it follows
that Irs (b; 2) are bounded as & — oo through a suitable sequence if v 5% 0.
Hence, putting p =0 and v==1 in (3.6), we obtain

dprs (b 1) _

e <K 3.7

3

~s0

where K is independent of b. So

u
d b; . R
f /Z:S]- 1u)<K : R
~U
and
prs(b; U) == fprs B < KU+ 1) , 3.9

Which proves the theorem.
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In view of the above theorem, we can apply Helly’s selection theorem
to define a set of functions pys (@) (1, s=1, 2), u>0, such that
prs (B; ) —-prs (W) as b — oo through a suitable sequence, say W, Ig
(24, ;) be any finite interval and f (u) = { fi, o} any continuous vector,
then as b —ocowe obtain from Helly-Bray theorem

.:f (f @ dpr (b 0)) ~ .:I (7 @), dpr (). .10

Further, let wy = max (uy, v1) and w, = min (45 , v;), where w, and W, are
the points of continuity of prs (). Then as v -0

vy vy "

f dpys () f (M‘_:—‘;g:j’;g = [prs (Wa) — prs (W)l (W <wy) 3.

by s - 0 otherwise
3.1

4, THE TRANSFORM

Let f (x) = {fi,f2) be the integral of an absolutely continuous vector and
r ), f"Nel[0,c. Let f{x)={0, 0} for x > ¢ and let f (x) satisfy
the boundary conditions of our problem at x ==0. Let

FQuy={F (), F, W)},
where

Fr @) = (0| %, 1), 1 (%)), « @]
Then, if b >¢, we obtain
W F@su), dp (b 4) |low, v+ | F (b5 w), dp (b3 ) [0

LU uF (bsw), dp (b5 N, v & [ uF (b5 w), dp (b; #llo, ]

SUR| uF (b5 0), dp (b3 u) 1< U2 £, w
since (3.5) holds in this case. Also, for fixed U and b >¢
| F(bsuw), dp (b5 uliw, v = | F(w), do (b; W) ll-u, v — || F (W), dp () |0,
by making b — oo through a suitable sequence. First making b —ee
for fixed U and then making U - oo, it follows that
N Fbsu), dp (b w) |} — 1] F(u), dp () ]l
Hence
7 Hlo,w =1 F ), do () ] @2

for our special class of vectors f (x).
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Now, let £ (x) be any two component column vectorsuch that (£ (%), f ()
¢L[0,00). Then asequence of vectors f™ (x) = { £ (x), £,™ (%)} can
pe determined such that each ™ (x) belongs to the special class and that

lim [[f—7F "¢, =0.

nPCO
Let
P () = {F™ (), Fy'™ ()},
where
Fp™ (@) = (dy (0 [, ), 1 ) (X))o, .
Then, from (4.2) we obtain
1(F™ (@) — F™ @), dolf =l [ ~F g,
which tends to zero as m and # tend independently to infinity. Hence the
sequence of vectors F™ (i) converges in mean with respect to p (), say to
F(u), leading to
b F (@), do (1) || << 00
and

lim {| (F — F®™), dp |l = 0. “4.3)

Further
R dpll — | F™, dp | |
< I(F,F—-F‘mdp) S+ (FMF— F dp) l
S{WE || F— F™, dp|]]?
FLIF™, do ||| F—F™, dp || J}} ~0

as 1~ oo, in view of the above results.
{¢/. Hardy, Litilewood and Polya®, §79, p. 33]. Hence

I, dp|l = lim || F, dp | .
RO

Therefore from (4.2), V f (x) e L*[0, o), we obtain the Parseval formula
I F @), dp @) = {1 £ (x) llo, o ¢4

We call the vector F(u) the Transform of f (x).
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If g(x) = {gs (%), g2 (x)} be another vector of L2[0, co0) and G () be its
transform, then F(4) + G (w) is the transform of f (x) + g(x) and Usin
(4.4) we obtain 3

(F, G dp)={f, 80« .3
TrueoreM (4.1). Let f (x) ={fi1(x),f2(x)}eL?[0, c0), and let
Fy () = {Fra (1), Fou (1)},

where
Fra (0) ={¢r 0 | %, 1), f (%) o0, (" =1, 2). (4.6)
Then Fy (1) converges in mean with respect to p (1) to F(u), as a — oo, je,
| F@) — Fa(w), do ()] ~0 as a — oo, *.7)

Proof : We have
Fy (u) — Frq (u) ={¢y (0 [x’ u)’f (x) )(l, e

Thus F (1) — Fu (1) is the transform of f (x) in [a, o) and that of {0,0} in
[0,4]. Hence we obtain from (4.4)

W F ) — Fa (), dp @)l = | £ (2) lla, w»
where the right hand side tends to zero as a -» oc.
TaeoREM (4.2). Let F(uw) be the transform of £ (x), where
(f(0), £ () e L [0,00) and Iet
o) = o . foa 00} = Z_1 $20 | % ) (F (), dor @), (49

Then as a — oo, f (x) is the limit in man of fa(x);
ie.,

If ) —fa () llo,0 >0, as a—oco. @9

Proof: Let G (4) be the transform of g (x), where (g (), g(#) e L[0, X]
and g(x) ={0, 0} for x > X. Let Gq (%) = {Giq (1), Goa (w)}, Where

Gra (W) = {7 (0] x, w), g(x) Jo,a = ($5 (0 | X, 1)), (%) Do, x,
(@ >X), (r=12

If G (4) == {Gy (u), G2 ()}, then we obtain from (4.6)
Gr () ={¢r (0] %, 1), g(X) Yo,z (r =1, 2).
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Therefore,
(fa(x), g (x)o,x = 53:1 .f_j‘r 0 x,u (F (1), dpr (”)): £(XPo,x
= (F, G, dp)-a,a- (4.10)
Now, from (4.10) and 4.5), we obtain
[((f (x) —fa (x)), g (No,xl? = [{F, O, dpy—vo,a +{F, G, dp)a,]?
<l F, do Y-w,a + 1| F, dp lla,=1 1| G, dp |l
<[ Fdpllewoya 1= | F dp llaye] | & oz .11
(¢f. Levinson,® p. 307).

Let g(x) =S (x) — fa (x) for x < X. Then

L) —fa () llox SUF dp llw,ma 1| F, do lla,e.
Making X arbitrarily large

1f () —fa ()l < F, dpllea-a + 1| F, dp lle,m
which yields the desired result,

5. ANALOGY WITH FOURIER TRANSFORMS
(D) Let X be fixed. Then

X X

Jf(x)dx = lom § fo (x)dx

o L a==Ta}

i

lim % (F@, dor ) [ 0 |3, 0 dx

= 1im 5 § 3,(X, w) (F), dor (),

0300 =1 wa

|

where
gET(X, u) = fgb, (0 | x, ) dx.
Hence
FO=dldx £ Tdrx u) (Fl), dor @) .1

almost everywhere.
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an [ (. dor )

—lim 5 | Fen (4) dors ()

—lim Z § dors @) [ (#2013 ), 7 (9) ds

=lim (f (x), Wr (%, Uddo,ns

where

Wl U)= 2 {Uc,bs (O | x, 4) dors (). 62
Therefore

(F @), p'r @) = d|du{f (X), Wy (x, 1))o, (5.3

at the points where p'r (1) eXists.

6. THE VECTORS xr (X, A), ¥ ==1, 2.

By arguments similar to those of Chakrabarty?, it follows from (2.6) by
making b —» oo through a suitable sequence, that

BeGa N = 2 me Wb O350 + 00 1%, (k=12 6]
where

iy (N) = lim fj (6, 0),  maej (A) = mjpe (A,
the convergence to limits of various entities being uniform. Also

I bt (3, A llo,e << — T g (A) . 6.2

Thus #x (x, A) L]0, o). Adopting the analysis of Evetitt,” we obtain
gy (A) map (A) — M2 (D) # 0, (Im A # 0)- (6.9

The following Lemma has been obtained by Bhagat.?

Lemma (6.1). The matrix

EQ) = (Krs ) = (tim f Tm marg (o + ) ) 64
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exists for all real A; each Krs (A) is a function of bounded variation and

Krs (V) = 2 {Krs (A 4 0) + Krs (A — 0} 6.5

Also
Lim f —Im #r (X, p ) dy =§ ofhd‘s O x, pdKes (1). (6.6)

30 G

Futther we note from (6.2) that ~— Immyps (u <) >0 if v >0 and
therefore Kyr (1) are non-decreasing functions of A(r =1, 2).

THEOREM (6.1). Let
z A
xr (6 ) ={xr (6 D, xr2 (% N} =’§ of $s(0 | x, ) dKps (1), (6.7)
where » =1, 2 and X is real. Then
(o (5, 2, xr (2, A) & L]0, oo).

Proof « If Anp be an eigenvalue and ¢y, (B; X) be corresponding eigen-
vector in the b-case, then
U (b; %), oy (b5 %, A)) = Ripp (b} B(A — dnp). (6.8)

Hence, if A = u -+ fv, the Parseval formula yields
or 53591 = 5 Rer (53 m)f{Ge — M) + 07}, 6.9

If A=1, then the left hand side of (6.9) is bounded as » — co through a
snitable sequence. Therefore

Z Rer (6: W] (b 1) =0 1), 6.10)
If Ais real and lies in fixed interval, we obtain from (6.8)
»
Wnb;x), JIm e (b3, n -+ iv) dit) = O (Ripy (b3 9)|[(X2np -+ D).

Hence using Parseval formula and then making b — co through a suitable
fquence, we obtain

130 e G ) e = 0.0,
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Finally, making v -0 and using (6.6), we have

|2 T $01% ) dKrs () o = 01
which yields the desired result.

7. RELATION BETWEEN Xy (X, #) and Wy (x, 1)
Making b - oo through a suitable sequence and then U - ooin 3.9
it follows that

T s @i+ Dk !

By Green’s theorem
(A — Aap) 4br (0 | x, Anb)s 2 (b5 %, A))
=gy (0| X, Anp), Ly (b33, X)) — {y (85 %, A), Lpr (0 | x, Ans))
= [ (55 %, 2), 45 0 | %, Aup)l ()= (B2 %, 2), br (0] %, Amp)] 0).
The second term on ihe right hand side
=—1, ifr==1

== 0, if r=2.

The first term on the right hand side is zero because ¢, (&; x, X)), ¥ (6; ),
YV (b; x) and ¥'® (b; x) salisly the same boundary conditions at x=16
and it follows from the exprossions for o (b3 x), #m® (b; X) and Ya® (b;%)
thatér (0 | x, App) (r==1, 2) also satisfy the same boundary conditions at x=b.
Hence
{br (O [ %, Anp)y #h: (b5 %, A)) = 1/(A — Mp), i r=1

=0 , ifr=2. 1.3

Therefore, the transform of ¢y (&; x, X) in [0, ] is {1/(A — u), O}

Similarly the transform of #,(b; x, A) ib [0, 4] in {0, 1]/(A —w)}. The
formula (4.5), thercfore, yields

W B3 % )y s (5536 0) = T dlprs (b3 1]y — ) hs = )
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rs=1,2 Puting A=2X =p +iv, A=2 =p—1iv and ‘using (2.8),

we obtain

_Im z,s Imlys (b, 1) _ f dprs (b3 u)[{( — w)? + v2}. (7.3)

Therefore
Imlps (b; 1) — Im Ips (b X))y

- _‘_/: i(”‘ e 7"1)2 R l}dprs (&;w

Making b — oo through a suitable sequence, we obtain

T — o ms Q) d = T dprs ) [ 9daliCe ~ 0* + v+ 0.0

where U >uy and — U< uy  (¢f. Titchmarsh®, p. 137).
Making v -»0 and using (3.11) the right hand side tends to

7 [prs () — prs ()] =7 [ dprs (),
A]
where w4, and u, are the points of continuity of prs (#).

Now, it follows from the definitions of functions Kys () and pps (u) that
K (u) = mp () (7.9
Further
FERY
xr (x, A) = ;‘ D_[ $s(0 | x, ) dKys ()  (Areal)

7 3 T gs O % 1) dors @) = W (3, X. 7.5)

8. SINGULAR SURFACES

Following Everiit” and Bhagat® we get the generalization of Wiyl’s
circle obtained by Titchmarsh?® for our boundary value problem. We only
mention the relevant results required for the purpose of our tranform theory
and omit the details. Let us define

Sr (5, A, bj) = Sp (B) = — i [y (b, X, A), ¥r (b % Nzp =0 (8.1)
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r=1,2. Forfixed b and A=p+iv (v7£0), as bjx vary, the poing,
(21, Iry) describe a surface in the two-dimensional complex space, whose equa-
tion is expressed as

Sy (@ =0 (r=12).

We call these surfaces the singnlar surfaces of our problem. These surfyce
are ‘central surfaces’ which tend to a limit surface Sy (c0) =0 as b w
The surface Sy (oo) =0 is also a central surface and lps (8, A)— myg O as
b — oo through a suitable sequence; the point

(771 (N), 725 (D) & Sy (00) = 0.

Let (Myy (5), My, (D)) (r =1,2) denote the centre of the singular
surface Sy (H) = 0 in the two-dimensional complex space and let (Zry, Zpy)
be any point on this surface, then the range of the values of Z,; is completefy
determined by
| Zps — MD [*

< | s (0 ]x, A ¢ss (O I x, A) || "

Sar 1420 [x, D B2 0 [ x, B [—[(b2 (O] x, X), (0] x, WY’

(8.2

where
[1— [, &2 [ llg2ll I dal] =>0. | 8.3
for all 4 >0.

9. THE REVERSE TRANSFORM

We define the following two classes of vectors:
(i) The class of ‘vectors
F)={) (e L? if || £l <)oo ¢
(ii) The class of vectors
F(uw)={F, (), F@W} e £ if [F dpli< < oo. ©.9)

THEOREM (9.1). If F(u)e.£%. Then it has a ‘reverse transform’
f(x)e L2



On the Theory of Transforms (I) 517

Proof § Let us define fz (x) by (4.8). Let
2 ={& (), & ()} e L2 [0, X] and g(x) ={0,0}for x > X, and let G (1)
pe its transform.

Then the conditions leading to (4.10) are satisfied, and hence, if
0<a< b, we obtain
[((fa @®—fo (x)): £, x1E<[Il F, dp -, -a
+ | F, dp lla, 8] 11 & (%) llo, x-
Putting g (x) =fa (*) —fp (¥) in (0, X) and then making X-> co, we get
1fa(x) —Fo (XD llo, « < F, dp |, ~a+ 1| F; dp [la, b (9.3)

Hence the sequence of vectors fa (x) converges in mean over [0, o), say, to
f(®). Putting ¢ =0 and making b — oo in (9.3), it follows that

N, << F, dpll. 9.4)
f(») is the reverse transform of F(u).

Thus, starting from a vector f(x) of L* with transform F(u), it follows
that F(u) has the reverse transform % (x) such that f (x) and & (x) are the
limits in mean of the sequence of vectors fy (x) defined by (4.8). Hence

h(x) =f (x) almost everywhere.
Lemma (9.1)
Tm e (6,2 ) — g (5 D =0 SR

(Im (A)s= 0) as b -» oo through a switable sequence,
Proof : For simplicity we evaluate the limit when »=1.
We have -
(B, 2, 2) — oy (6, DU Ly —my [Pl g |+
2 by —my | | he — pnap || (b, ) | + [ oo — 211221 B2 11, (9.6)
If 4, and 4, c L2 [0, o0) then the right hand side tends to zero as b — oo

through a suitable sequence, for /rs (B, A) — mys (A) and the lemma follows.
“;ht:illtﬁl and ¢, both do not belong to L2?[0, co), using (8.2) in (9.6), we
ol

LESci—17
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b (B, % A) — dhy (x, D]
< 2{1da B2 Nea I 20l $all by 13| by, )] -
= av[ gy T 0 12E

.(,52 - (’.-”17 fﬁz

1
R R S P ENE

which tends to zero as & — oo if ¢, & L® [0, oo0), since (8.3) holds for &l
values of & >0. Similarly

<

s (B, x, X) — ha(x, || =0 as b — oo if ¢,& L2[0, o).
"Lenma (9.2)

C) (W (x, w), W (x, u)) e L[0, o0) in x.

D) B (W (6 ) — W (5, i), W (X, 00) — W (i, 0)

= 57 dprs (), (wy < wz)} 07

=0, (wy = wy),

where wy = max (u, v,), ‘W, = min (4, vy) are the points of continuity of
prs ().

Proof : Let

W 65350 = £ [ 001 % 0 dprs (b10),

Then
Wobsx, = 2 ($200] % Aub) Ry, (b3 1) + 5015 %)
[Py T
K Ry (b3m), ' ©.9

where the dash denotes that the terms with App = O or u are halved. Two
cases arise according as D (b; A) has a simple or a double zero at A = Agb.

Case I. Let D (5; 2) have a double zero at A = Ayp. Then from (8§
and (2.11)

R
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Wy (b x, w) oh
— & Ry (bimda® (5%

(B9 W<

Z’f Ry, (b: n) (An (An® + B2 a0 (b %)

R T ES

+ By (A2 + -an)“'% (B (B x))

I

£ Ry (bsn) g (b; %), ©.9)

LES Pt AN

i

where
A= 'V (b5 %), H (b5 %, D)) = Ry (b5 WA — Mnb)

By = ('™ (b5 x), 1 (b; X, A)) = 0.

Case—II. Let D(b;A) have a simple zero at A ==2App. Then from
©.8), (2.9 and (2.10)

. o . 1 . ; .
Wi (b;x,u) os)ﬁgu Ry, (Bsm) fin (b} %)
which is of the same form as (9.9). Hence if # >0
IWib;x, W= X Ry b:m)<pnu(b;w), (0.10)
O AnpSu
where double dash denotes a {actor % at the ends. Therefore, if ¢<< b

| Wi(b; x, u) llo, e < P11 (B W< K (1),

where K is indcpéndent of b and e¢. Making first b — oo and then ¢ — oo
we obtain

IV lly, o< K@) - ; ©.10)
and similarly if, u< 0. ’
Again :

Wy (b; %, u) = mg’g (#: (0 | %, Anp) Ry (B3 1) + 65 (0 | %, Anb) Rua (b5 1)
= 2'7 R}zz (b; ”) ‘/‘7& (b’ x)

O Anp<H

by (2.9) and (2.10) if Anp is a simple zero of D(b3 ), ¢ s
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If Ay be a double zero of D (b; A), we have
Walbimy = Z_ R m Cn (e + Budy i (5 )
+ By (4n® -+ BB i (B; %))
= . + . .
og)%.'z,gu R0 (b5 1) n (b ),

where
Ap == P (b; X), iy (b5 %, N)) = Ry (b, ”)!R%u B my (A — Agp),

Bo = G ® (030, b b; 3, 0y = — Ko (50 B Cem) = Rt i)t
1 > n

The analysis now proceeds as in the case of W, (b; x, u) and first pat of
the lemma follows. Let Im(A) >0. Then

((le (b; x, u) — Wy (b; x, ”].))a #r (b x, )

= T [Ru(b;m{¢i (0] x Aup), P (b5 x, )

wK A St

+ Rip(h;n) (¢, (0 ] X, Anb), ¥ (B x, M
5 Ry (bW — Agp) = [ dour (b3 DI — 1)

LAty

I

by arguments similar to those leading to (7.2). Hence

Z Ui ) — Wi s 5 w). e (b5 x, V)]

= _221 [ dour (B3 DIA — 1) ©1)

From (9.5), (9.10) and the Schwarz inequality for vectors, we obtain

lim (W (B3, ), G (B3 %, ) — ¢ (%, D)) =0.

Also, since W, (b; x, u) € L2 [0, o0) for some b-sequence and
Wi (b3 x, u) — Wy (x, u) e L2[0, o),
11;‘11 (Wa(b;x,u) — Wy (x, 1), i (%, D)) = O.
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Hence
2 W (5 ) — W (5, ), e (35 W, o] = 2§ dpar (/=0
Therefore

5 (i () =P G ), T Tm o o, e ) i, ]

r=1

= 2 [dpur ) T vesl{(e — 0%+ 4.

Vaking v —0, using the relations (6.7), (7.5) on the left hand side and
he relation (3.11) on the right kand side, we obtain

51 5 ) — Wi (v ), (W (5, 03) — W G, o), o]

™M

T 0 On<wi|

1w
(v =ws)

3

‘or the justification of the limiting process under the sign of integration,
ve note that

[ —Imr (x,u 4 8) di = %7 (x, 0+ 18) e L2[0, o0)

o
or 8 =125;,8,,3;... and as & =0, x (x,0+ ) = xr (x,0)eL2]0, 0
imilar arguments apply when we start with W, (b; x, v) and (i) follows.

We now start for the reverse transform by considering two column
ectors F(u) and G (u) defined as follows:

Fu) = {My, My} in u, <u< iy
G(u) = {M, Nz} in VK VKV,
F(u) = {0, 0} = G (u) otherwise,

fhere M, My, N; and N, are constants.
he reverse transforms of F(u) and G (u) respectively are then given by

f®=2 I ér (0 ] x, 1) (Fs), dor (1)

(=

= 2 2 M, ftf)s(O]x,u)dPrs(u)

=1 3=

2

i

M, (Wr(x, uy) — Wy (x, u1))

Fonl
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g = I N (Wr (0 — Wi (5, 00).
Hence
8o = 5 My (Wi (5 10) — W (i), 2 Ny (W (3, 99

— Ws (x, 171)))0, @

D

= 2 M:Ns | ders (1) (Wi << wy) }

=0 (v 2= wy)

0.3

-
L]

by (9.7), where wy = max (i, v4), W, = min (u,, v,) arc the points of conti-
nuity of prs(2) (r, 5 =1,2). Also

(F.Gd)= 2 2 M;Ns [dpre ) (m< m) } C om
=0. (wy = wy)

It follows from (9.13) and (9.14) that the Parseval formula
(F, G,dp) =(f, o, »
holds in: this case.

Thus, defining a step-vector as one each of whose components is a step
function, we obtain, by addition of vectors, such as F(«) and G (u) above,
the Parseval formula when F(u) and G (u) are any step-vectors with two
components having their steps at the points of continuity of (p,s (u)), and
F(4) = (0,0) = G (1) outside finite intervals. Now, let F(u) be any vector
of £2. Then we can define a sequence of step-vectors F™ (u),.each of
the previous type, such that

IF—F™, do 0.

Let £™ (x) be the reverse transform of F™ (z). Then (f ™ (%) —f"™ ()
is the reverse transform of (F™ (u) — F( (u)) |, and -

£ ey PR — P, o 0.

as m and # tend to infinity :independently .of each other.
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Hence f™ (x) converge in mean to f (x), say. Then f (x) is the reverse
transform of F(w), and .
IE doll =0/ No, 9.15)

which ﬁldy be termed ‘reverse Parseval formula’.

It follows from the arguments used in § 4 that the reverse transform
defined in the above manmer is equal almost everywhere to that defined
in §4.

THEOREM (9.2). If F(u) is a given two component column -vector

of £%, f (x) is its reverse transform, and H () is the transform of f (x),
then H (u) is equivalent to F(u) in the sense that

WF~—H, dp| =0. (9.16)
Proof : Let .
Fra () = ($r O | x, 1), f (X))o, a-

Then the reverse transform of Fg (#) = {Fq (), Foa (W)} is f(x)in][0, a]
and {0,0} in [4, o0). Therefore the reverse transform of (F(u) — Fq ()
is {0,0} in [0,a] and f (x) in [a, co).
Hence, by the reverse Parseval formula (9.15)

HF—Fo, dpll =1l f lla, o-
Therefore Fy (1) converges in mean with respect to p (%) to F(u). Further,

by the arguments of §4, Iy (#) converges in mean with respect o p (&) to
H(u).

Hence (9.16) follows.
Combining the relevant results of § 4 and § 9, we obtain the following :

 Taeorem (9.3). A necessary and sufficient condition that f (x) e L?
15 that F(u) € .2,

' Materials of the present paper are iaken from the author’s Ph.D. thesis®
wiitten under the supervision of Dr. N. K. Chakrabarty, to whom the
author expresses his deep gratitude.



524

1. Chakrabarty, N. K.

2. Kodaira, K.

3. Titchmarsh, E, C.

4, Chakrabarty, N. K,

5. Hardy, G. H., Littiewood,
J. L, and Polya, G.

6. Lavinson, N,

7. Everitt, W. N,

8. Bhagat,B,

9. Tiwari,S.

S. TIWARL

REFERENCES

Some problems in eigenfunction expansion: 3
of Math, (Oxford), 1965, 16 (D), 135350 > - Quart. J

On oxdiue(lll_-y di['fere?tial equations of any even order and the
corresponding eigenfunction expansion, Amer, J,
72, 502544, Mtk 395,

Eigenfunction  Expamsions Associated  with Second-order
l]);_zgré.‘llﬁal Eguations, Part 1, 2nd ed., Clarendon Press, Oxford
Some problems in eigenfunction expansions @, Quar
J. of Math. (Oxford), 1968, 19 (2), 213-224, T
Inequalities, Cambridge University Press, 1952

The expangion theorem for singular self-adjoint differential
operator. Ann. Matk., 1954, 59 (2), 300-315.

Fourth order singular differential equations, Math. Am,
1963, 149, 320-340.

A Thesis for the Degree of Doctor of Philosophy, (unpublshed),
Patna University, 1966,

On  Eigenfunction Expansions Associated with Differential
Eq%xtiom, Thesis (unpublished), University of Caloutta,
1971.



