ÓN THE THEORY OF TRANSFORMS ASSOCIATED WITH EIGENVECTORS (I)

S. TIWARI

(Department of Mathematics, P.G. Wing of M.B.B. College, Agartala, Tripura 799004, India)

Received on January 24, 1977

Abstract

In this paper the author studies a transform theory based on the solutions of the differential system

$$(L - \lambda I) \phi = 0,$$

where

$$L = \begin{pmatrix} -d^2/dx^2 + p(x) & r(x) \\ r(x) & -d^2/dx^2 + q(x) \end{pmatrix}$$

and ϕ is a two component column vector function.

A pair of solutions of the above system in the interval [0, b] containing scalars $l_n(\lambda)(r, s = 1, 2)$ is obtained. A matrix $(\rho_{r_s}(\lambda))$, (r, s = 1, 2) consisting of step-functions is defined with the help of residues of $l_{r_s}(\lambda)$. The expansion formula and Parseval formula are then expressed in the form of Stielte's integrals involving the functions ρ_{r_s} . Further results are first obtained in the interval [0, b] and then b is made to tend to infinity for the study of the singular case $[0, \infty)$. The transform $F(u) = \{F_1, F_a\}$ of $f(x) = \{f_1, f_a\}$ and the reverse transform f(x) of F(u) are obtained as

$$F_r = \int_{0}^{\infty} \phi^{T_r}(0 \mid x, \lambda) f(x) dx \qquad (r = 1, 2)$$

and

$$f(x) = \sum_{r=1}^{2} \int_{-\infty}^{\infty} \phi_r(0 \mid x, u) F^T(u) d\rho_r(u)$$

respectively, where $\phi_r(0 \mid x, \lambda)$, (r = 1, 2) are the boundary condition vectors at x = 0 and ρ_r denotes the r^{th} column of $(\rho_{rs}(u))$. A good number of theorems are proved which ultimately lead to the following:

Theorem. A necessary and sufficient condition that $f \in L^2$ is that $F \in \mathcal{L}^2$.

LLSc .--- 16

Some of the results obtained are generalisations of those of Titchmarsha

Key words: Boundary condition vectors, Bilinear concomitant, Wronskian, L^2 -solution, residue, orthonormal, singular surface, transform, reverse transform, convergence in mean.

1. INTRODUCTION

The object of this paper is to develop a transform theory based on the solutions of the differential system

$$(L - \lambda I)\phi = 0, \tag{1.1}$$

where

ł,

$$L = \begin{pmatrix} -d^2/dx^2 + p(x) & r(x) \\ r(x) & -d^2/dx^2 + q(x) \end{pmatrix},$$
 (1.2)

 $\phi = \phi(x) = \{u(x), v(x)\}$ is two component column vector; λ is a variable parameter real or complex; p(x), q(x) and r(x) are all real valued and continuous functions of x throughout the interval [||0, b||] and b will be ultimately made to tend to infinity. The boundary conditions are

$$\begin{array}{l} a_{j_1} u\left(0\right) + a_{j_2} u'\left(0\right) + a_{j_3} v\left(0\right) + a_{j_4} v'\left(0\right) = 0\\ b_{j_1} u\left(b\right) + b_{j_2} u'\left(b\right) + b_{j_3} v\left(b\right) + b_{j_4} v'\left(b\right) = 0 \end{array} \right\}$$
(1.3)

j = 1, 2; accents denoting differentiation with respect to x, and the selfs adjointness conditions are given by

$$\begin{array}{l} a_{11} a_{22} - a_{12} a_{21} + a_{13} a_{24} - a_{14} a_{23} = 0 \\ b_{11} b_{22} - b_{12} b_{21} + b_{13} b_{24} - b_{14} b_{23} = 0 \end{array} \right\}$$
(1.4)

2. NOTATIONS AND PRELIMINARIES

If $\phi_j = \{u_i, v_j\}$ and $\phi_k = \{u_k, v_k\}$ be two column vectors, then we define their 'Bilinear Concomitant' as

$$[\phi_j, \phi_k] = \begin{vmatrix} u_j & u_k \\ u'_j & u'_k \end{vmatrix} + \begin{vmatrix} v_j & v_k \\ v'_j & v'_k \end{vmatrix}.$$

We represent, after Chakrabarty¹, any vector $\phi(x)$ whose component together with their first derivatives assume prescribed values at $x = \xi$ by the symbol $\phi(\xi \mid x) = \{u(\xi \mid x), v(\xi \mid x)\}$. It follows, in usual manner, that there exist vectors $\phi_j(0 \mid x, \lambda), j = 1, 2; \phi_k(b \mid x, \lambda), k = 3, 4$, which are solutions of (1.1) and are such that

1.1

$$u_{j}(0 \mid 0, \lambda) = a_{j_{2}}; u'_{j}(0 \mid 0, \lambda) = -a_{j_{1}}; v_{j}(0 \mid 0, \lambda) = a_{j_{4}};$$

$$v'_{j}(0 \mid 0, \lambda) = -a_{j_{3}}, (j = 1, 2); u_{k}(b \mid b, \lambda) = b_{j_{2}};$$

$$u'_{k}(b \mid b, \lambda) = -b_{j_{1}}; v_{k}(b \mid b, \lambda) = b_{j_{4}};$$

$$v'_{k}(b \mid b, \lambda) = -b_{j_{3}}(k = 3, j = 1; k = 4, j = 2).$$

These vectors will be called the 'boundary condition vectors' at x = 0and x = b respectively.

If $\phi = \phi$ ($\xi \mid x, \lambda$) be any vector satisfying (1.3) and ϕ_j , ϕ_k be the boundary condition vectors then (1.3) and (1.4) respectively may be expressed in the following alternative 'Kodaira form'2:

$$[\phi, \phi_j] = 0, \quad [\phi, \phi_k] = 0 \tag{2.1}$$

and

$$[\phi_1, \phi_2] = 0, \qquad [\phi_3, \phi_4] = 0. \tag{2.2}$$

If we denote by $D(\lambda)$ the Wronskian of the boundary condition vectors then

$$D(\lambda) = [\phi_1, \phi_3] [\phi_2, \phi_4] - [\phi_1, \phi_4] [\phi_2, \phi_3]$$
(2.3)

is an entire function of λ , independent of x and takes real values when λ is real.

For column vectors y and z; (y, z) denotes $y^T z$; $(y, z)_{0,x}$ stands for $\int (y, z) dt$, and $||y||_{0,x}$ for $\langle y, y \rangle_{0,x} = \langle y, \bar{y} \rangle_{0,x}$ when y is complex. When x = b, $\langle y, z \rangle$ and ||y|| stand for $\langle y, z \rangle_{0,b}$ and $||y||_{0,b}$ respectively. If $F(u) = \{F_1(u), F_2(u)\}, G(u) = \{G_1(u), G_2(u)\}$ and columns of

$$\begin{pmatrix} K_{11}(u) & K_{21}(u) \\ K_{12}(u) & K_{22}(u) \end{pmatrix}$$

are denoted by $K_r(u) = \{K_{r_1}(u), K_{r_2}(u)\}, r = 1, 2, \text{then } \langle F, G, dK \rangle_{c,d} \text{ stands for}$

$$\sum_{r=1}^{2} \sum_{s=1}^{d} \int_{s}^{d} F_{\tau}(u) G_{s}(u) dK_{\tau s}(u) = \sum_{r=1}^{2} \int_{s}^{d} F_{\tau}(u) \left(G(u), dK_{\tau}(u)\right)$$

and $|| F, dK ||_{c,d}$ for $\langle F, F, dK \rangle_{c,d}$.

Further $\langle F, G, dK \rangle_{-\infty, \infty}$; $|| F, dK ||_{-\infty, \infty}$ are denoted by $\langle F, G, dK \rangle$; || F, dK || respectively. Let

$$\psi_{1}(x,\lambda) = \left(\left[\phi_{2}, \phi_{4} \right] \right) \phi_{3}(b \mid x,\lambda) - \left[\phi_{2}, \phi_{3} \right] \phi_{4}(b \mid x,\lambda) \right) / D(\lambda) \\ \psi_{2}(x,\lambda) = \left(\left[\phi_{1}, \phi_{3} \right] \right) \phi_{4}(b \mid x,\lambda) - \left[\phi_{4}, \phi_{4} \right] \phi_{4}(b \mid x,\lambda) \right) / D(\lambda) \right\}.$$
(2.4)

Corresponding to the boundary condition vectors $\phi_j(0 | x, \lambda), j = 1, 2$, let us choose two solutions $\theta_k = \theta_k (0 | x, \lambda)$ (k = 1, 2) of (1.1) such that

$$[\phi_j, \phi_k] = \delta_{jk} (j, k = 1, 2) \quad \text{and} \quad [\theta_1, \theta_2] = 0.$$
(2.5)

Then

$$\psi_k(x,\lambda) = \sum_{r=1}^{2} l_{kr}(\lambda)\phi_r(0 \mid x,\lambda) + \theta_k(0 \mid x,\lambda), \qquad (2.6)$$

where

$$[\psi_r(x,\lambda), \theta_s(0 \mid x,\lambda)] = I_{rs}(\lambda), (r, s = 1, 2).$$
(2.7)

$$\langle \psi_{\mathbf{r}} (x, \lambda_1), \psi_s (x, \lambda_2) \rangle = \frac{l_{\mathbf{rs}} (\lambda_2) - l_{\mathbf{rs}} (\lambda_1)}{\lambda_1 - \lambda_2} \quad . \tag{2.8}$$

Also, $l_{rs}(\lambda)$ have an infinite number of simple poles at the zeros of $D(\lambda)$. If λ_n be a simple pole of $l_{rs}(\lambda)$ with residue $R_{rs}(n)$, then we have to consider the following cases:

Case I. Let λ_n be a simple zero of $D(\lambda)$, then

$$R_{11}(n) R_{22}(n) = R^{2}_{21}(n) = R^{2}_{21}(n)$$
(2.9)

and the corresponding normalised eigenvector, say $\psi_n(x)$, may be expressed as

$$\psi_n(x) = \sum_{r=1}^{2} R^{\frac{1}{2}}_{rr}(n) \phi_r(0 \mid x, \lambda_n).$$
(2.10)

Case II. Let λ_n be a double zero of $D(\lambda)$, then

$$R_{11}(n) R_{22}(n) - R_{12}^{2}(n) = 1 | (I_{11} I_{22} - I_{12}^{2}) > 0, \qquad (2.11)$$

where

 $I_{rs} = \langle \phi_r (0 \mid x, \lambda), \phi_s (0 \mid x, \lambda) \rangle \quad (r, s = 1, 2)$

and there are two orthogonal normalised cigenvectors, say $\psi_n^{(1)}(x)$ and $\psi_n^{(2)}(x)$, which may be expressed as

$$\begin{split} \Psi_n^{(1)}(x) &= R_{1_1}^{-\frac{1}{2}}(n) \sum_{r=1}^2 R_{1r}(n) \phi_r(0 \mid x, \lambda_n) \\ \psi_n^{(2)}(x) &= -R_{1_1}^{-\frac{1}{2}}(n) \{R_{1_1}(n) R_{2_2}(n) - R_{1_2}^{-2}(n)\}^{\frac{1}{2}} \phi_2(0 \mid x, \lambda_n). \end{split}$$

200

In this case, any suitable linear combination of $\psi_n^{(1)}(x)$ and $\psi_n^{(2)}(x)$ may be taken as the normalised eigenvector. We choose this vector as follows:

Let f(x) be any two component column vector such that $(f(x), f(x)) \in L[0, b]$. Let

$$A_n = \langle \psi_n^{(1)}, f \rangle, \quad B_n = \langle \psi_n^{(2)}, f \rangle.$$

Then

$$\psi_n(x) = \{A_n/(A_n^2 + B_n^2)^{\frac{1}{2}}\} \ \psi_n^{(1)}(x) + \{B_n/(A_n^2 + B_n^2)^{\frac{1}{2}}\} \psi_n^{(2)}(x)$$
(2.12)

is our normalised eigenvector in this case.

The eigenvectors $\psi_n(x)$ given by (2.10) or (2.12) form an orthonormal system of vectors. If f(x) possesses continuous derivatives upto the second order in [0, b], satisfies the boundary conditions (2.1) and c_n , \tilde{c}_n denote the Fourier coefficients of f(x) and Lf(x) respectively, then

$$\tilde{c}_n = \lambda_n \, c_n. \tag{2.13}$$

3. The MATRIX $\rho(u)$

We now extend the finite interval [0, b] to the infinite interval $[0, \infty)$, keeping in view that the functions p(x), q(x) and r(x) in the operator Lare well behaved at all points of the infinite interval $[0, \infty)$. We tackle the problem of this extension by considering the problem of the interval [0, b](to be referred to as the *b*-case) and then making $b \to \infty$. For this purpose, we assume that the conditions of the previous section remain valid for every b > 0 and we introduce b as a parameter in the entities of §2 to enable us to study the implications of making $b \to \infty$. For example, by $D(b, \lambda)$ we mean $D(\lambda)$ defined by (2.3) and similarly for other entities. Some of the results obtained here are generalisations of those of Titchmarsh in Chapter VI of Ref. 3.

Let λ_{nb} denote the eigenvalues for the *b*-case. Let us define a matrix

$$\rho(b, t) = (\rho_{TS}(b, t)) = \begin{pmatrix} \rho_{11}(b, t) & \rho_{21}(b, t) \\ \rho_{12}(b, t) & \rho_{22}(b, t) \end{pmatrix}$$

consisting of non-decreasing step-functions ρ_{rs} (b, t), (r, s = 1, 2) which satisfy the following conditions:

 $\rho(b, 0) = 0$ and $\rho_{rs}(b, t)$ increases by $R_{rs}(b, n)$ when t increases through the value λ_{nb} ; otherwise $\rho_{rs}(b, t)$ remains constant. The value at the discontinuity is given by

$$\rho_{rs}(b;\lambda_{nb}) = \frac{1}{2} [\rho_{rs}(b;\lambda_{nb}-0) + \rho_{rs}(b;\lambda_{nb}+0)].$$

Let
$$f(x) = \{f_1, f_2\}$$
 be integrable over $[0, b]$. Let $F(b; u) = \{F_1(b; u), F_2(b; u)\}$

where

$$F_{\tau}(b; u) = \langle \phi_{\tau}(0 \mid x, u), f(x) \rangle \quad (r = 1, 2).$$
(3.1)

Let λ_{nb} be a simple zero of $D(b; \lambda)$, then the Fourier coefficients of f(x) are given by

$$c_{nb} = \langle \psi_n(b;x), f(x) \rangle = \sum_{r=1}^{2} K_{rr}^{\frac{1}{2}}(b;r) F_r(b;\lambda_{nb}).$$
(3.2)

The expansion formula may be expressed as

$$f(\mathbf{x}) = \sum_{n=-\infty}^{\infty} c_{nb}\psi_{n}(b; \mathbf{x})$$

$$= \sum_{n=-\infty}^{\infty} \sum_{r=1}^{2} \sum_{s=1}^{2} \phi_{r}(0 \mid \mathbf{x}, \lambda_{nb}) F_{s}(b; \lambda_{nb}) R_{rs}(b; n)$$

$$= \sum_{r=1}^{2} \sum_{s=1}^{2} \int_{-\infty}^{\infty} \phi_{r}(0 \mid \mathbf{x}, u) F_{s}(b; u) d\rho_{rs}(b; u)$$

$$= \sum_{r=1}^{2} \int_{-\infty}^{\infty} \phi_{r}(0 \mid \mathbf{x}, u) ((F(b; u), d\rho_{r}(b; u))). \quad (3.3)$$

The Parseval formula may be written as

$$||f|| = \sum_{n=-\infty}^{\infty} c^{2}_{nb} = \sum_{n=-\infty}^{\infty} \sum_{r=1}^{2} \sum_{s=1}^{2} F_{r}(b; \lambda_{nb}) R_{rs}(b; n) F_{s}(b; \lambda_{nb})$$
$$= ||F(b; u), d\rho(b; u)||$$
(3.4)

The Parseval formula for $\tilde{f}(x) = Lf(x)$ becomes

$$\|\tilde{f}\| = \sum_{n=-\infty}^{\infty} \tilde{\lambda}_{nb} \left[\sum_{r=1}^{2} \sum_{i=1}^{2} F_r(b; \lambda_{nb}) F_s(b; \lambda_{nb}) R_{rs}(b; i) \right]$$
$$= \| uF(b; u), \quad d\rho(b; u) \|$$
(3.5)

If λ_{nb} is a double zero of $D(b, \lambda)$ and the corresponding normalised eigenvector is given by (2.12), then the Fourier Coefficients of f(x) are given by

 $c_{nb} = (A_n^2 + B_n^2)^{\frac{1}{2}},$

where

\$

$$\begin{aligned} A_n &= R_{11}^{-\frac{1}{2}}(b;n) \sum_{r=1}^{2} R_{1r}(b;n) F_r(b;\lambda_{nb}) \\ B_n &= -R_{11}^{-\frac{1}{2}}(b;n) [R_{11}(b;n) R_{22}(b;n) - R_{12}^{-2}(b;n)]^{\frac{1}{2}} F_2(b;\lambda_{nb}). \end{aligned}$$

It can be easily verified that even in this case the expansion formula, the Parseval formula and the Parseval formula for f(x) reduce to (3.3), (3.4) and (3.5) respectively.

THEOREM (3.1). The functions $\rho_{rs}(b; u)$ (r, s = 1, 2) are bounded over any fixed finite *u*-interval, independently of *b*.

Proof: Since $R^{\frac{1}{2}}rr(b;n)|(\lambda - \lambda_{nb})$ and $R^{\frac{1}{2}}ss(b;n)/(\overline{\lambda} - \lambda_{nb})$ are the Fourier coefficients of $\psi_r(b;x,\lambda)$ and $\psi_s(b;x,\overline{\lambda})(r,s=1,2)$ respectively, we obtain

$$\langle \psi_{\mathbf{r}}(b; x, \lambda), \ \overline{\psi}_{\mathbf{s}}(b; x, \lambda) \rangle = \sum_{n=-\infty}^{\infty} R_{\mathbf{rs}}(b; n) / \{(\mu - \lambda_{nb})^2 + \nu^2\}$$

if $D(b; \lambda)$ has a simple zero at $\lambda = \lambda_{nb}$, $(\lambda = \mu + i\nu)$; and

$$\langle \psi_r(b; x, \lambda), \overline{\psi}_s(b; x, \lambda) \rangle > \sum_{n=-\infty}^{\infty} R_{rs}(b; n) / \{(\mu - \lambda_{nb})^2 + \nu^2\}$$

if $D(b, \lambda)$ has a double zero at $\lambda = \lambda_{nb}$.

Therefore, from (2.8), we get

$$-\frac{I_m I_{rs}(b;\lambda)}{\nu} \ge \int_{-\infty}^{\infty} \frac{d\rho_{rs}(b;u)}{(\mu-u)^2 + \nu^2}.$$
(3.6)

By arguments similar to those of Chakrabarty⁴ and Titchmarsh³ it follows that $l_{rs}(b; \lambda)$ are bounded as $b \to \infty$ through a suitable sequence if $v \neq 0$. Hence, putting $\mu = 0$ and v = 1 in (3.6), we obtain

$$\int_{-\infty}^{\infty} \frac{d\rho_{rs}(b;u)}{u^2+1} \leqslant K,$$
(3.7)

where K is independent of b. So

$$\int_{-v}^{v} \frac{d\rho_{TS}(b;u)}{u^2+1} \leqslant K$$
(3.8)

and

$$\rho_{rs}(b; U) = \int_{0}^{U} \rho_{rs}(b; u) \leqslant K(U^{2} + 1)$$
(3.9)

which proves the theorem.

In view of the above theorem, we can apply Helly's selection theorem to define a set of functions $\rho_{rs}(u)$ (r, s = 1, 2), $u \ge 0$, such that $\rho_{rs}(b; u) \rightarrow \rho_{rs}(u)$ as $b \rightarrow \infty$ through a suitable sequence, say W. Let (u_1, u_2) be any finite interval and $f(u) = \{f_1, f_2\}$ any continuous vector, then as $b \rightarrow \infty$ we obtain from Helly-Bray theorem

$$\prod_{u_1}^{u_2} \left(f(u), d\rho_T(b; u) \right) \to \int_{u_1}^{u_2} \left(f(u), d\rho_T(u) \right).$$
(3.10)

Further, let $w_1 = \max(u_1, v_1)$ and $w_2 = \min(u_2, v_2)$, where w_1 and w_2 are the points of continuity of $\rho_{rs}(u)$. Then as $v \to 0$

$$\int_{u_{1}}^{u_{2}} d\rho_{rs}(u) \int_{v_{1}}^{v_{2}} \frac{v d\mu}{(\mu - u)^{2} + v^{2}} \xrightarrow{\Rightarrow} \pi \left[\rho_{rs}(w_{2}) - \rho_{rs}(w_{1})\right](w_{1} < w_{2})}{0} \left(v_{1} < w_{2} \right) \right\}$$
(3.11)

4. THE TRANSFORM

Let $f(x) = \{f_1, f_2\}$ be the integral of an absolutely continuous vector and $(f''(x)), f''(x)) \in L[0, c]$. Let $f(x) = \{0, 0\}$ for $x \ge c$ and let f(x) satisfy the boundary conditions of our problem at x = 0. Let

 $F(u) = \{F_1(u), F_2(u)\},\$

where

$$F_{\mathbf{r}}(u) = \langle \phi_{\mathbf{r}}(0 \mid x, u), f(x) \rangle_{\mathbf{0}, \infty}.$$

$$(4.1)$$

Then, if b > c, we obtain

$$\| F(b; u), d\rho(b; u) \|_{-\infty, -U} + \| F(b; u), d\rho(b; u) \|_{0,\infty}$$

$$\leq U^{-2} [\| uF(b; u), d\rho(b; u) \|_{-\infty, -U} + \| uF(b; u), d\rho(b; u \|_{0,\infty}]$$

$$\leqslant U^{\!-\!2} \, \| \, uF(b\,;\, u), d
ho \, (b\,;\, u) \, \| \leqslant U^{\!-\!2} \, \| \, ilde{f} \|_{0,\,\, arkpha}$$

since (3.5) holds in this case. Also, for fixed U and b > c

$$||F(b; u), d\rho(b; u)||_{-U, U} = ||F(u), d\rho(b; u)||_{-U, U} \to ||F(u), d\rho(u)||_{-U, U}$$

by making $b \to \infty$ through a suitable sequence. First making $b \to \infty$ for fixed U and then making $U \to \infty$, it follows that

 $|| F(b; u), d\rho(b; u) || \rightarrow || F(u), d\rho(u) ||.$

Hence

$$\| f \|_{0,\infty} = \| F(u), d\rho(u) \|$$
(4.2)

for our special class of vectors f(x).

Now, let f(x) be any two component column vector such that $(f(x), f(x)) \in L[0, \infty)$. Then a sequence of vectors $f^{(n)}(x) = \{f_1^{(n)}(x), f_2^{(m)}(x)\}$ can be determined such that each $f^{(n)}(x)$ belongs to the special class and that

$$\lim_{n\to\infty} ||f-f^{(n)}||_{0,\infty} = 0.$$

Let

$$F^{(n)}(u) = \{F_1^{(n)}(u), F_2^{(n)}(u)\},\$$

where

$$F_{\tau}^{(n)}(u) = \langle \phi_{\tau}(0 \mid x, u), f^{(n)}(x) \rangle_{0, \infty}.$$

Then, from (4.2) we obtain

$$\| \left(F^{(m)}(u) - F^{(n)}(u) \right), \, d\rho \| = \| f^{(m)} - f^{(n)} \|_{0,\infty}$$

which tends to zero as *m* and *n* tend independently to infinity. Hence the sequence of vectors $F^{(n)}(u)$ converges in mean with respect to $\rho(u)$, say to F(u), leading to

$$|F(u), d\rho(u)| < \infty$$

and

$$\lim_{n \to \infty} \| (F - F^{(n)}), d\rho \| = 0.$$
(4.3)

Further

$$\begin{aligned} & \left\| \| F, d\rho \| - \| F^{(n)}, d\rho \| \right\| \\ & \leq \left\| \langle F, F - F^{(n)}, d\rho \rangle + \langle F^{(n)} F - F^{(n)}, d\rho \rangle \right\| \\ & \leq \left\{ \left\| F, d\rho \| \| F - F^{(n)}, d\rho \| \right\}^{2} \\ & + \left[\| F^{(n)}, d\rho \| \| F - F^{(n)}, d\rho \| \right]^{2} \right\} \to 0 \end{aligned}$$

as $n \to \infty$, in view of the above results. [cf. Hardy, Littlewood and Polya⁵, § 29, p. 33]. Hence

$$|| F, d\rho || = \lim_{n \to \infty} || F^{(n)}, d\rho ||.$$

Therefore from (4.2), $\forall f(x) \in L^2[0, \infty)$, we obtain the Parseval formula $|| F(u), d\rho(u) || = || f(x) ||_{0,\infty}.$ (4.4)

We call the vector F(u) the Transform of f(x).

If $g(x) = \{g_1(x), g_2(x)\}$ be another vector of $L^2[0, \infty)$ and G(u) be its transform, then F(u) + G(u) is the transform of f(x) + g(x) and using (4.4) we obtain

$$\langle F, G, d\rho \rangle = \langle f, g \rangle_{0, \infty} \tag{4.5}$$

THEOREM (4.1). Let $f(x) = \{f_1(x), f_2(x)\} \in L^2[0, \infty)$, and let

$$F_{a}(u) = \{F_{1a}(u), F_{2a}(u)\},\$$

where

$$F_{ra}(u) = \langle \phi_r(0 \mid x, u), f(x) \rangle_{0, a}, (r = 1, 2).$$
(4.6)

Then $F_a(u)$ converges in mean with respect to $\rho(u)$ to F(u), as $a \to \infty$, *i.e.*,

$$|| F(u) - F_a(u), d\rho(u) || \to 0 \text{ as } a \to \infty.$$

$$(4.7)$$

Proof : We have

$$F_r(u) - F_{ra}(u) = \langle \phi_r(0 \mid x, u), f(x) \rangle_{a,\infty}.$$

Thus $F(u) - F_a(u)$ is the transform of f(x) in $[a, \infty)$ and that of $\{0, 0\}$ in [0, a]. Hence we obtain from (4.4)

 $|| F(u) - F_a(u), d\rho(u) || = || f(x) ||_{a,\infty},$

where the right hand side tends to zero as $a \rightarrow \infty$.

THEOREM (4.2). Let F(u) be the transform of f(x), where $(f(x), f(x)) \in L[0,\infty)$ and let

$$f_{a}(x) = \{f_{1a}(x), f_{2a}(x)\} = \sum_{r=1}^{2} \int_{-4}^{4} \phi_{r}(0 \mid x, u) (F(u), d\rho_{r}(u)).$$
(4.8)

Then as $a \to \infty$, f(x) is the limit in man of $f_a(x)$;

i.e.,

$$\|f(x) - f_a(x)\|_{0,\infty} \to 0, \quad as \quad a \to \infty.$$

$$(4.9)$$

Proof: Let G(u) be the transform of g(x), where $(g(x), g(n)) \in L[0, X]$ and $g(x) = \{0, 0\}$ for x > X. Let $G_a(u) = \{G_{1a}(u), G_{2a}(u)\}$, where

$$G_{ra}(u) = \langle \phi_r(0 \mid x, u), g(x) \rangle_{0, a} = \langle \phi_r(0 \mid x, u), g(x) \rangle_{0, x},$$

(a > X), (r = 1, 2)

If $G(u) = \{G_1(u), G_2(u)\}$, then we obtain from (4.6) $G_r(u) = \langle \phi_r(0 \mid x, u), g(x) \rangle_{0, x}, (r = 1, 2).$

Therefore,

$$\langle f_a(x), g(x) \rangle_{0,x} = \langle \sum_{r=1}^{a} \int_{-a}^{a} \phi_r (0 \mid x, u) \left(F(u), d\rho_r(u) \right), g(x) \rangle_{0,x}$$

= $\langle F, G, d\rho \rangle_{-a,a}.$ (4.10)

 N_{0W} , from (4.10) and (4.5), we obtain

Let
$$g(x) = f(x) - f_a(x)$$
 for $x \le X$. Then
 $||f(x) - f_a(x)||_{0,X} \le ||F, d\rho||_{-\infty, -a} + ||F, d\rho||_{a,\infty}$.

Making X arbitrarily large

 $\|f(x) - f_a(x)\|_{0,\infty} \leq \|F, d\rho\|_{-\infty, -a} + \|F, d\rho\|_{a,\infty}$ which yields the desired result.

5. ANALOGY WITH FOURIER TRANSFORMS

(1) Let X be fixed. Then

$$\int_{0}^{X} f(x) dx = \lim_{\epsilon \to \infty} \int_{0}^{X} f_{a}(x) dx$$

$$= \lim_{\epsilon \to \infty} \sum_{r=1}^{2} \int_{-\epsilon}^{\epsilon} \left(F(u), d\rho_{r}(u) \right) \int_{0}^{X} \phi_{r}(0 | x, u) dx$$

$$= \lim_{\epsilon \to \infty} \sum_{r=1}^{2} \int_{-\epsilon}^{\epsilon} \tilde{\phi}_{r}(X, u) \left(F(u), d\rho_{r}(u) \right),$$

where

$$\tilde{\phi}_{\tau}(X, u) = \int_{0}^{X} \phi_{\tau}(0 \mid x, u) \, dx.$$

Hence

$$f(x) = d|dx \sum_{r=1}^{2} \int_{-\infty}^{\infty} \tilde{\phi}_{\tau}(x, u) \left(F(u), d\rho_{\tau}(u)\right)$$
(5.1)

almost everywhere. "

(II)
$$\int_{0}^{U} \left(F(u), d\rho_{T}(u) \right)$$
$$= \lim_{n \to \infty} \sum_{s=1}^{2} \int_{0}^{U} F_{sn}(u) d\rho_{Ts}(u)$$
$$= \lim_{n \to \infty} \sum_{s=1}^{2} \int_{0}^{U} d\rho_{Ts}(u) \int_{0}^{n} \left(\phi_{s}(0 \mid x, u), f(x) \right) dx$$
$$= \lim_{n \to \infty} \langle f(x), W_{T}(x, U) \rangle_{0,n},$$

where

$$W_{r}(x, U) = \sum_{s=1}^{2} \int_{0}^{U} \phi_{s}(0 \mid x, u) \, d\rho_{rs}(u).$$
(5.2)

Therefore

$$(F(u), \rho'_{\tau}(u)) = d | du \langle f(x), W_{\tau}(x, u) \rangle_{0,\infty}$$

$$(5.3)$$

at the points where $\rho'_r(u)$ exists.

6. The Vectors $\chi_r(x, \lambda), r = 1, 2$.

By arguments similar to those of Chakrabarty⁴, it follows from (2.6) by making $b \rightarrow \infty$ through a suitable sequence, that

$$\psi_{k}(x,\lambda) = \sum_{r=1}^{\infty} m_{kr}(\lambda) \phi_{r}(0 \mid x,\lambda) + \theta_{k}(0 \mid x,\lambda), \quad (k = 1, 2) \quad (6.1)$$

where

$$m_{kj}(\lambda) = \lim_{b \to \infty} l_{kj}(b, \lambda), \qquad m_{kj}(\lambda) = m_{jk}(\lambda),$$

the convergence to limits of various entities being uniform. Also

$$\|\psi_{\mathbf{k}}(x,\lambda)\|_{\mathbf{0},\mathbf{w}} \leq -\operatorname{Im} m_{\mathbf{k}\mathbf{k}}(\lambda)|v. \tag{6.2}$$

Thus $\psi_{\mathbf{k}}(x,\lambda) \in L[0,\infty)$. Adopting the analysis of Everitt,⁷ we obtain

$$m_{11}(\lambda) m_{22}(\lambda) - m_{12}^{2}(\lambda) \neq 0, \qquad (\operatorname{Im}(\lambda) \neq 0). \tag{6.3}$$

The following Lemma has been obtained by Bhagat.8

Lemma (6.1). The matrix

$$K(\lambda) = (K_{rs}(\lambda)) = (\lim_{\mu \to 0} \int_{0}^{\lambda} - \operatorname{Im} m_{rs}(\mu + i\nu) d\mu)$$
(6.4)

exists for all real λ ; each $K_{rs}(\lambda)$ is a function of bounded variation and

$$K_{rs}(\lambda) = \frac{1}{2} \{ K_{rs}(\lambda + 0) + K_{rs}(\lambda - 0) \}.$$
(6.5)

Also

$$\lim_{\mu \to 0} \int_{0}^{\lambda} - \operatorname{Im} \psi_{r} (x, \mu + i\nu) d\mu = \sum_{s=1}^{2} \int_{0}^{\lambda} \phi_{s} (0 \mid x, \mu) dK_{rs} (\mu). \quad (6.6)$$

Further we note from (6.2) that $- \lim m_{rr} (\mu + i\nu) > 0$ if $\nu > 0$ and therefore K_{rr} (λ) are non-decreasing functions of λ (r = 1, 2).

THEOREM (6.1). Let

$$\chi_{r}(x,\lambda) = \{\chi_{r1}(x,\lambda), \quad \chi_{r2}(x,\lambda)\} = \sum_{s=1}^{2} \int_{0}^{\lambda} \phi_{s}(0 \mid x,u) dK_{rs}(u), (6.7)$$

where r = 1, 2 and λ is real. Then

 $(\chi_r(x, \lambda), \chi_r(x, \lambda)) \in L[0, \infty).$

Proof: If λ_{nb} be an eigenvalue and $\psi_n(b; x)$ be corresponding eigenvector in the *b*-case, then

$$\langle \psi_n(b;x), \psi_r(b;x,\lambda) \rangle = R^{\frac{1}{2}} r_r(b;n) | (\lambda - \lambda_{nb}).$$
(6.8)

Hence, if $\lambda = \mu + iv$, the Parseval formula yields

$$\|\psi_{\boldsymbol{r}}(b;\boldsymbol{x},\lambda)\| = \sum_{n=-\infty}^{\infty} R_{\boldsymbol{r}\boldsymbol{r}}(b;\boldsymbol{n})/\{(\mu-\lambda_{\boldsymbol{n}b})^2+\nu^2\}.$$
(6.9)

If $\lambda = i$, then the left hand side of (6.9) is bounded as $b \to \infty$ through a suitable sequence. Therefore

$$\sum_{n=-\infty}^{\infty} R_{rr}(b;n) | (\lambda^2_{nb} + 1) = 0 (1).$$
(6.10)

If λ is real and lies in fixed interval, we obtain from (6.8)

$$\langle \psi_n(b;x), \int_0^\lambda \operatorname{Im} \psi_r(b;x,\mu+i\nu) \, d\mu \rangle = 0 \, (R^{i}_{rr}(b;n)|(\lambda^2_{nb}+1)).$$

Hence using Parseval formula and then making $b \to \infty$ through a suitable sequence, we obtain

$$\|\int_{0}^{\lambda} \operatorname{Im} \psi_{\mathbf{r}}(x,\mu+i\nu) \, d\mu \|_{0,\infty} = 0 \ (1).$$

Finally, making $v \rightarrow 0$ and using (6.6), we have

$$\|\sum_{i=1}^{2}\int_{0}^{\lambda}\phi_{\mathbf{z}}(0\mid x,\mu)\,dK_{\mathbf{TS}}(\mu)\,\|_{0,\infty}=0\,(1)$$

which yields the desired result.

7. RELATION BETWEEN $\chi_{\mathbf{r}}(x, u)$ and $W_{\mathbf{r}}(x, u)$

Making $b \to \infty$ through a suitable sequence and then $U \to \infty$ in (3.8) it follows that

$$\int_{-\infty}^{\infty} d\rho_{rs}(u) [(u^2+1) \leqslant K.$$
(7.1)

By Green's theorem

$$\begin{aligned} (\lambda - \lambda_{nb}) &\langle \phi_{\mathbf{r}} (0 \mid x, \lambda_{nb}), \quad \psi_{\mathbf{i}} (b; x, \lambda) \rangle \\ &= \langle \phi_{\mathbf{r}} (0 \mid x, \lambda_{nb}), L\psi_{\mathbf{i}} (b; x, \lambda) \rangle - \langle \psi_{\mathbf{i}} (b; x, \lambda), L\phi_{\mathbf{r}} (0 \mid x, \lambda_{nb}) \rangle \\ &= [\psi_{\mathbf{i}} (b; x, \lambda), \phi_{\mathbf{r}} (0 \mid x, \lambda_{nb})] (b) - [\psi_{\mathbf{i}} (b; x, \lambda), \phi_{\mathbf{r}} (0 \mid x, \lambda_{nb})] (0). \end{aligned}$$

The second term on the right hand side

$$= -1,$$
 if $r = 1$
= 0, if $r = 2.$

The first term on the right hand side is zero because $\psi_1(b; x, \lambda)$, $\psi_n(b; x)$, $\psi_{n^{(1)}}(b; x)$ and $\psi_{n^{(2)}}(b; x)$ satisfy the same boundary conditions at x = b and it follows from the expressions for $\psi_n(b; x)$, $\psi_n^{(1)}(b; x)$ and $\psi_n^{(2)}(b; x)$ that $\phi_r(0 | x, \lambda_{nb})$ (r=1, 2) also satisfy the same boundary conditions at x=b.

Hence

$$\langle \phi_r (0 \mid x, \lambda_{nb}), \psi_1 (b; x, \lambda) \rangle = 1/(\lambda - \lambda_{nb}), \text{ if } r = 1$$

= 0 , if $r = 2.$ (7.2)

Therefore, the transform of $\psi_1(b; x, \lambda)$ in [0, b] is $\{1/(\lambda - u), 0\}$.

Similarly the transform of $\psi_2(b; x, \lambda)$ ib [0, b] in $\{0, 1 | (\lambda - u)\}$. The formula (4.5), therefore, yields

$$\langle \psi_r(b; x, \lambda_1), \psi_s(b; x, \lambda_2) \rangle = \int_{-\infty}^{\infty} d\rho_{rs}(b; u) |(\lambda_1 - u)(\lambda_2 - u), \psi_s(b; u)|(\lambda_1 - u)(\lambda_2 - u)|(\lambda_1 - u)|$$

 $r_1 s = 1, 2$. Putting $\lambda = \lambda_1 = \mu + i\nu$, $\overline{\lambda} = \lambda_2 = \mu - i\nu$ and using (2.8), we obtain

$$-\frac{\operatorname{Im} l_{rs}(b,\lambda)}{v} = \int_{-\infty}^{\infty} d\rho_{rs}(b;u) |\{(\mu-u)^2 + v^2\}.$$
(7.3)

Therefore

 $\operatorname{Im} l_{rs}(b; i) - \operatorname{Im} l_{rs}(b; \lambda) / \nu \\ = \int_{-\infty}^{\infty} \left\{ \frac{1}{(u-u)^2 + \nu^2} - \frac{1}{u^2 + 1} \right\} d\rho_{rs}(b; u)$

Making $b \rightarrow \infty$ through a suitable sequence, we obtain

$$\int_{u_{1}}^{u_{2}} - \operatorname{Im} m_{rs}(\lambda) \, d\mu = \int_{-U}^{U} d\rho_{rs}(u) \int_{u_{1}}^{u_{2}} v d\mu | \{(\mu - u)^{2} + v^{2}\} + 0 \, (v).$$

where $U > u_2$ and $-U < u_1$ (cf. Titchmarsh³, p. 137).

Making $v \rightarrow 0$ and using (3.11) the right hand side tends to

$$\pi \left[\rho_{rs} \left(u_2 \right) - \rho_{rs} \left(u_{21} \right) \right] = \pi \int_{u_2}^{u_2} d\rho_{rs} \left(u \right),$$

where u_1 and u_2 are the points of continuity of $\rho_{rs}(u)$.

Now, it follows from the definitions of functions $K_{rs}(u)$ and $\rho_{rs}(u)$ that

$$K(u) = \pi \rho(u) \tag{7.4}$$

Further

$$\chi_{\tau}(x,\lambda) = \sum_{s=1}^{2} \int_{0}^{\lambda} \phi_{s}(0 \mid x, u) dK_{\tau s}(u) \qquad (\lambda \text{ real})$$
$$= \pi \sum_{s=1}^{2} \int_{0}^{\lambda} \phi_{s}(0 \mid x, u) d\rho_{\tau s}(u) = \pi W_{\tau}(x,\lambda).$$
(7.5)

8. SINGULAR SURFACES

Following Everitt' and Bhagat⁸ we get the generalization of Weyl's circle obtained by Titchmarsh³ for our boundary value problem. We only mention the relevant results required for the purpose of our transform theory and omit the details. Let us define

$$S_{r}(b, \lambda, b_{jk}) = S_{r}(b) = -i \left[\psi_{r}(b, x, \lambda), \bar{\psi}_{r}(b, x, \lambda) \right]_{x=b} = 0 \quad (8.1)$$

r = 1, 2. For fixed b and $\lambda = \mu + iv$ ($\nu \neq 0$), as b_{jk} vary, the points (l_{r1}, l_{r2}) describe a surface in the two-dimensional complex space, whose equation is expressed as

$$S_r(b) = 0$$
 (r = 1, 2).

We call these surfaces the singular surfaces of our problem. These surfaces are 'central surfaces' which tend to a limit surface $S_r(\infty) = 0$ as $b \to \infty$. The surface $S_r(\infty) = 0$ is also a central surface and $l_{rs}(b, \lambda) \to m_{rs}(\lambda)$ as $b \to \infty$ through a suitable sequence; the point

$$(m_{r_1}(\lambda), m_{r_2}(\lambda)) \in S_r(\infty) = 0.$$

Let $(M_{r1}(b), M_{r2}(b))$ (r = 1, 2) denote the centre of the singular surface $S_r(b) = 0$ in the two-dimensional complex space and let (Z_{r1}, Z_{r2}) be any point on this surface, then the range of the values of Z_{rs} is completely determined by

$$|Z_{rs} - M_{rs}^{(b)}|^{2} \leq \frac{\|\phi_{3-r}(0 \mid x, \lambda)\| \|\phi_{3-s}(0 \mid x, \lambda)\|}{4\nu^{2} [\|\phi_{1}(0 \mid x, \lambda)\| \|\phi_{2}(0 \mid x, \lambda)\| - |\langle\phi_{1}(0 \mid x, \lambda), \overline{\phi}_{2}(0 \mid x, \lambda)\rangle|^{2}]^{2}},$$
(8.2)

where

$$[1 - |\langle \phi_1, \bar{\phi}_2 \rangle|^2 / ||\phi_1|| ||\phi_2||] > 0.$$
(8.3)

for all b > 0.

9. The Reverse Transform

We define the following two classes of vectors:

(i) The class of vectors

$$f(x) = \{f_1(x), f_2(x)\} \in L^2 \quad \text{if} \quad || f ||_{0,\infty} < \rangle \infty$$
(9.1)

(ii) The class of vectors

$$F(u) = \{F_1(u), F_2(u)\} \in \mathcal{L}^2 \text{ if } ||F, d\rho|| < \infty.$$
^(9.2)

THEOREM (9.1). If $F(u) \in \mathcal{L}^2$. Then it has a 'reverse transform' $f(x) \in L^2$.

Proof | Let us define $f_a(x)$ by (4.8). Let $g(x) = \{g_1(x), g_2(x)\} \in L^2[0, X]$ and $g(x) = \{0, 0\}$ for x > X, and let G(u) be its transform.

Then the conditions leading to (4.10) are satisfied, and hence, if $0 \le a \le b$, we obtain

$$[\langle (f_a(x)-f_b(x)), g(x)\rangle_0, x]^2 \leq [|| F, d\rho ||_{-b, -a} + || F, d\rho ||_a, b] || g(x) ||_0, x.$$

Putting $g(x) = f_a(x) - f_b(x)$ in (0, X) and then making $X \to \infty$, we get

$$||f_{a}(x) - f_{b}(x)||_{0,\infty} \leq ||F, d\rho||_{-b, -a} + ||F, d\rho||_{a, b}.$$
(9.3)

Hence the sequence of vectors $f_a(x)$ converges in mean over $[0, \infty)$, say, to f(x). Putting a = 0 and making $b \to \infty$ in (9.3), it follows that

$$|| f(x) ||_{0,\infty} \leq || F, d\rho ||.$$
(9.4)

f(x) is the reverse transform of F(u).

Thus, starting from a vector f(x) of L^2 with transform F(u), it follows that F(u) has the reverse transform h(x) such that f(x) and h(x) are the limits in mean of the sequence of vectors $f_a(x)$ defined by (4.8). Hence

 $h(x) = f(x) \quad \text{almost everywhere.}$ Lemma (9.1) $\lim_{k \to \infty} || \psi_r(b, x, \lambda) - \psi_r(x, \lambda) \rangle || = 0 \quad (9.5)$

 $(\operatorname{Im}(\lambda) \neq 0)$ as $b \to \infty$ through a suitable sequence.

Proof: For simplicity we evaluate the limit when r = 1. We have

$$\| \psi_1(b, x, \lambda) - \psi_1(x, \lambda) \| \leq \| l_{11} - m_{11} \|^2 \| \phi_1 \| + 2 \| l_{11} - m_{11} \| \| l_{12} - m_{12} \| | \langle \phi_1, \overline{\phi}_2 \rangle \| + \| l_{13} - m_{12} \| | \phi_2 \|.$$
(9.6)

If ϕ_1 and $\phi_2 \in L^2[0, \infty)$ then the right hand side tends to zero as $b \to \infty$ through a suitable sequence, for $l_{rs}(b, \lambda) \to m_{rs}(\lambda)$ and the lemma follows. When ϕ_1 and ϕ_2 both do not belong to $L^2[0, \infty)$, using (8.2) in (9.6), we obtain

LLSci-17

$$\| \psi_{1} (b, x, \lambda) - \psi_{1} (x, \lambda) \|$$

$$\leq \frac{2 \{ \| \phi_{2} \| \}^{2} \| \phi_{1} \| + 2 \| \phi_{2} \| \{ \| \phi_{2} \| \| \| \phi_{1} \| \}^{2} | \langle \phi_{1}, \overline{\phi_{2}} \rangle | \\ 4 v^{2} [\langle \phi_{1} | | \phi_{2} - \langle \psi_{1}, \overline{\phi_{2}} \rangle |^{2}]^{2} }$$

$$\leq \frac{1}{v^{2} \| \phi_{1} \| [1 - | \langle \psi_{1}, \overline{\phi_{2}} \rangle |^{2} / \| \phi_{1} \| \| \phi_{2} \|]^{2} }$$

which tends to zero as $b \to \infty$ if $\phi_1 \notin L^2[0, \infty)$, since (8.3) holds for all values of b > 0. Similarly

$$\|\psi_2(b, x, \lambda) - \psi_2(x, \lambda)\| \to 0 \quad \text{as} \quad b \to \infty \text{ if } \phi_2 \notin L^2[0, \infty).$$

'Lemma (9.2)

(i)
$$(W_{\tau}(x, u), W_{\tau}(x, u)) \in L[0, \infty)$$
 in x.
(ii) $\sum_{s=1}^{2} \langle W_{\tau}(x, u_{2}) - W_{\tau}(x, u_{1}), W_{s}(x, v_{2}) - W_{s}(x, v_{1}) \rangle$
 $= \sum_{s=1}^{2} \sum_{w_{1}}^{w_{1}} d\rho_{\tau s}(u), (w_{1} < w_{2})$
 $= 0, (w_{1} \ge w_{2}), \}$
(9.7)

where $w_1 = \max(u_1, v_1)$, $w_2 = \min(u_2, v_2)$ are the points of continuity of $\rho_{TS}(u)$.

Proof: Let $W_{\tau}(b; x, u) = \sum_{s=1}^{2} \int_{0}^{s} \phi_{s}(0 \mid x, t) d\rho_{\tau s}(b; t).$

Then

$$W_{1}(b; x, u) = \sum_{0 \leq \lambda_{nb} \leq u}^{\prime} (\phi_{1}(0 \mid x, \lambda_{nb}) R_{11}(b; n) + \phi_{2}(0 \mid x, \lambda_{nb}),$$

$$\times R_{12}(b; n)), \qquad (9.8)$$

where the dash denotes that the terms with $\lambda_{nb} = 0$ or u are halved. Two cases arise according as $D(b; \lambda)$ has a simple or a double zero at $\lambda = \lambda_{nb}$.

CASE I. Let $D(b; \lambda)$ have a double zero at $\lambda = \lambda_{nb}$. Then from $(\mathfrak{H}, \mathfrak{H})$ and (2.11)

1944 N

$$W_{1}(b; x, u) = \sum_{\substack{0 \le \lambda_{nb} \le u}}^{\prime} R^{\frac{1}{2}}_{11}(b; n) \psi_{n}^{(1)}(b; x) = \sum_{\substack{0 \le \lambda_{nb} \le u}}^{\prime} R^{\frac{1}{2}}_{11}(b; n) \left(A_{n} (A_{n}^{2} + B_{n}^{2})^{-\frac{1}{2}} \psi_{n}^{(1)}(b; x) + B_{n} (A_{n}^{2} + B_{n}^{2})^{-\frac{1}{2}} \psi_{n}^{(2)}(b; x) \right) = \sum_{\substack{0 \le \lambda_{nb} \le u}}^{\prime} R^{\frac{1}{2}}_{11}(b; n) \psi_{n}(b; x),$$
(9.9)

where

$$A_{n} = \langle \psi_{n}^{(1)}(b; x), \quad \psi_{1}(b; x, \lambda) \rangle = R^{\frac{1}{2}} (b; n) / (\lambda - \lambda_{nb})$$

$$B_{n} = \langle \psi_{n}^{(2)}(b; x), \quad \psi_{1}(b; x, \lambda) \rangle = 0.$$

CASE-II. Let $D(b; \lambda)$ have a simple zero at $\lambda = \lambda_{nb}$. Then from (9.8), (2.9) and (2.10)

$$W_1(b; x, u) = \sum_{\substack{0 \le \lambda_n b \le u}} R^{\frac{1}{2}}_{11}(b; n) \psi_n(b; x)$$

which is of the same form as (9.9). Hence if u > 0

$$\| W_{1}(b; x, u) \| = \sum_{\substack{n \\ 0 \le \lambda n b \le u}}^{n} R_{11}(b; n) \le \rho_{11}(b; u),$$
(9.10)

where double dash denotes a factor $\frac{1}{4}$ at the ends. Therefore, if c < b

 $|| W_1(b; x, u) ||_0, c \leq \rho_{11}(b; u) \leq K(u),$

where K is independent of b and c. Making first $b \to \infty$ and then $c \to \infty$ we obtain

$$\| \mathcal{W}_1(x, u) \|_{0,\infty} \leqslant K(u)$$
(9.11)

and similarly if u < 0.

Again

$$\begin{split} W_{2}(b;x,u) &= \sum_{\substack{0 \leq \lambda_{nb} \leq u}}^{r} \left(\phi_{1}\left(0 \mid x, \lambda_{nb} \right) R_{21}\left(b; n \right) + \phi_{2}\left(0 \mid x, \lambda_{nb} \right) R_{22}\left(b; n \right) \right) \\ &= \sum_{\substack{0 \leq \lambda_{nb} \leq u}}^{r} R^{\frac{1}{2}}_{22}\left(b; n \right) \psi_{n}\left(b; x \right) \end{split}$$

by (2.9) and (2.10) if λ_{nb} is a simple zero of $D(b; \lambda)$.

ſ

If λ_{nb} be a double zero of $D(b; \lambda)$, we have

$$\begin{aligned} W_{2}(b; x, u) &= \sum_{\substack{a \leq \lambda_{nb} \leq u}}^{\sum} R^{\frac{1}{2}}_{22}(b; n) \left(A_{n} \left(A_{n}^{2} + B_{n}^{2}\right)^{-\frac{1}{2}} \psi_{n}^{(1)}(b; x)\right) \\ &+ B_{n} \left(A_{n}^{2} + B_{n}^{2}\right)^{-\frac{1}{2}} \psi_{n}^{(2)}(b; x) \right) \\ &= \sum_{\substack{a \leq \lambda_{nb} \leq u}}^{\sum} R^{\frac{1}{2}}_{22}(b; n) \psi_{n}(b; x), \end{aligned}$$

where

$$\begin{aligned} A_n &= \langle \psi_n^{(1)}(b; x), \psi_2(b; x, \lambda) \rangle = R_{21}(b, n) |R^{\frac{1}{2}}_{11}(b; n)(\lambda - \lambda_{nb}), \\ B_n &= \langle \psi_n^{(2)}(b; x), \psi_2(b; x, \lambda) \rangle = - \frac{\{R_{11}(b; n) R_{22}(b; n) - R_{12}^2(b; n)\}^{\frac{1}{2}}}{R^{\frac{1}{2}}_{11}(b; n)(\lambda - \lambda_{nb})}. \end{aligned}$$

The analysis now proceeds as in the case of $W_1(b; x, u)$ and first part of the lemma follows. Let Im $(\lambda) > 0$. Then

$$\langle \left(W_{1}(b; x, u_{2}) - W_{1}(b; x, u_{1}) \right), \quad \psi_{T}(b; x, \lambda) \rangle$$

$$= \sum_{u_{1} \leq \lambda_{nb} \leq u_{2}}^{\prime} \left[R_{11}(b; n) \langle \phi_{1}(0 \mid x, \lambda_{nb}), \psi_{T}(b; x, \lambda) \rangle \right]$$

$$+ R_{12}(b; n) \langle \phi_{2}(0 \mid x, \lambda_{nb}), \psi_{T}(b; x, \lambda) \rangle$$

$$= \sum_{u_{1} \leq \lambda_{nb} \leq u_{2}}^{\prime} R_{1T}(b; n) / (\lambda - \lambda_{nb}) = \int_{u_{1}}^{u_{2}} d\phi_{1T}(b; t) | (\lambda - t) \rangle$$

by arguments similar to those leading to (7.2). Hence

$$\sum_{r=1}^{2} \left[\left(\left(W_{1}(b; x, u_{2}) - W_{1}(b; x, u_{1}) \right), \quad \psi_{r}(b; x, \lambda) \right) \right] \\ = \sum_{r=1}^{2} \int_{u_{1}}^{u_{2}} d\rho_{1r}(b; t) |(\lambda - t) .$$
(9.12)

From (9.5), (9.10) and the Schwarz inequality for vectors, we obtain

$$\lim_{b\to\infty} \langle W_1(b; x, u), (\psi_r(b; x, \lambda) - \psi_r(x, \lambda)) \rangle = 0.$$

Also, since W_1 (b; x, u) $\in L^2[0, \infty)$ for some b-sequence and

$$\begin{split} & W_1(b; x, u) \to W_1(x, u) \in L^2[0, \infty), \\ & \lim_{b \to \infty} \langle \left(W_1(b; x, u) - W_1(x, u), \psi_r(x, \lambda) \right) = 0. \end{split}$$

Hence

$$\sum_{r=1}^{2} \left[\langle \left(W_1 \left(x, \, u_2 \right) - \, W_1 \left(x, \, u_1 \right) \right), \quad \psi_r \left(x, \, \lambda \right) \rangle_{\mathbf{0}, \, \infty} \right] = \sum_{r=1}^{2} \int_{u_1}^{u_2} d\rho_{1r} \left(t \right) / (\lambda - t).$$

Therefore

$$\sum_{r=1}^{2} \left[\left(\left(W_1(x, u_2) - W_1(x, u_1) \right), \int_{v_1}^{v_2} - \operatorname{Im} \psi_r(x, \mu + iv) \, d\mu \right)_{0, \infty} \right] \\ = \sum_{r=1}^{2} \int_{u_1}^{u_2} d\rho_{1,r}(t) \int_{v_1}^{v_2} v \, d\mu / \{(\mu - t)^2 + v^2\}.$$

Making $v \to 0$, using the relations (6.7), (7.5) on the left hand side and he relation (3.11) on the right hand side, we obtain

$$\sum_{r=1}^{2} \left[\langle \left(W_{1}(x, u_{2}) - W_{1}(x, u_{1}) \right), \left(W_{r}(x, v_{2}) - W_{r}(x, v_{1}) \right) \rangle_{0, \infty} \right] \\ = \sum_{r=1}^{2} \int_{u_{1}}^{u_{1}} dp_{1r}(t) \qquad (w_{1} < w_{2}) \\ = 0 \qquad (w_{1} \ge w_{2}) \right\}.$$

for the justification of the limiting process under the sign of integration, we note that

$$\int_{0}^{\sigma} -\operatorname{Im} \psi_{r} \left(x, \mu + i\delta \right) d\mu = x_{r} \left(x, \sigma + i\delta \right) \epsilon L^{2} \left[0, \infty \right]$$

or $\delta = \delta_1, \delta_2, \delta_3 \dots$ and as $\delta \to 0$, $\chi_r(x, \sigma + i\delta) \to \chi_r(x, \sigma) \in L^2[0, \infty)$ imilar arguments apply when we start with $W_2(b; x, u)$ and (ii) follows.

We now start for the reverse transform by considering two column ectors F(u) and G(u) defined as follows:

$$F(u) = \{M_1, M_2\} \text{ in } u_1 \le u \le u_2; \\ G(u) = \{N_1, N_2\} \text{ in } v_1 \le v \le v_2 \\ F(u) = \{0, 0\} = G(u) \text{ otherwise,} \end{cases}$$

there M_1 , M_2 , N_1 and N_2 are constants. The reverse transforms of F(u) and G(u) respectively are then given by

$$f(x) = \sum_{r=1}^{2} \int_{-\infty}^{\infty} \phi_r(0 \mid x, u) (F(u), d\rho_r(u))$$

= $\sum_{r=1}^{2} \sum_{t=1}^{2} M_r \int_{u_t}^{s_t} \phi_s(0 \mid x, u) d\rho_{rs}(u)$
= $\sum_{r=1}^{2} M_{rr} (W_r(x, u_2) - W_r(x, u_1))$

and

$$g(x) = \sum_{r=1}^{2} N_r (W_r(x, v_2) - W_r(x, v_1)).$$

Hence

$$\langle f, g \rangle_{0,\infty} = \langle \sum_{r=1}^{2} M_r \left(\tilde{W}_r (x, u_2) - W_r (x, u_1) \right), \sum_{s=1}^{2} N_s \left(W_s (x, v_2) - W_s (x, v_1) \right) \rangle_{0,\infty}$$

$$= \sum_{r=1}^{2} \sum_{s=1}^{2} M_r N_s \int_{w_1}^{w_2} d\rho_{rs} (t) \quad (w_1 < w_2) \\ = 0 \qquad (w_1 \ge w_2)$$

$$(9.13)$$

by (9.7), where $w_1 = \max(u_1, v_1)$, $w_2 = \min(u_2, v_2)$ are the points of continuity of $\rho_{rs}(t)$ (r, s = 1, 2). Also

$$\langle F, G, d\rho \rangle = \sum_{\substack{r=1 \ r=1}^{2}}^{2} \sum_{\substack{s=1 \ r=1}}^{2} M_{r} N_{s} \int_{w_{1}}^{w_{2}} d\rho_{rs}(t) \qquad (w_{1} < w_{2}) \\ = 0. \qquad \qquad (w_{1} \ge w_{2}) \ \} .$$
 (9.14)

It follows from (9.13) and (9.14) that the Parseval formula

 $\langle F, G, d\rho \rangle = \langle f, g \rangle_{0,\infty}$

holds in this case.

Thus, defining a step-vector as one each of whose components is a step function, we obtain, by addition of vectors, such as F(u) and G(u) above, the Parseval formula when F(u) and G(u) are any step-vectors with two components having their steps at the points of continuity of $(\rho_{rs}(u))$, and F(u) = (0, 0) = G(u) outside finite intervals. Now, let F(u) be any vector of \mathcal{L}^2 . Then we can define a sequence of step-vectors $F^{(n)}(u)$, each of the previous type, such that

$$||F - F^{(n)}, d\rho|| \rightarrow 0$$

Let $f^{(n)}(x)$ be the reverse transform of $F^{(n)}(u)$. Then $\left(f^{(m)}(x) - f^{(n)}(x)\right)$ is the reverse transform of $\left(F^{(m)}(u) - F^{(n)}(u)\right)$, and

$$||f^{(m)} - f^{(n)}||_{0,\infty} = ||F^{(m)} - F^{(n)}, d\rho|| \to 0$$

as m and n tend to infinity independently of each other.

Hence $f^{(n)}(x)$ converge in mean to f(x), say. Then f(x) is the reverse transform of F(u), and

$$\|F, d\rho\| = \|f\|_{0,\infty}$$
(9.15)

which may be termed 'reverse Parseval formula'.

It follows from the arguments used in § 4 that the reverse transform defined in the above manner is equal almost everywhere to that defined in § 4.

THEOREM (9.2). If F(u) is a given two component column vector of \mathcal{L}^2 , f(x) is its reverse transform, and H(u) is the transform of f(x), then H(u) is equivalent to F(u) in the sense that

$$\|F - H, d\rho\| = 0. \tag{9.16}$$

Proof: Let $F_{ra}(u) = \langle \phi_r(0 \mid x, u), f(x) \rangle_{0, a}.$

Then the reverse transform of $F_a(u) = \{F_{1a}(u), F_{2a}(u)\}$ is f(x) in [0, a]and $\{0, 0\}$ in $[a, \infty)$. Therefore the reverse transform of $(F(u) - F_a(u))$ is $\{0, 0\}$ in [0, a] and f(x) in $[a, \infty)$.

Hence, by the reverse Parseval formula (9.15)

 $||F - F_a, d\rho|| = ||f||_{a,\infty}.$

Therefore $F_a(u)$ converges in mean with respect to $\rho(u)$ to F(u). Further, by the arguments of § 4, $F_a(u)$ converges in mean with respect to $\rho(u)$ to H(u).

Hence (9.16) follows.

Combining the relevant results of $\S 4$ and $\S 9$, we obtain the following:

THEOREM (9.3). A necessary and sufficient condition that $f(x) \in L^2$ is that $F(u) \in \mathcal{L}^2$.

Materials of the present paper are taken from the author's Ph.D. thesis⁹ witten under the supervision of Dr. N. K. Chakrabarty, to whom the author expresses his deep gratitude.

References

- 1. Chakrabarty, N.K. Some problems in eigenfunction expansions (I). Quart. J. of Math. (Oxford), 1965, 16 (2), 135-150.
- Kodaira, K.
 On ordinary differential equations of any even order and the corresponding eigenfunction expansion. Amer. J. Math., 1950, 72, 502-544.
 - Eigenfunction Expansions Associated with Second-order Differential Equations, Part I, 2nd ed., Clarendon Press, Oxford 1962.
- Chakrabarty, N. K.
 Some problems in eigenfunction expansions (III), Quan.
 J. of Math. (Oxford), 1968, 19 (2), 213-224.
- Hardy, G. H., Littlewood, Inequalities, Cambridge University Press, 1952, J. L. and Polya, G.
- Levinson, N. The expansion theorem for singular self-adjoint differential operator. Ann. Math., 1954, 59 (2), 300-315.
- Everitt, W. N. Fourth order singular differential equations, Math. Ann., 1963, 149, 320-340.
- 8. Bhagat, B. A Thesis for the Degree of Doctor of Philosophy, (unpublished), Patna University, 1966.
- Tiwari, S.
 On Eigenfunction Expansions Associated with Differential Equations, Thesis (unpublished), University of Calcutta, 1971.

524

3. Titchmarsh, E. C.