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ABSTRACT
In connection with the differential system
L—-NU=90 (U< x < o0) 14)
where

dz
— L r®
L= dx

r(x)

with a prescribed set of brundary conditions at x == 0, the nature of the spectrum
(continuous and discrete) is studied. The method used is Titchmarsh's [complex
varigble methed initiated in his © Eigenfunction expansions’.

Keywords: Spectrum, Boundary -condition vector, Kronecker deita, Entwre function,
Bitinear concomitant. Differential equations; Eigenfunctions.

{. INTRODUCTION

We consider the differential system (A) viz.

LU = AU, Aeigenvalue parameter (0 x < oo), 1.1
where (@) p (x), g (x) are real valued and p' (x), ¢" (x) < oo (i) 7 (x) is
teal valued and continuous in D x < oo (iii) p (x), ¢ (x) andfor r(x)
tenfl to minus infinity as x tends to infinity. As usual accent denotes differ-
entiation with respect to x.

The boundary condition at x =10 is defined as in [6] by
G0+ g (O + v (0) + a0 (0)=0(j=12 (1.2)
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Let ¢ (x, ) = b O/, ) = 5 (Of%, 2, 95 (O, N}, (/= 1, 2) bo g
boundary condition vectors at x==0 (see [6]).

Let 0 = {xk, i} (k = 1,2) be two other vectors satisfying (1. 1)ang
the relations

{5 bl = Sjx, 10, 6,1 =0 (k= 1,2),

8, being the Kronecker delta and [..] is the bilinear concomitant of e
two vectors (see Chakrabarty [2]). Then the pair of L2<olutions of ffe
system (1.1) is given by

o 6, X = 0y (6, ) + 3 mps () s (% 0 (r = 1, 2)
smL
wcompare Chakiabaity [3]).
' If m (X) = (mpg (A)) be a meromorphic matrix function of A we define
the spectrum 1o be discrete.  On the other hand an interval throughout which
b
prs (A) = lim | I mps ( + ) dpe
Y0 0
are continuous belongs to the continwous spectrum. (see Bhagat [1)),

When p (x), g (x), 7 (x) ¢ L, Bhagat [1] establishes a theorem on the
continuous nature of the spectrumn associated with the system (1.1). The
present author in his paper [6] establishes some conditions for the distete-
ness of the spectrum of the system (1.1). The present paper is concetned
with two theorems on the nature of the spectrum of (1.1} under different
sets of conditions.

2. Some NOTATIONS AND ABBREVIATIONS

we make use of the following notation:
G.D=nOa®+ 0@

for two vectors ¥ = {}, (t), ¥2 (1)}, z == {z; (¢), z,(£)} (see Chakrabarty [2]
and Naimark [3]).

In what follows we write
ZW=A=p@O) K- q()
MO =~ {ZEM O~ pt - g (A= g
FEPEQA =P+ (A — @+ 3p g ZO7]
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L) =Elp, g ) =Z@Y* + M (1) Z(1)"
— (A — p O)E A — g ()?
(@) =r@ZE" L) = £ 1)

& (@) )
MO =(rm 4o

M@ ={Z® ZE, S @ = {cos £ (x), sin £ (%)}

3. A BASIC TRANSFORMATION

We consider the system (1.1) which is equivalent to the equations

Tt O—pu =r(v o
B~ gDy =r@u
By means of the transformation
£ = [ O—p@) (O~ g@p*d } 5.2
() L)} = A —p (P4 — g () {ulx), v}
the system (3.1) is transformed to
(3.3

B+ K )+ 1A —g()]n —RE é}

Te+ KN + 1/ —p ()] § =R

where
K=+ Q-2 Q-2+ ¢ =g @G —p]
+16 PP —pt(A— gt + ¢ (x— (A — 7]
+ 18 pg A —p)2 (A — g
Rx) =R 0, 2) =r(x) Z ™

In the above A may be real or complex. I A is complex, we take U <
g A<wso that Im A> 0 and O <arg A —p)harg A — D" <M~
for each m, n, where M = max (m, n). Then Jm & (x)> 0. (see Titch-
marsh [8]).
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If A be real and p or g > A, we take arg (A —p)? or arg (A — qe
as equal to #/2 as the case may be.

where

with

Let P (x) = Z () H (x) G4

H (x) = {H, (x), Hy (x)}

d o @ {2
By () = 7 (20 gl - Z @ i

B0 = Sz 8] -z E

Then following the method used in [€], we obtain

and

where

Thus

with

7 (x) = 1 (Q) cos £(x) + =’ (0) Z {0y V2 sin £(x)

+ j sin (€ () — £@) (b (1), Q) dr 3.5

L(x) = L) cos £(x) + L' (0) Z OV sin £(x)
+Of sin. (£ (x) — £ (1) (2 (1), 2 (1)) dr )

Ly = {6, m (O LD = {n (), L () and
LO={@ O

Q (x) = N(0) 5 (x) -+ j sin (6o — E@) N () QW dr (3T)

v = (10 1O 20

L) v Z©yr

4. A LemMmaA

In what follows we use |B| to represent the matrix whose elements
are the moduli of the elements of the corresponding matrix B. We then
have the following lemma.
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Lema I Let () p(x), 4(x) <— Q) where Q(x)>=8>0
o p®. (). r(x)<—Q(x) where Q(x)>8>0 with r{x)=
0{p(x) g (x)), &> x == 0. :
@) Q) e L [0, oa)
Gr@=00px kg =01[q¢xI)
(0< ¢<< 5/2)
@) p" (%), ¢"(x) are ultmately of one sign
(OF ACINREIEGW
Thep
TN @] Ne () | it
o
i uniformly convergent with respcct to A (real or complex) in anyl region
for which | A—p (x) |, | A— ¢x) |2 8 > J for 0<CX <C oo,

The lemma follows in the same wey as that indicated in Paladhi [6].

5. SOME ASYMPTOTIC RELATIONS

Using the supstitvtion
9y (%) = Z (x) Q(x) exp (F€ (x))
in (3.7) and then applying Conte and Sangren’s Lemma [4], it follows that
[96, 1 L) | = O[] exp Kep (0) g () || exp (= 160} ]

5.1)
where K is a positive constant.
The »ystem (3.1) has the solution
Us{u(x),v (0} = Z () [N(0) S (x)
© T sinEG) — £ M () @ () di) (5.2)

Now
wx ) = Z ()% xp (K p () ¢ (%)
X [oos £ (x) ug (x, D/{Z (x) exp (Krp () 4 eNH
-+ sin £ () vy (%, YHZ () exp (Ko p (%) g CO]
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where

(%, 0) = 7 (0) — I (Q (@), b () sin £ (1) dr

. 53
i ) =m0 ZO¥ + @, LMYecos £y ar 9

with 2 similar exp:ession for » (x, A) with g, (x, ), v, (x, X) defined in the
same manner as g, v, with /, replaced by /s 1 (0) by £(0) and »' (0) by

(0.
Several cases are now considered.
(i) Let A be real and positive.
We have
o (%, /Z (x) exp (Ky p (%) g (x))
== 1 (0)/{Z (x) exp (K, p (x) ¢ (x))}
~ (2 (0, b (1) sin £ (V(Z (x) exp (Ky p () () a

(5.31)
Now,

| I sin £ (1) (2 (1), b (D)/Z () exp (Ko p (%) ¢ () di |

ST LML, [N ) dr, by (5.1).
As x -» oo the integral on the right is convergent (uniformly with respect
to A) by the Lemma . Hence the integral on the left is convergent as x —oo,
Therefore, the left-hand side of (5.31) - p; (2), < oo, say.

Similarly,

vy (x, M)/ Z (x) exp (K, p (x) g (x)) - ¥y (X), < oo, say.
Again,

()= lim te (%, AL (x) exp (Ki p (x) g (x))

= lim [— g sin £ (1) (1, (1), @ (2)) d))Z (x) exp (Ky p (x) 4 ()
e (5.3)
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and
v (N) = Tim v, (x, N/Z (x) exp (Ky p (x) g (x))
= s [ ] cos (1) (b (1) @ () dM1/Z (x) exp (K p () g (D,
(3-33)
o (N, vz (A) being finite limits as before.
Thus
i (% ) ~ (= p ) — g LY [y (1) cos £ (x)
+ v, (M sin £ (0] Z (x) exp (K; p (x) ¢ (X)) (5.4
Similarly,
206N ~ @A —p )T — g () e (M) cos € (x)
+ v (A) sin £ (x)] Z (x) exp (K p (x) ¢ (x)) (5-44)
Again,

W () = o 2 P (s, W]
=Z @XM (x5, ) — 1/ [ — p )94 (A — g ()" p’ ()
F (A= g x) (A — p )N g ()] u(x, ) (5.5)
Differentiating (3. 3),
7' (x) =Zx)"* [ — 5 (0) sin £1x) + 7" (0) Z(0)2 cos £ (x)
+ nf cos (£ (x) — £ (1)) U, (1), 2 (2)) dt 5.

Therefore from (5.5) and (5.6),
WX ) ~ (A —p () (A — g () [y (M) cos £ (%)
— g (3 sin € (x)] Z (x) exp (K 7 (x) ¢ () - 6D
as X - oo,
Similarly,
VX ) ~ (A — p (X)) (A — g (X)NY4 vy (2) cos £ (%)
— (Y sin ¢ (0] Z () exp (Kap () 9 (%) -8

a8 X — oo,
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Let {u;, v5} and {x;, ¥i% J =1, 2, be the solutions of (1. 1yandlet 4, 5
be associated with u;; Ay, By With vy As, By With uy; 4,, B, with v, b PR
B with xy, Ag, Bg with y1; A, B, with x;, A, Bs with y,, in the same’w;y
as pi, ¥; are associated with the solution {, »}of (1.1) in (5.4) and (5.4 )
Then

(Z ) ~Z@emWr@a@) COUBSW 6y

[(j, ) = (1, 1), (2, 3)]
where

C<x)=<z()<§)ﬁm z<2)114)= “Bﬁ‘:(gfg)) fi%))

with similar expressions for {xp (x, A), X'k (x, )}
[k, 1) = (1, 5), (2, )], for v; (3, A 2’5 (x5, N [(7, 1) = (1,2), 2, 4]
and for {y (x, ), Ve (x 8} [(k. 1) = (1. 6), (2, B)].

Then substituting for [4; 8], [¢s 6,] in terms of A4;, B; from (5.9) we
can assume that

Ay (N, By (M), 45 (A), B, (V) # 0 simultaneously ;
Az (M), By (N), 4, (N, B, (M) 5= 0 simultaneously
A1 () = lim 4 (3, )/Z () exp (Ky p (%) g (3) (5.10

B (N = lim B; (x, H/Z (x) exp (Ky 7 (x) 4 (x))
(i=1,2,..8
(since [g5 6] =1, = 1, 2).

A change of argument is necessary if A < 0. In this case we choose
Xsothat A —p (%), A—g(x)> 0 for x> X, and the interval [0, o
is replaced by [X, oo).

(i) Let X be complex : A=« +iB (B >0
Let x, be so chosen that o — p(), a — ¢ (t) > 8 for x> X
From (3.2),

ED=I]+T1e—p@ +i B2 — )+ d
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=t 4 [ e — p ()2 @~ g (W2 dr

+3 iﬁf ffe — 2 ()2 — g (D)
(e — g )2l — p ()] dt
FOB 1P a@ (@) + g0 2 dn
) (¢, = Constant).
Hence

Im £(x) ~ } BJ [l — 2 (ENY3(a — g (Y2

+ (@ — g Yo — p ()" dt.
Therefore, if

Fo 0 +a O @) g () ar .11)
Is divergent, it follows that | exp (— / £ (x)) | is large for large x.

6. SPECTRAL THEOREM (CONTINUOUS CASE)
Using (3.7) and proceeding as in [€], it follows that

Q) ~i2Z x)exp [ — 1§ (x) + K p (x) g(X)] R (6.1)
where R = {R;, R,}

=lim [ exp (i £(1) Z (27 exp (— Kup () g () Na () dr < oo

. 6.2)

with Ny (8) = {(l; (1), 2 (1)), (I (1), 2 (1))}
Let

X (%) = Z ()" Ok (x, ) b == 1 .3
Y (%) = Z (x)" i (%, ) (k=12 €3

where X, = Xk, sz}: Y = {¥i,, Ykz}: say.
Proceeding as before we have for a fixed A, as x— o<
X () ~(/) Z(x)exp [— i () + Kip () g D] T (M

Yy, (%) ~ (i2) Z (x) exp [— i€ (x) + Ky p () ¢ ()] See (V)
(k=12 (6-4)
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where T () = {Rix (A R (V) Sw (N = {Sik (), Sere (W)} and
Rix, Six (4, k =1, 2) are independent of x,

It follows from (6.4), (5-32), (5.33) and (5.9) that
Rp=BiN)—idiN)(=1l;k=12j=57.
‘ Also /=2; k=1,2j=6,8) @5
Spe=B; (N —id Q) (=1;k=1,2, j=1,3
Also 1=2; k=12, j=2,4,

Now considering the solutions

e = e (6. )+ 5 ek ) () e=1,2)
and proceeding as in [6] we have

mrs (A) = Nrs (N/D (X) (rns=12) (6.6)
where

Npgs(A) = Ryp S3o— Ry Soy, f5s=1,r=12

=Ry Sy — Ry Sy f5=2,r=1,2

and

D (M) = Syy Sap — Sy2 Sy
Thus

_(By (V—1dg (V) (B ()—idy (\)—(Bs (N—ids () (By (V)i 4,(1)
ma 00 = (= O B (=T (01— (B YT, Oy (B 4-0)

= (Re Ny () +iIm Ny (X)) [(By By — A4; Ag) — (By By~ 4y 4)
+i(4y By + By Ay — A3 By — A,B)]/w (M),

the nume-ator and denomin~tor being continuous functions of A; where
W) = [(B1 By — 4y 4)) — (B; B, — 4 4))*
~+ [(4, By -+ B, 4,) — (43 By + 4, By)]?
Therefore

;1_1)110 Im [y (V)] = My (@)fw (), say.
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Now by the Schwartz inequality, we have
[(B By — Ayd,) — (By By — Az A)F*
> [By? -+ Ai® + B? + AT [By? + A% B2 AT, (6.7)
4i, B; (i = 1, 2, 3, 4) being real,

Since 43, Bi (=1, 2 or j = 3, 4) cannot vanish simultaneously at a point
ot the ) axis, it follows from (6.7) that the denominator in the expression
for lim Tm [myy (X)] is not zero at any point on the A axis. Similar result

gl .
holds for other lim Tm {m;; (V]
B0
Hence the spectrum of the system (1.1), (1.2) is continuous over the
whole range (—co, co).
We thus obtain the following theorem.
TueoreM 1. Jf all the conditions of the Lemma I are satisfied and if

fc[(p/q)“2 + (afp)\1*} dt be divergent, then the spectrum of the system (1.1),
(t-2) is continuous over the whole X-axis (— oo, oo).

7. SpPECTRAL THEOREM [DISCRETE CASE]

In what follows we assume that all the conditions of Theorem 1 are
satisfied except that

P00+ @) g @)y a .1

is now convergent.

We have,
£ D — (0 =¥~ N (®) +q@)]g @) dr

where

g =[A—pONEQ— gV +(p () (Y
Then

N — £ 0) =T =A@ +a@lg® d

=X (A) < o0, as X — oo, A (7.2)
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For, the integrand in (7.2)
=0[p(t) +a N @ ¢ +0 [p () ¢ (@)

and by condition (1) of lemma 1
@@yt <o
The finiteness of X (1) therefore follows from (7.1) and condmon(
of Lemma I. Thus Im ¢ (x) is bounded and so are cos ¢ (x) and sin £l
(A real or complex).
We then have from (3-3), (3.6) and (3.2)
t{x, A) = C Z (x) exp (Kyp (x) ¢ () [y (V) cos £ (x)
F v ) sin £ (x) + o0 (1]
v (x, ) = G Z () exp (Kap (%) ¢ (x) [ie5 (2) cos £ (x)
+ vy () sin € (x) + o ()] (1.3
W (x,2) = G Z (x) exp (Kup () ¢ (39) [y () cos ¢ (x)
— py (M) sin € (x) + o (1)]
2" (% ) = Gy Z (x) exp (Kup (%) g (x)) [e (M) cos £ ()
— sy N sin £ (x) +o(1)]
for large x and for all values of A real or complex, where C, = Z{J
C, = Z (x)Vs.

Since (A — p (O (A — g (£))V* are anelytic functions of A regular
except on the negative real axis, with similar arguments for £(;4),
| My (8) | | Ny (¥) |, therefore the integrals in the expressions for p(d),
vi () ¢ = 1, 2) converge uniformly with respect to A in any finite region.
Hence pi (A), v; (%) and therefore 4; (X), B; (A) (j=1,2....) are analyiic
functions of A regular except possibly on the negative real axis. Similw
arguments hold for the interval (X, oo) which replaces [0, oo), X being
sufficiently large. We therefore have,

. U, L (1) sin ¢ () Z O™
Ha (N ““}_])12 Xf Z(x) 1exp (K, p (x) q(x)) a

i [ W@LL @) cos £ (1) Z i1
A) ==
W ,l_’fix Z (x)yexp (K, py (x) 9(x)) ;
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with similar expressions for us (A), v, (A) and for 4; (X), Bj (A) (G =1, 2,...).
Hence 4; (A), Bj (1) are regular except possibly on the real axis between —oo
and mex [p (X), ¢ X)) In fact, 4;(X), B () (j=1,2, ..)) are entire
fumctions of A in the interval (— oo, oo).

We consider the solution

e =0 (5, 0) + 2 s (W ds (0 (=1, 2 74

such that
dn (%, A) = &y (B/x, A)
= ([poba] ¢a (B/%, N) — [dahs] b4 (b/x, 1)/Dy ()
o (3, B =ty ()%, )
= ([:85] B4 (B/x, X) — [¢1,] 85 (B/x, N)/D (M) (7-5)
where ¢, ¢4 are the boundary-condition vectors at x = b.(b > 0) and
D, (N =D, (6N
= [$dal (6. 2) [popal (B M) — [$194] (B, D) [pashs] (b, )
and 8y, are defined as before.
Then,
bs (0, ) = Ips () = [hyr (B/x, 3) 05 O/, N)]  (r,s=1,2),
lys (b, A) being dependent on b, A
We therefore have,

(20 2) = 26 €0y oxp (K (3) 4 () (4B S (9 +0 ((17>1,6)

b (7.3) (U, 1) = (1, 1), (2. 3). 3, 9), (4, 10)), with similar results for . (3, 2),
Vi (6 Y (k1) = (1, 5), (2, 7)) and for yi (x, 1), ¥k (% N (k. 1) = (1, 6),
(2 8)) and for ; (x, A), %5 (%, N (G, D) = (1, 2), (2, 4, 3, 11), (4, 12)).
Putting Ay, (X) = r; cos vy, Biy () = ry8in yy and — vy = & — (5, 0)
in the expression A;; (X) cos & (b) + By (V) sin £(B) (Cyis a constanty
where

Ay (/\) = A, +B, + 4, 4 By — Ay — By — Ay — B,

Big(N) = 4, +B, + Ay — Ay — By — 4;; — By,
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we have,
Ay (V) cos € (B) + By (3) sin £ (B)
=ryco8 [£(h, ) — £ (5,0) + CJ
1y 008 [x (7) + G < o0, as b - oo,
Hence substituting for u;, s, etc., in [¢ps] (5, 1)
and simplifying, it follows that for large 5
[l (b V) = Z (B2 oxp* [K, p (B) g (B[S D) + o (1) (1
where sy3 (A) = (d; By — A4 By) -+ (43 By — Ayy By).
Proceeding as before, for large b, if 4 (b) = Z (b)* exp® (K, » Blg ()
[habal (&, 1) = A (b) [$20 (A) + 0 (1)]
{61641 (B, A) = £ (8) [s510 () + 0 (1)]
[hadal (0, M) = £ (B) [s5 (W) + 0 (1)] 4
[bs8:] (B, 2) = A (B) [522 () + 0 (V)]
[$402) (b, 1) == A (B) [s52 (V) 40 (1)]
where
Soa (A) = (43 Byg — Ayo Bs) - (d, Byy — Ao BY)
$14 () = (4, Byo — A1o By) -+ (Ay Byy — Ay By)
Sa3 (A) = (43 By — Ay B,) + (4, Byy — Ay By
S31 () = (do By — A5 By) + (Ayy By — Ag 311)
sy (M) = (43 Bs — A5 Byy) + (A Bg — Ag Byy)-
Hence substituting from (7.7), (7-8) we have
Ly (b, ) = Ny (b, B/ Dy (6, M),
where
Dy 6, D) = {515 (A) + 0 (D] [$24 V) F 0 (1)]
~ s ) + 0 (D] 52 ) +o (DI} [Z @) exp (Kop ) 9 CF
for large b, with a similar expression for Ny (b A)-
Letting 6 — oo in & (5, A),
Ly (b, X) — myy () = Ny (W)/Dyy (N), 5aY,
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Nyg (4, Dyy (V) being analytic functions of A, with similar expressions for
other i (D).

Hence nyj (1) are meromorphic functions of A.  Therefore the spectrum
of the system (1, 1), (1, 2) is discrete. Hence we obtain the following theorem.

TueoreM 2. If all the conditions of lemma I are satisfied and if

F[(p/q vz L (gfp)V2] dt be conmvergent then the spectrum of the system
(1.1), (1.2) is discrete over the interval (— oo, oq).
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