ON THE NATURE OF THE SPECTRUM FOR A PAIR OF SECOND-ORDER DIFFERENTIAL EQUATIONS

Basuder Ray Paladhi*
(Department of Pire Mathentatics, Calcutta Universisy)

Received on May 27, 1976, and in revised form on September 9, 1976

Abstract

In connection with the differential system

$$
\begin{equation*}
(L-\lambda) U=0 \quad(6 \leqslant x<\infty) \tag{A}
\end{equation*}
$$

where

$$
L=\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+p(x) & r(x) \\
r(x) & -\frac{d^{2}}{d x^{2}}+q(x)
\end{array}\right), \quad U \equiv\{u, v\} \equiv\binom{u}{v}
$$

with a prescribed set of bundary conditions at $x=0$, the nature of the spectrum (continuous and discrete) is stuated. The method used is Titchmarsh's [complex waiable methed initiated in his' Eigenfunction expansions'.

Keywords: Spectrum, Boundary -condition vector, Kronecker delta, Entre function, Bilinear concomitant. Differential equations; Eigenfunctions.

1. Introduction

We consider the differential system (A) viz.

$$
\begin{equation*}
L U=\lambda U, \quad \lambda \text { eigenvalue parameter }(0 \leqslant x<\infty), \tag{1.1}
\end{equation*}
$$

where (i) $p(x), q(x)$ are real valued and $p^{\prime \prime}(x), q^{\prime \prime}(x)<\infty \quad$ (ii) $r(x)$ is real valued and continuous in $0 \leqslant x<\infty$ (iii) $p(x), q(x)$ and/or $r(x)$ tend to minus infinity as x tends to infinity. As usual accent denotes differentiation with respect to x.

The boundary condition at $x=0$ is defined as in [6] by

$$
\begin{equation*}
a_{j_{1}} u(0)+a_{j 2} u^{\prime}(0)+a_{j 3} v(0)+a_{j_{4}} v^{\prime}(0)=0(j=1,2) \tag{1.2}
\end{equation*}
$$

[^0]Let $\phi_{j}(x, \lambda) \equiv \phi_{j}(0 / x, \lambda)=\left\{u_{j}(0 / x, \lambda), v_{j}(0 / x, \lambda)\right\},(j=1,2)$ be the boundary condition vectors at $x=0$ (see [6]).

Let $\theta_{k}=\left\{x_{k}, y_{k}\right\}(k=1,2)$ be two other vectors satisfying (1.1) axd the relations

$$
\left[\phi_{j}, \theta_{k}\right]=\delta_{j k}, \quad\left[\theta_{1}, \theta_{2}\right]=0(j, k=1,2),
$$

$\delta_{j k}$ being the Kronecker delta and [..] is the bilinear concomitant of the two vectors (see Chakrabarty [2]). Then the pair of L^{2}-solutionts of the system (1.1) is given by

$$
\psi_{r}(x, \lambda)=\theta_{r}(x, \lambda)+\sum_{s=1}^{2} m_{r s}(\lambda) \phi_{s}(x, \lambda)(r=1,2)
$$

(compare Chakıabaty [3]).
If $m(\lambda)=\left(m_{r s}(\lambda)\right)$ be a meromorphic matrix function of λ we define the spectrum to be discrete. On the other hand an interval throughout which

$$
\rho_{r s}(\lambda)=\lim _{y \rightarrow 0} \int_{0}^{\lambda} I_{m} m_{r s}(\mu+i v) d \mu
$$

are continuous belongs to the continuous spectrum. (see Bhagat [1].
When $p(x), q(x), r(x) \in L$, Bhagat [1] establishes a theorem on the continuous nature of the spectrum associated with the system (1.1). The present author in his paper [6] establishes some conditions for the disreteness of the spectrum of the system (1.1). The present paper is concerned with two theorems on the nature of the spectrum of (1.1) under different sets of conditions.

2. Some Notations and Abbreviations

We nake use of the following notation:

$$
(y, z)=y_{1}(t) z_{1}(t)+y_{2}(t) z_{2}(t)
$$

for two vectors $y=\left\{y_{1}(t), y_{2}(t)\right\}, z=\left\{z_{1}(t), z_{2}(t)\right\}$ (see Chakrabarty [2] and Naimark [5]).

In what follows we write

$$
\begin{aligned}
Z(t)= & (\lambda-p(t))(\lambda-q(t)) \\
M(t)= & -\frac{1}{4} Z(t)^{-1 / 4}\left[p^{\prime \prime}(\lambda-p)^{-1}+q^{\prime \prime}(\lambda-q)^{-1}\right. \\
& \left.+\frac{5}{4} p^{\prime 2}(\lambda-p)^{-2}+\frac{5}{4} q^{\prime 2}(\lambda-q)^{-2}+\frac{1}{2} p^{\prime} q^{\prime} Z(t)^{-1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \xi_{1}(t) \equiv \dot{\xi}_{1}(p, q, t)=Z(t)^{1 / 2}+M(t) Z(t)^{-1 / 4} \\
&-(\lambda-p(t))^{1 / 2} /(\lambda-q(t))^{1 / 2} \\
&-(t)= \\
& \eta_{1}(t) Z(t)^{-1 / 2}, \zeta_{1}(t)=\xi_{1}(q, p, t) \\
& N_{1}(t)=\left(\begin{array}{ll}
\xi_{1}(t) & \eta_{1}(t) \\
\eta_{1}(t) & \zeta_{1}(t)
\end{array}\right) \\
& N_{2}(t)=\left\{Z(t)^{-1}, Z(t)^{-1}\right\}, S(x)=\{\cos \xi(x), \sin \xi(x)\}
\end{aligned}
$$

3. A Basic Transformation

We consider the system (1.1) which is equivalent to the equations

$$
\left.\begin{array}{l}
\frac{d^{2} u}{d x^{2}}+(\lambda-p(x)) u=r(x) v \tag{3.1}\\
\frac{d^{2} v}{d x^{2}}+(\lambda-q(x)) v=r(x) u
\end{array}\right\}
$$

By means of the transformation

$$
\left.\begin{array}{l}
\xi(x)=\int_{0}^{x}(\lambda-p(t))^{1 / 2}(\lambda-q(t))^{1 / 2} d t \tag{3.2}\\
\{\eta(x), \zeta(x)\}=(\lambda-p(x))^{1 / 4}(\lambda-q(x))^{14}\{u(x), v(x)\}
\end{array}\right\}
$$

the system (3.1) is transformed to

$$
\left.\begin{array}{l}
\frac{d^{2} \eta}{d \xi^{2}}+[K(x, \lambda)+1 /(\lambda-q(x))] \eta=R(x) \zeta \tag{3.3}\\
\frac{d^{2} \zeta}{d \xi^{2}}+[K(x, \lambda)+1 /(\lambda-p(x))] \zeta=R(x) \eta
\end{array}\right\}
$$

where

$$
\begin{aligned}
& K(x, \lambda)=1 / 4\left[p^{\prime \prime}(\lambda-p)^{-2}(\lambda-q)^{-1}+q^{\prime \prime}(\lambda-q)^{-2}(\lambda-p)^{-1}\right] \\
& \quad+5 / 16\left[p^{\prime 2}(\lambda-p)^{-3}(\lambda-q)^{-1}+q^{\prime 2}(x-q)^{-3}(\lambda-p)^{-1}\right] \\
& \quad+1 / 8 p^{\prime} q^{\prime}(\lambda-p)^{-2}(\lambda-q)^{-2} \\
& R(x) \equiv R(x, \lambda)=r(x) Z(x)^{-1} .
\end{aligned}
$$

In the above λ may be real or complex. If λ is complex, we take $U<$ $\arg \lambda<\pi$ so that $\operatorname{Im} \lambda>0$ and $0<\arg (\lambda-p)^{m}, \arg (\lambda-q)^{n}<M \pi$ for each m, n, where $M=\max (m, n)$. Then $\operatorname{Im} \xi(x)>0$. (see Titchmarsh [8]).

If λ be real and p or $q>\lambda$, we take $\arg (\lambda-p)^{1 / 2}$ or $\arg (\lambda-q)^{1 / 2}$ as equal to $\pi / 2$ as the case may be.

$$
\begin{equation*}
\text { Let } p(x)=Z(x)^{1 / 4} H(x) \tag{3.4}
\end{equation*}
$$

where

$$
H(x)=\left\{H_{1}(x), H_{2}(x)\right\}
$$

with

$$
\begin{aligned}
& H_{1}(x)=\frac{d}{d x}\left[Z(x)^{-1 / 2} \frac{d \eta}{d x}\right]-Z(x)^{-1 / 4} \frac{d^{2} U}{d x^{2}} \\
& H_{2}(x)=\frac{d}{d x}\left[Z(x)^{-1 / 2} \frac{d \zeta}{d x}\right]-Z(x)^{-1 / 4} \frac{d^{2} v}{d x^{2}}
\end{aligned}
$$

Then following the method used in [6], we obtain

$$
\begin{align*}
\eta(x)= & \eta(0) \cos \xi(x)+\eta^{\prime}(0) Z(0)^{-1 / 2} \sin \xi(x) \\
& +\int_{0}^{\pi} \sin (\xi(x)-\xi(t))\left(l_{1}(t), \Omega(t)\right) d t \tag{3.5}
\end{align*}
$$

and

$$
\begin{align*}
\zeta(x)= & \zeta(0) \cos \xi(x)+\xi^{\prime}(0) Z(0)^{-1 / 2} \sin \xi(x) \\
& +\int_{0}^{\infty} \sin (\xi(x)-\xi(t))\left(l_{2}(t), \Omega(t)\right) d t \tag{3.6}
\end{align*}
$$

where

$$
\begin{aligned}
& l_{1}(t)=\left\{\xi_{1}(t), \eta_{1}(t)\right\}, I_{2}(t)=\left\{\eta_{1}(t), \zeta_{1}(t)\right\} \text { and } \\
& \Omega(t)=\{\eta(i), \zeta(t)\}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\Omega(x)=N(0) S(x)+\int_{0}^{\pi} \sin (\xi(x)-\xi(t)) N_{1}(t) \Omega(t) d t \tag{3.7}
\end{equation*}
$$

with

$$
N(o)=\left(\begin{array}{lll}
\eta(0) & \eta^{\prime}(0) & Z(0)^{-1 / 2} \\
\zeta(0) & \zeta^{\prime}(0) & Z(0)^{-1 / 2}
\end{array}\right)
$$

4. A Lemma

In what follows we use $|B|$ to represent the matrix whose elements are the moduli of the elements of the corresponding matrix B. We then have the following lemma.

Lemma I. Let (1) $p(x), \quad q(x)<-Q(x)$ where $Q(x) \geqslant \delta>0$ or $p(x), q(x), r(x)<-Q(x)$ where $Q(x) \geqslant \delta>0$ with $r(x)=$ $O(p(x) q(x))$, as $x \rightarrow \infty$.
(2) $Q(x)^{-1} \in L[0, \infty)$
(3) $p^{\prime}(x)=O\left[|p(x)|^{c}\right], q^{\prime}(x)=O\left[|q(x)|^{c}\right]$ ($0<c<5 / 2$)
(4) $p^{\prime \prime}(x), q^{\prime \prime}(x)$ are ultimately of one sign
(5) $p^{\prime}(x), q^{\prime}(x)<0$.

Then

$$
\int_{0}^{\infty}\left|N_{1}(t)\right|\left|N_{2}(t)\right| d t
$$

is uniformly convergent with respect to λ (real or complex) in any region for which $|\lambda-p(x)|,|\lambda-q(x)| \geqslant \delta>, 1$ for $0 \leqslant x<\infty$.

The lemma follows in the same wey as that indicated in Paladhi [6].

5. Some Asymptomic Relations

Using the suostitution

$$
\Omega_{2}(x)=Z(x) \Omega(x) \exp (j \xi(x))
$$

in (3.7) and then applying Conte and Sangren's Lemma [4], it follows that

$$
\begin{equation*}
\left|\eta(x),|\zeta(x)|=O\left[\left|\exp \left(K_{1} p(x) g(x)\right)\right||\exp (-i \xi(x))|\right]\right. \tag{5.1}
\end{equation*}
$$

where K_{1} is a positive constant.
The system (3.1) has the solution

$$
\begin{align*}
U=\{ & \{(x), v(x)\}=Z(x)^{-1 / 4}[N(0) S(x) \\
& \left.+\int_{0}^{j} \sin (\xi(x)-\xi(t)) N_{1}(t) \Omega(t) d t\right] \tag{5.2}
\end{align*}
$$

Now

$$
\begin{aligned}
u(x, \lambda)=Z & (x)^{3 / 1} \cdot \operatorname{xp}\left(K_{1} p(x) q(x)\right) \\
& \times\left[\cos \xi(x) u_{1}(x, \lambda) /\left\{Z(x) \exp \left(K_{1} p(x) q(x)\right)\right\}\right] \\
& \left.+\sin \xi(x) v_{1}(x, \lambda) /\left\{Z(x) \exp \left(K_{1} p(x) q(x)\right)\right\}\right]
\end{aligned}
$$

where

$$
\left.\begin{array}{l}
\mu_{1}(x, \lambda)=\eta(0)-\int_{0}^{0}\left(\Omega(t), l_{1}(t)\right) \sin \xi(t) d t \\
v_{1}(x, \lambda)=\eta^{\prime}(0) Z(0)^{-1 / 2}+\int_{0}^{x}\left(\Omega(t), l_{1}(t)\right) \cos \xi(t) d t
\end{array}\right\}
$$

with a similar expiession for $v(x, \lambda)$ with $\mu_{2}(x, \lambda), v_{2}(x, \lambda)$ defined in the same manner as μ_{1}, v_{1} with l_{1} replaced by $l_{2}, \eta(0)$ by $\zeta(0)$ and $\eta^{\prime}(0)$ by $\zeta^{\prime}(0)$.

Several cases are now considered.
(i) Let λ be real and positive.

We have

$$
\begin{align*}
& \mu_{1}(x, \lambda) / Z(x) \exp \left(K_{1} p(x) q(x)\right) \\
& =\eta(0) /\left\{Z(x) \exp \left(K_{1} p(x) q(x)\right)\right\} \\
& \quad-\int_{0}^{\infty}\left(\Omega(t), l_{1}(t)\right) \sin \xi(t) /\left(Z(x) \exp \left(K_{1} p(x) q(x)\right) d t\right. \tag{5.31}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \left|\int_{0} \sin \xi(t)\left(\Omega(t), l_{1}(t)\right) / Z(x) \exp \left(K_{1} p(x) q(x)\right) d t\right| \\
& \quad \leqslant \int_{0}^{x}\left(\left|l_{2}(t)\right|,\left|N_{2}(t)\right|\right) d t, \text { by }(5.1)
\end{aligned}
$$

As $x \rightarrow \infty$ the integral on the right is convergent (uniformly with respect to λ) by the Lemma I. Hence the integral on the left is convergent as $x \rightarrow \infty$,

Therefore, the left-hand side of $(5.31) \rightarrow \mu_{1}(\lambda),<\infty$, say.
Similarly,

$$
v_{1}(x, \lambda) / Z(x) \exp \left(K_{1} p(x) q(x)\right) \rightarrow v_{1}(\lambda),<\infty, \text { say. }
$$

Again,

$$
\begin{align*}
\mu_{2}(\lambda) & =\lim _{* \rightarrow \infty} \mu_{2}(x, \lambda) / Z(x) \exp \left(K_{1} p(x) q(x)\right) \\
& =\lim _{t \rightarrow \infty}\left[-\int_{0}^{x} \sin \xi(t)\left(I_{2}(t), \Omega(t)\right) d t\right] / Z(x) \exp \left(K_{1} p(x) q(x)\right) \tag{5.32}
\end{align*}
$$

and

$$
\begin{align*}
\nu_{2}(\lambda) & =\lim _{x \rightarrow \infty} y_{2}(x, \lambda) / Z(x) \exp \left(K_{1} p(x) q(x)\right) \\
& =\lim _{x \rightarrow \infty}\left[\int_{0}^{x} \cos \xi(t)\left(l_{2}(t), \Omega(t)\right) d t\right] / Z(x) \exp \left(K_{1} p(x) q(x)\right] \tag{5.33}
\end{align*}
$$

$\mu_{2}(\lambda), \nu_{2}(\lambda)$ being finite limits as before.
Thus

$$
\begin{align*}
u(x, \lambda) \sim & (\lambda-p(x))^{-1 / 4}(\lambda-q(x))^{-1 / 4}\left[\mu_{1}(\lambda) \cos \xi(x)\right. \\
& \left.+v_{1}(\lambda) \sin \xi(x)\right] Z(x) \exp \left(K_{\mathrm{J}} p(x) q(x)\right) \tag{5.4}
\end{align*}
$$

Similatly,

$$
\begin{align*}
v(x, \lambda) \sim & (\lambda-p(x))^{-1 / 4}(\lambda-q(x))^{-1 / 4}\left[\mu_{2}(\lambda) \cos \xi(x)\right. \\
& \left.+v_{2}(\lambda) \sin \xi(x)\right] Z(x) \exp \left(K_{1} p(x) q(x)\right) \tag{5.4a}
\end{align*}
$$

Again,

$$
\begin{align*}
\eta^{\prime}(x)= & \frac{d}{d x}\left[Z(x)^{1 / 4} u(x, \lambda)\right] \\
= & Z(x)^{1 / 4} u^{\prime}(x, \lambda)-(1 / 4)\left[(\lambda-p(x))^{-3 / 4}(\lambda-q(x))^{1 / 4} p^{\prime}(x)\right. \\
& \left.+(\lambda-q(x))^{-3^{3 / 4}}(\lambda-p(x))^{1 / 4} q^{\prime}(x)\right] u(x, \lambda) \tag{5.5}
\end{align*}
$$

Differentiating (3.5),

$$
\begin{align*}
\eta^{\prime}(x)= & Z(x)^{1 / 2}\left[-\eta(0) \sin \xi(x)+\eta^{\prime}(0) \mathcal{Z}(0)^{-1 / 2} \cos \xi(x)\right. \\
& +\int_{0}^{x} \cos (\xi(x)-\xi(t))\left(l_{2}(t), \Omega(t)\right) d t \tag{5.6}
\end{align*}
$$

Therefore from (5.5) and (5.6),

$$
\begin{align*}
u^{\prime}(x, \lambda) \sim & (\lambda-p(x))^{1 / 4}(\lambda-q(x))^{1 / 4}\left[v_{1}(\lambda) \cos \xi(x)\right. \\
& \left.-\mu_{1}(\lambda) \sin \xi(x)\right] \mathcal{Z}(x) \exp \left(K_{1} p(x) q(x)\right) \tag{5.7}
\end{align*}
$$

as $x \rightarrow \infty$.
Similarly,

$$
\begin{align*}
v^{\prime}(x, \lambda) \sim(\lambda & \left.-p(x))^{1 / 4}(\lambda-q(x))\right)^{1 / 4}\left[v_{2}(\lambda) \cos \xi(x)\right. \\
& \left.-\mu_{2}(\lambda) \sin \xi(x)\right] Z(x) \exp \left(K_{1} p(x) q(x)\right) \tag{5.8}
\end{align*}
$$

as $x \rightarrow \infty$,

Let $\left\{u_{j}, v_{j}\right\}$ and $\left\{x_{j}, y_{j}\right\}, j=1,2$, be the solutions of (1.1) and let A_{1}, B_{1} be associated with $u_{1} ; A_{2}, B_{2}$ with $v_{1} ; A_{3}, B_{3}$ with $u_{2} ; A_{4}, B_{4}$ with $v_{2} ; A_{3^{*}}$ B_{5} with x_{1}, A_{6}, B_{6} with $y_{1} ; A_{7}, B_{7}$ with x_{2}, A_{8}, B_{8} with y_{2}, in the same way as μ_{i}, v_{i} are associated with the solution $\{u, v\}$ of (1.1) in (5.4) and (5.4aj). Then

$$
\begin{align*}
& \binom{u_{j}(x, \lambda)}{u_{j}^{\prime}(x, \lambda)} \sim Z(x) \exp \left(K_{1} p(x) q(x)\right) C(x)(A B)_{i} S(x) \tag{5.9}\\
& {[(j, i)=(1,1),(2,3)]}
\end{align*}
$$

where

$$
C(x)=\left(\begin{array}{cc}
Z(x)^{-1 / 4} & 0 \\
0 & Z(x)^{1 / 4}
\end{array}\right), \quad(A B)_{i}=\left(\begin{array}{cc}
A_{i}(\lambda) & B_{i}(\lambda) \\
B_{i}(\lambda) & -A_{i}(\lambda)
\end{array}\right)
$$

with similar expressions for $\left\{x_{k}(x, \lambda), x_{k}^{\prime}(x, \lambda)\right\}$

$$
[(k, i)=(1,5),(2,7)], \text { for } v_{j}(x, \lambda), v_{j}^{\prime}(x, \lambda)[(j, i)=(1,2),(2,4)]
$$

and for $\left\{y_{k}(x, \lambda), y_{k}^{\prime}(x, \lambda)\right\}[(k, i)=(1,6),(2,8)]$.
Then substituting for $\left[\phi_{1} \theta_{1}\right],\left[\phi_{2} \theta_{2}\right]$ in terms of A_{j}, B_{j} from (5.9) सe can assume that

$$
\begin{array}{r}
A_{1}(\lambda), B_{1}(\lambda), A_{2}(\lambda), B_{2}(\lambda) \neq 0 \text { simultaneously } ; \\
A_{3}(\lambda), B_{3}(\lambda), A_{4}(\lambda), B_{2}(\lambda) \neq 0 \text { simultaneously } \\
A_{i}(\lambda)=\lim _{x \rightarrow \infty} A_{i}(x, \lambda) / Z(x) \exp \left(K_{1} p(x) q(x)\right) \tag{5.10}\\
B_{i}(\lambda)=\lim _{x \rightarrow \infty} B_{i}(x, \lambda) / Z(x) \exp \left(K_{1} p(x) q(x)\right) \\
(i=1,2, \ldots 8)
\end{array}
$$

(since $\left.\left[\phi_{j} \theta_{j}\right]=1, j=1,2\right)$.
A change of argument is necessary if $\lambda<0$. In this case we choose X so that $\lambda-p(x), \lambda-q(x)>0$ for $x \geqslant X$, and the interval $[0, \infty)$ is replaced by $[X, \infty)$.
(ii) Let λ be complex : $\lambda=\alpha+i \beta(\beta>0)$

Let x_{0} be so chosen that $\alpha-p(t), a-q(t)>\beta$ for $x>x_{0}$. From (3.2),

$$
\xi(x)=\left[\int_{0}^{z_{0}}+\int_{q}^{\ddot{0}}\right](\alpha-p(t)+i \beta)^{1 / 2}(\alpha-q(t)+i \beta)^{1 / 2} d t
$$

$$
\begin{aligned}
&= \xi_{0}+\int_{z_{0}}^{*}(\alpha-p(t))^{1 / 2}(\alpha-q(t))^{1 / 2} d t \\
&+\frac{1}{2} i \beta \int_{z_{0}}^{x}\left[(\alpha-p(t))^{1 / 2} /(\alpha-q(t))^{1 / 2}\right. \\
&\left.+(\alpha-q(t))^{1 / 2} /(\alpha-p(t))^{1,2}\right] d t \\
&+O\left[\beta^{2} \int_{z_{0}}^{x}|p(t) q(t)|^{1^{1 / 2}}\left(|p(t)|^{-2}+|q(t)|^{-2}\right) d t\right] \\
& \quad\left(\xi_{0}=\text { Constant }\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{Im} \xi(x) \sim & \frac{1}{2} \beta \int_{x_{0}}^{x}\left[(\alpha-p(t))^{11 /} /(\alpha-q(t))^{1 / 2}\right. \\
& \left.+(\alpha-q(t))^{1 / 2} /(\alpha-p(t))^{1 / 2}\right] d t .
\end{aligned}
$$

Therefore, if

$$
\int^{\infty}(p(t)+q(t)) /(p(t) q(t))^{1: 2} d t
$$

is divergent, it foliows that $|\exp (-i \xi(x))|$ is large for large x.

6. Spectral Theorem (Continuous Case)

Using (3.7) and proceeding as in [6], it follows that

$$
\begin{equation*}
\Omega(x) \sim i / 2 Z(x) \exp \left[-i \xi(x)+K_{1} p(x) q(x)\right] \bar{R} \tag{6.1}
\end{equation*}
$$

where $\bar{R} \equiv\left\{R_{1}, R_{2}\right\}$

$$
\begin{equation*}
=\lim _{x \rightarrow \infty} \int_{0}^{x} \exp (i \xi(t)) Z(x)^{-1} \exp \left(-K_{1} p(x) q(x)\right) N_{3}(t) d t<\infty \tag{6.2}
\end{equation*}
$$

with $N_{3}(t)=\left\{\left(l_{1}(t), \Omega(t)\right),\left(l_{2}(t), \Omega(t)\right)\right\}$.
Let

$$
\left.\begin{array}{l}
X_{k}(x)=Z(x)^{1 / 1} \theta_{k}(x, \lambda) \tag{6.3}\\
Y_{k}(x)=Z(x)^{1 / 4} \phi_{k}(x, \lambda)
\end{array}\right\} \quad(k=1,2)
$$

where $X_{k}=\left\{X_{k_{1}}, X_{k_{2}}\right\}, Y_{k}=\left\{Y_{k_{1}}, Y_{k_{2}}\right\}$, say.
Proceeding as before we have for a fixed λ, as $x \rightarrow \infty$

$$
\begin{array}{r}
X_{k}(x) \sim(i / 2) Z(x) \exp \left[-i \xi(x)+K_{1} p(x) q(x)\right] T_{k}(\lambda) \\
Y_{k}(x) \sim(i / 2) Z(x) \exp \left[-i \xi(x)+K_{1} p(x) q(x)\right] S_{k}(\lambda) \\
(k=1,2) \tag{6.4}
\end{array}
$$

where $T_{k}(\lambda)=\left\{R_{1 k}(\lambda), R_{2 k}(\lambda)\right\}, S_{k}(\lambda)=\left\{S_{1 k}(\lambda), S_{2 k}(\lambda)\right\}$ and
$R_{i k}, S_{i k}(i, k=1,2)$ are independent of x.
It follows from (6.4), (5.32), (5.33) and (5.9) that

$$
\begin{align*}
& R_{l k}=B_{j}(\lambda)-i A_{j}(\lambda)(l=1 ; k=1,2, j=5,7 . \\
& \text { Also } l=2 ; \quad k=1,2, j=6,8) \tag{6.5}\\
& S_{l k}=B_{j}(\lambda)-i A_{j}(\lambda) \quad(l=1 ; k=1,2, \quad j=1,3 . \\
& \text { Also } l=2 ; \quad k=1,2, \quad j=2,4) .
\end{align*}
$$

Now considering the solutions

$$
\psi_{k}=\theta_{k}(x, \lambda)+\sum_{r=1}^{2} m_{k r}(\lambda) \phi_{r}(x, \lambda) \quad(k=1,2)
$$

and proceeding as in [6] we have

$$
\begin{equation*}
m_{r s}(\lambda)=N_{r s}(\lambda) / D(\lambda) \quad(r, s=1,2) \tag{6.6}
\end{equation*}
$$

where

$$
\begin{aligned}
N_{r s}(\lambda) & =R_{2 r} S_{32}-R_{1 r} S_{2 z}, \quad \text { if } s=1, r=1,2 \\
& =R_{1 r} S_{21}-R_{2 r} S_{11}, \quad \text { if } s=2, r=1,2
\end{aligned}
$$

and

$$
D(\lambda)=S_{11} S_{22}-S_{12} S_{21}
$$

Thus

$$
\begin{gathered}
m_{11}(\lambda)=\frac{\left(B_{6}(\lambda)-i A_{6}(\lambda)\right)\left(B_{3}(\lambda)-i A_{3}(\lambda)\right)-\left(B_{5}(\lambda)-i A_{5}(\lambda)\right)\left(B_{4}(\lambda)-i A_{4}(\lambda)\right)}{\left(B_{1}(\lambda)-i A_{1}(\lambda)\right)\left(B_{4}(\lambda)-i A_{4}(\lambda)\right)-\left(B_{3}(\lambda)-i A_{3}(\lambda)\right)\left(B_{2}(\lambda)-i A_{2}(\lambda)\right.}=\left(\operatorname{Re} N_{11}(\lambda)+i \operatorname{Im} N_{11}(\lambda)\right)\left[\left(B_{1} B_{4}-A_{1} A_{4}\right)-\left(B_{3} B_{2}-A_{3} A_{2}\right)\right. \\
\left.\quad+i\left(A_{1} B_{4}+B_{1} A_{4}-A_{3} B_{2}-A_{2} B_{3}\right)\right] / w(\lambda),
\end{gathered}
$$

the numerator and denominetor being continuous functions of λ; where

$$
\begin{aligned}
w(\lambda)= & {\left[\left(B_{1} B_{4}-A_{1} A_{4}\right)-\left(B_{3} B_{2}-A_{3} A_{2}\right)\right]^{2} } \\
& +\left[\left(A_{1} B_{4}+B_{1} A_{4}\right)-\left(A_{3} B_{2}+A_{2} B_{8}\right)\right]^{2}
\end{aligned}
$$

Therefore

$$
\lim _{\beta \rightarrow 0} \operatorname{Im}\left[m_{\mathfrak{1 1}}(\lambda)\right]=M_{11}(\alpha) / w(\alpha), \text { say }
$$

Now by the Schwartz inequality, we have

$$
\begin{aligned}
& {\left[\left(B_{1} B_{4}-A_{1} A_{4}\right)-\left(B_{3} B_{2}-A_{3} A_{2}\right)\right]^{-2}} \\
& \geqslant\left[B_{1}^{2}+A_{1}^{2}+B_{2}^{2}+A_{2}^{2}\right]^{-1}\left[B_{3}^{2}+A_{3}^{2}+B_{4}^{2}+A_{1}^{2}\right]^{-1} \\
& A_{i}, B_{i}(i=1,2,3,4) \text { being real. }
\end{aligned}
$$

Since $A_{j}, B_{j}(j=1,2$ or $j=3,4)$ cannot vanish simultaneously at a point on the λ axis, it follows from (6.7) that the denominator in the expression for fim Im $\left[m_{11}(\lambda)\right]$ is not zero at any point on the λ axis. Similar result holds for other $\lim _{\beta \rightarrow 0}^{\boldsymbol{\beta} \rightarrow 0}$ Im $\left[m_{i j}(\lambda)\right]$

Hence the spectrum of the system (1.1), (1.2) is continuous over the whole range $(-\infty, \infty)$.

We thus obtain the following theorem.
Theorem 1. If' all the conditions of the Lemma I are satisfied and if $\int_{\int}^{\infty}\left[(p / q)^{1 / 2}+(q / p)^{1 / 2}\right] d t$ be divergent, then the spectrum of the system (1.1), (1.2) is continuous over the whole λ-axis $(-\infty, \infty)$.

7. Spectral Theorem [Discrete Case]

In what follows we assume that all the conditions of Theorem 1 are satisfied except that

$$
\begin{equation*}
\int^{\infty}(p(t)+q(t)) /(p(t) q(t))^{1 / 2} d t \tag{7.1}
\end{equation*}
$$

is now convergent.
We have,

$$
\xi(x, \lambda)-\xi(x, 0)=\int_{0}^{x}\left[\lambda^{2}-\lambda(p(t)+q(t))\right] g(t) d t
$$

where

$$
g(t)=\left[(\lambda-p(t))^{1 / 2}(\lambda-q(t))^{1 / 2}+(p(t) q(t))^{1^{2}}\right]^{-1},
$$

Then

$$
\begin{align*}
& \xi(x, \lambda)-\xi(x, 0) \rightarrow \int_{0}^{\infty}\left[\lambda^{2}-\lambda(p(t)+q(t)] g(t) d t\right. \\
&=x(\lambda)<\infty, \text { as } x \rightarrow \infty . \tag{7.2}
\end{align*}
$$

For, the integrand in (7.2)

$$
=O\left[(p(t)+q(t)) /(p(t) q(t))^{1 / 2}\right]+O\left[(p(t) q(t))^{-1 / 2}\right]
$$

and by condition (1) of lemman 1

$$
(p(t) q(t))^{-1 t 2}<Q(t)^{-1}
$$

The finiteness of $\chi(\lambda)$ therefore follows from (7.1) and condition (of Lemma 1 . Thus Im $\xi(x)$ is bounded and so are $\cos \xi(x)$ and $\sin \xi($. (λ real or complex).

We then have from (3.5), (3.6) and (3.2)

$$
\begin{align*}
u(x, \lambda)= & C_{1} Z(x) \exp \left(K_{1} p(x) g(x)\right)\left[\mu_{1}(\lambda) \cos \xi(x)\right. \\
& \left.+v_{1}(\lambda) \sin \xi(x)+o(1)\right] \\
v(x, \lambda)= & C_{1} Z(x) \exp \left(K_{1} p(x) q(x)\right)\left[\mu_{2}(\lambda) \cos \xi(x)\right. \\
& \left.+v_{2}(\lambda) \sin \xi(x)+o(1)\right] \\
u^{\prime}(x, \lambda)= & C_{2} Z(x) \exp \left(K_{1} p(x) q(x)\right)\left[v_{1}(\lambda) \cos \xi(x)\right. \\
& \left.-\mu_{1}(\lambda) \sin \xi(x)+o(1)\right] \\
v^{\prime}(x, \lambda)= & C_{2} Z(x) \exp \left(K_{1} p(x) q(x)\right)\left[v_{2}(\lambda) \cos \xi(x)\right. \\
& \left.-\mu_{2}(\lambda) \sin \xi(x)+o(1)\right]
\end{align*}
$$

for large x and for all values of λ real or complex, where $C_{1}=Z(x)^{-1.4}$, $C_{2}=Z(x)^{1 / 4}$.

Since $(\lambda-p(t))^{1 / 4},(\lambda-q(t))^{1 / 4}$ are analytic functions of λ regulat except on the negative real axis, with similar arguments for $\xi(t, \lambda)$, $\left|N_{1}(t)\right|\left|N_{2}(t)\right|$, therefore the integrals in the expressions for $\mu_{i}\left(\lambda_{1}\right)$ $v_{i}(\lambda)(i=1,2)$ converge uniformly with respect to λ in any finite region. Hence $\mu_{i}(\lambda), v_{i}(\lambda)$ and therefore $A_{j}(\lambda), B_{j}(\lambda)(j=1,2 \ldots)$ are analyic functions of λ regular except possibly on the negative real axis. Simila arguments hold for the interval (X, ∞) which replaces $[0, \infty), X$ being sufficiently large. We therefore have,

$$
\begin{aligned}
& \mu_{1}(\lambda)=\lim _{x \rightarrow \infty} \int_{X}^{x}-\frac{\left(U(t), l_{1}(t)\right) \sin \xi(t) Z(t)^{1 / 4}}{Z(x) \exp \left(K_{1} p(x) q(x)\right)} d t \\
& \nu_{1}(\lambda)=\lim _{x \rightarrow \infty} \int_{x}^{u} \frac{\left(U(t), l_{1}(t)\right) \cos \xi(t) Z(t)^{1 / 4}}{Z(x) \exp \left(K_{1} p_{1}(x) q(x)\right)} d t
\end{aligned}
$$

with similar expressions for $\mu_{2}(\lambda), \nu_{2}(\lambda)$ and for $A_{j}(\lambda), B_{j}(\lambda)(j=1,2, \ldots)$. Hence $A_{j}(\lambda), B_{j}(\lambda)$ are regular except possibly on the real axis between $-\infty$ and $\max [p(X), q(X)]$. In fact, $A_{j}(\lambda), B_{j}(\lambda)(j=1,2, \ldots)$ are entire functions of λ in the interval $(-\infty, \infty)$.

We consider the solution

$$
\psi_{k}=\theta_{k}(x, \lambda)+\sum_{s=2}^{2} l_{k s}(\lambda) \phi_{s}(x, \lambda)(k=1,2)
$$

such that

$$
\begin{align*}
& \psi_{1}(x, \lambda)=\psi_{1}(b / x, \lambda) \\
& \quad=\left(\left[\phi_{2} \phi_{4}\right] \phi_{3}(b / x, \lambda)-\left[\phi_{2} \phi_{3}\right] \phi_{1}(b / x, \lambda)\right) / D_{1}(\lambda) \\
& \psi_{9}(x, \lambda) \equiv \psi_{2}(b / x, \lambda) \\
& \quad=\left(\left[\phi_{1} \phi_{3}\right] \phi_{4}(b / x, \lambda)-\left[\phi_{1} \phi_{4}\right] \phi_{3}(b / x, \lambda)\right) / D_{1}(\lambda) \tag{7.5}
\end{align*}
$$

where ϕ_{3}, ϕ_{4} are the boundary-condition vectors at $x=b(b>0)$ and

$$
\begin{aligned}
& D_{1}(\lambda)=D_{1}(b, \lambda) \\
& \quad=\left[\phi_{1} \phi_{3}\right](b, \lambda)\left[\phi_{2} \phi_{4}\right](b, \lambda)-\left[\phi_{1} \phi_{4}\right](b, \lambda)\left[\phi_{2} \phi_{3}\right](b, \lambda)
\end{aligned}
$$

and θ_{k} are defined as before.
Then,

$$
\begin{aligned}
& l_{r s}(b, \lambda) \equiv l_{r s}(\lambda)=\left[\psi_{r}(b / x, \lambda) \theta_{s}(0 / x, \lambda)\right] \quad(r, s=1,2), \\
& l_{r s}(b, \lambda) \text { being dependent on } b, \lambda .
\end{aligned}
$$

We therefore have,

$$
\begin{equation*}
\binom{u_{j}(x, \lambda)}{u_{j}^{\prime}(x, \lambda)}=Z(x) C(x) \exp \left(K_{1} p(x) q(x)\right)\left[(A B)_{i} S(x)+0(1)\right], \tag{7.6}
\end{equation*}
$$

by $(7,3)((j, i)=(1,1),(2,3),(3,9),(4,10))$, with similar results for $x_{k}(x, \lambda)$, $x_{k}^{\prime}(x, \lambda)((k, i)=(1,5),(2,7))$ and for $y_{k}(x, \lambda), y_{k}^{\prime}(x, \lambda)((k, i)=(1,6)$, (2. 8)) and for $v_{j}(x, \lambda), v_{j}^{\prime}(x, \lambda)((j, i)=(1,2),(2,4),(3,11),(4,12))$. Putting $A_{13}(\lambda)=r_{1} \cos \gamma_{1}, B_{13}(\lambda)=r_{1} \sin \gamma_{1}$ and $-\gamma_{1}=\tilde{C}_{1}-\xi(b, 0)$ in the expression $A_{13}(\lambda) \cos \xi(b)+B_{13}(\lambda) \sin \xi(b)\left(\tilde{C}_{1}\right.$ is a constant) where

$$
\begin{aligned}
& A_{13}(\lambda)=A_{1}+B_{9}+A_{2}+B_{11}-A_{9}-B_{1}-A_{11}-B_{2,} \\
& B_{13}(\lambda)=A_{1}+B_{2}+A_{2}-A_{9}-B_{9}-A_{11}-B_{11}
\end{aligned}
$$

we have,

$$
\begin{aligned}
& A_{13}(\lambda) \cos \xi(b)+B_{13}(\lambda) \sin \xi(b) \\
& =r_{1} \cos \left[\xi(b, \lambda)-\xi(b, 0)+\tilde{C}_{1}\right] \\
& \rightarrow r_{1} \cos \left[x(\tau)+\tilde{C}_{1}\right]<\infty, \text { as } b \rightarrow \infty .
\end{aligned}
$$

Hence substituting for u_{j}, u_{j}^{\prime}, etc., in $\left[\phi_{1} \phi_{3}\right](b, \lambda)$
and simplifyiug, it follows that for large b

$$
\begin{equation*}
\left[\phi_{1} \phi_{3}\right](b, \lambda)=Z(b)^{2} \exp ^{2}\left[K_{3} p(b) q(b)\right]\left[S_{13}(\lambda)+o(1)\right] \tag{7.7}
\end{equation*}
$$

where $s_{13}(\lambda)=\left(A_{1} B_{9}-A_{9} B_{1}\right)+\left(A_{2} B_{11}-A_{11} B_{2}\right)$.
Proceeding as before, for large b, if $h(b)=Z(b)^{2} \exp ^{2}\left(K_{1} p(b) q(b)\right)$

$$
\left.\begin{array}{l}
{\left[\phi_{2} \phi_{4}\right](b, \lambda)=h(b)\left[s_{24}(\lambda)+o(1)\right]} \\
{\left[\phi_{1} \phi_{4}\right](b, \lambda)=h(b)\left[s_{14}(\lambda)+o(1)\right]} \\
{\left[\phi_{2} \phi_{3}\right](b, \lambda)=h(b)\left[s_{23}(\lambda)+o(1)\right]} \tag{7.8}\\
{\left[\phi_{3} \theta_{1}\right](b, \lambda)=h(b)\left[s_{31}(\lambda)+o(1)\right]} \\
{\left[\phi_{4} \theta_{1}\right](b, \lambda)=h(b)\left[s_{41}(\lambda)+o(1)\right]}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& s_{24}(\lambda)=\left(A_{3} B_{10}-A_{10} B_{3}\right)+\left(A_{4} B_{12}-A_{12} B_{4}\right) \\
& s_{14}(\lambda)=\left(A_{1} B_{10}-A_{10} B_{1}\right)+\left(A_{2} B_{12}-A_{12} B_{2}\right) \\
& s_{23}(\lambda)=\left(A_{3} B_{9}-A_{9} B_{8}\right)+\left(A_{4} B_{11}-A_{11} B_{4}\right) \\
& s_{31}(\lambda)=\left(A_{9} B_{\overline{3}}-A_{5} B_{9}\right)+\left(A_{11} B_{6}-A_{6} 3_{11}\right) \\
& s_{41}(\lambda)=\left(A_{10} B_{5}-A_{5} B_{10}\right)+\left(A_{12} B_{6}-A_{6} B_{12}\right) .
\end{aligned}
$$

Hence substituting from (7.7), (7.8) we have

$$
I_{11}(b, \lambda)=N_{\mathrm{n1}}(b, \lambda) / D_{11}(b, \lambda),
$$

where

$$
\begin{aligned}
& D_{11}(b, \lambda)=\left\{\left[s_{13}(\lambda)+o(1)\right]\left[s_{24}(\lambda)+o(1)\right]\right. \\
& \left.\quad-\left[s_{14}(\lambda)+o(1)\right]\left[s_{23}(\lambda)+o(1)\right]\right\}\left[Z(b) \exp \left(K_{1} p(b) q(b)\right)\right\}^{2}
\end{aligned}
$$

for large b, with a similar expression for $N_{\mathrm{J1}}(b, \lambda)$.
Letting $b \rightarrow \infty$ in $l_{11}(b, \lambda)$,

$$
l_{11}(b, \lambda) \rightarrow m_{11}(\lambda)=N_{11}(\lambda) / D_{11}(\lambda), \text { say, }
$$

$N_{11}(\lambda), D_{11}(\lambda)$ being analytic functions of λ, with similar expressions for other $m_{i j}(\lambda)$.

Hence $m_{i j}(\lambda)$ are meromorphic functions of λ. Therefore the spectrum of the system $(1,1),(1,2)$ is discrete. Hence we obtain the following theorem.

Theorem 2. If all the conditions of lemma I are satisfied and if $\int_{[}^{\infty}\left[(p / q)^{1 / 2}+(q / p)^{1 / 2}\right] d t$ be convergent then the spectrum of the system (1.1), (1.2) is discrete over the interval $(-\infty, \infty)$.

Acknowledgement

The author acknowledges his grateful thanks to Dr. N. K. Chakrabarty for his guidance and encouragement in the preparation of the present paperThe author is also grateful to the referee for his valuable suggestions.

References

[i] Bhagat, B. .. A spectral theorem for a pair of second order singular differential equations. Quart. J. of Math. (Oxford) 1970, 21 (2) 487-495.
[2] Chakrabarty, N. K. .. Some problems in eigenfunction expansions (1). Quart J. of Math. (Oxford), 1965, 16 (2), 135-150.
[3] Chakrabarty, N. K. .. Some problems in eigen function expansions (III)- Quart J. of Math. (Oxford), 1968, 19 (2), 397-415.
[+] Conte, S. D. and Sangren, W. C.
[5] Naimark, M. A.
An asynuptotic solution for a pair of first order equations. Proc. Amer. Math. Soc. 4, 1953, pp. 696-702.
. Linear Differential Operators, Parts I and II, George G. Harrap and Company, Lld., 1963.
[6] Paladhi, B. R. .. A spectral theorem for a pair of second-order differential equations. Journal of the Ind. Inst. Sci., 197557 (12), 442-460.
[7] Iitchmarsh. E. C. .. Eigenfunction Expansions Associated with Second-order Differential Equations, Part I, Oxford, 1946, Ch. V. pp. 97-117.
[8] Titchmarsh, E. C. .. Eigenfunction Expansions Associated with Serond-oraer Differential Equetions, Part 1, 2nd edition, Oxford, 1962, p. 120.

[^0]: * Present Address: Department of Mathematics, J.C.C. College, 30 Prince Anwar Shah Road, Calcutta-700033.

