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ABSTRACT

In this paper authors prove the following three theorems on the characteriz.
tion of the spectrum associated with the matrix differential operator

— d¥dx* - p(x)  r(x)
L= ( F(x) — d?ldx* g (X))

Theorem (I). The point spectrum is identical with the set of real values fof & or which
the equation (L — 01y = 0 has non-trivial solution of L*

Theorem (M. If V' is in the point spectrum, the equation
L—2$ =1

where f is a given column vector such that (f, f) €L, has no solution in L? unless fis
orthogonal to E; (k ==1, 2) at X.

Theorem (III). The spectrum is the complement of the set of real values of ) for
which the equation

L—A)gp=—Ff

where f has continuous first order derivative and ( f (x), f(x)) € L, has a solution$
such that (¢, ¢) < L.

These theorems are generdlisations of the corvesponding theorems of Titchmarsh
for a linear differential operator discussed in [5].

Keywo:ds:  Specizum, eigenvecior, boundary condition L2-solinion, saltus, Green's marix,
mermorphic, orthogonal.
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1. INTRODUCTION

The object of this paper is to prove three theorems on the characteri-
sation of the-spectrum associated with the matrix differential operator

—d?dx2+ p (x) r(x) .
2= (1 0y — et 5 09 D
studied by Tiwari [1].

The homogeneous and corresponding non-homogeneous differential
equations considered are

L~ M) $ =0, ' (1.2)
and
(L—MN)p=—F (1.3)

respectively, where ¢ = ¢ (x) = [(u (x), v (x)]is & two component column
vector, A is a variable parameter real or complex, p (x), g(x) and r (x) are
all rea] valued and continuous function of x throughout the interval [0, b)
where b —oo and f= f(x) = {f, f3} is a real valued two component
column vector function of x. The boundary conditions considered are

a3 (0) + aj’ (0)+ ajv (0)+ a5 (0) = 0) (1.4
byt (B) + byt (B) + bipy (0) + bj¥’ (B) =0 § -

j=1, 2, accents denoting differentiation with respect to x and

Gypdesy — Qyp g -+ ig Uy — Gyg gy = 0} . 1.5
byy by — by» b+ byp byy —b1g by =0 :

The relations (1.5) are necessary for self-adjointness of the problem.

2. NOTATIONS AND SOME RESULTS

(@) My (x, y) denotes the kth column of the matrix M (x, y),

(%) (v, z) represents the product y*z, where y and z are two column
vectors,

(©) (920 stands for § (7, 2) dr and |3 fo,e T (3, Yoa = s Fo
[+

if yis complex.
1182



18 S. TIWARI sAND M P. JAISWAL

We meention the following results obtained by Tiwari [1] which
required for our subsequent amalysis:

are

The Green’s matrix for the boundary value problem is denoted by
G=G(x 13N = (G ), r, =1, 2, which is symmetric in te
sense that Gi; (x, y, A) = Gy; (v, x, A), where A is not an eigenvalue and j
has the usual properties (of. Chakrabarty [2], Courant and Hilbert [3]ang
Neumark [4])

Let

G—PEAN =@ ®) =T TN D )

where A is not an eigenvalue and (f'(x), f(x)) e L, then @ satisfies the system
of equations (1.3) and the boundary conditions (1.4). Also, if A = + i,

1P A1) o< v f o - 2.3
If

)
H (x, Vo) = (Hys (x, y, .“')) =Lty [ ImG (x, ¥, 0 4 iv) do,
(= >0)

f

<

— Lty [ Im. G(x,y,0 4+ iv)do, (u< )
u

= 0, ®w = 0

and if H (x, y, 1) is discontinuous at u, where its saltus is denoted by = £ (x, 7)
=7 (Eps (X, ¥)), then B (x, ), k=1, 2 satisfy (1.2) for any y and (Bp,Ey)
eL.

If the Green’s matrix G is unique, then the following two results hold
(D I g(x, &) and h(x, ) are two solutions of (1.2) or (1.3) for distinct
cigenvalues A and A, then

(hy Lo, = (8 LAYo,e @4
DA —X) [ Gy, N Gx,u X)dx = G @y, N) — G 14X
2.9

for any nonm-real A and X.
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3. SPECTRAL THEOREMS

Following Titchmarsh [5], [6] we define spectrum as follows:

If the Green’s matrix G {x, y. A) is meromorphic, each of its poles is
an eigen value, the spectrum in this case is the set of eigen values and is
called a discrete spectrumn.

The point spectrum is defined to be the set of real A for which
Hx y, A+ 0) — H(x,y, A~ 0) is not an identically null matrix, when
Green’s matrix is meromorphic, the spectrum is the same as the point

spectruunt.
TaroreM (I). The point spectrum is identical with the set of real values
of A for which the equation

(L— =0 a.1)
has a non-trivial solution of L2

Proof- Tt follows from the definition of the point spectrum that

1
E(x,3) = (Eys (%, ) =5 {Hps (x, 3, A+ 0) — Hys (%, y, A —0)}
(3.2)
is pot an identically null matrix.
Since E (x, y) satisfies (3.1) for any y and (B, Ex) ¢ L, k=1, 2; the
fist part of the theorern follows.

Conversely, let ¢ (x) be a non-trivial solution of (3.1) for a particular
value X' of A and let (4 (x), ¥ (x)) ¢ L. Then it follows from .(2.1) that
L= M) (e, Ay = — .

Let
FCEE JORN R 2GR
then

L= f=—y+¢=0.

I?rom the uniqueness of the solution of (3.1), it follows that fis an
dentically null column vector. Hence

..



20 S. TIWART AND M. P. JalswAL

Putting A = p -+ iv, 'we obtain-

— v ()
f Im G™(y, x,p + ) 4 (y) dy = (n = W) [_ bE
Hence o
[ 6+ ) g e 14
PN T M
== Vl/l (%) f G(/T;}“‘“u
that is .

TN+ 9= Hsn X = 910 dy = — = ()

on teking the limit as » — 0 and using (2.3).

Therefore,

TEG)E0) &y =~ (.

1t follows therefore that F (x, y) is not an 1dent1¢ally null mamx and 5o
X is in the point spectrum.

TueoreM (II). If X is in the point spectrum, the equation
(L —M)® = —f,

where f is a given column vector such that (f, f) ¢ L, has no solutlon in L
unless f is orthogonal to Ep(k =1, 2) at X.

Proof. Tt is sufficient to show that if Eyp (k=1, 2) safisfie
(L— AI) =0 at X and (Ey, Eg) < L, then Eg is orthogonal to f.

Now, using (2.4), we have
(D, X By, = (B, LEk) o = (Eis Lo = (Bs NP = o
» <Ek: f}om =0

TeeoreM (). The spectrym is the complement of the seb of real
values of A for which the equation

(L—)¢=—1, ~ 6
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where f has continuous first order derivative and (f(x), f(x)) « Le, has a
solution ¢ such that (¢, ) « L.

Proof. If X is not in the spectrum, then H (x, y,d) is constant in some
internal (o, B) containing A’ and hence G (x, y, 3) is regular for a < Re A< B.

Let f and g be column vectors such that (f] f), (g, &) « L. Let

oAb = [ 670 NS dr

and

F)=(D, % b), g(Mope (3.49)
Then

[FOPESTPO A D0 o1l 80 b

SR 0D o Il 8 ) lloys (3.5
where A= u-F iv. Hence )

TFM PR <KIflop | & llo,bs (3.6)

where K is independent of f, gand b, « + 8 < Red< f — 3§, —l§ < v 8.
Taking g () = @ (y, A, b) for any given A, we obtain from (3.4) and (3.6)
B2 A B) o< K[ S0) o -
Henceif a < b, | (3, X, B) o, < K| £ Wlloyb- (3.7
Let us put f={0, 0} in [0, ¢) where c< b, then
120G, 48~ 2@, A ) loe<KISO) lope

Taking the limit as b — oo, @ (», A, b) converges in mean for y in [o, @)
say to @ (y, X) uniformly for ) in the above region and in particular at X’
Hyisin Jo, b] and A is not real

L—ADDG, A8 =—f(.
By arguments similar to those of Titchmarsh [5] and Tiwari {1] we
obtain on making A -~ X and then b -» co through a suitable sequence
(L=XDOG,N = —fO).
Also, by making b — oo through a suitable sequence and then g — co, it
follows from (3.7) that

(@x,Nf, (x, A, f) L.
This proves the first part of the theorem.
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Conversely, we suppose that X' is a real number such that for ever
F(x) which is continuous and hes continuous derjvatives, the equation i

has at least one solution of L2

If the equation (3.8) has more than one solution for any f, then the diffs-
ence of two such solutions satisfies the equation

(L — XD =0.

From, this it follows that X' is in the point spectrunt and it would follew
that every f of the above class was orthogonal to Fy, (k =1, 2), whichis
impossible.

The possibility of more than one ¢ corresponding to any f is thus ruled
out. Adapting the analysis analogous to that of Titchmarsh [5] it foliows
quite easily that

1 llo,lll Sl
is bounded. Let
6 llo,e = M2 ) S N,

Since,
D(x, )= f Gy, x, N f(y)dy = ? Gy, Hfd (Y

satisfies (L — AD) P = — f,
it follows that
L—-2ADP=(L~MN+MN—-NXN®=—f+Q—-X)0.
Therefore,
12 floe < M) —f+ (= X) D ...

< 2M2 (V) A
1 — 2 ‘A__ A ]2M2 (/\r) 0 o,ees

it

where
A — X< [vV2M@).

For such values of X the transformetion f — @ is, therefore, bounded. 14
M, (¥ be its bound.
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Putting /' (¥) = Gk (x, u, i), & = 1, 2 in (3.9), denoting the corresponding
¢ by ¢%) and using (2.5), we obtain

@ (5, ) = [ G (x 3,2 Gk Oy w, 1) dy
1
pl p [Gr (x, v, ) — Gy (%, u, )]

Hence
” Gk (X, u, )\) - Gk (x’ i, l) ”n,oo < ]‘112 (/\) [ A llr’" “ Gk (x, U, Z)” 0500
Therefore {| G (x, u, A) ||o, » is bounded if Ais in some neighbourhood
of X and consequently

TlGs(ep ) ltde; ros=1,2

is bounded in that neighbourhood. Hence, if X = p + i,
20 G(x, 0w, ) = G(x,u, ) — G(x,u,})

:(A~7\)§‘°G(x,y, X G (v, u, N) dy

=0(v ],

as v -» 0, uniformly in some neighbourhood of X. Hence H(x,u A) is
constant in some neighbourhood of X and so X" does not belong to the spec-
trum.
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