A NOTE ON STEREODIAGRAMS OF MÓLECULES*

R. Ramani
(Molecillar Biophysics Unit, Indian Institute of Science, Bangalore 560012)

Received on September 1, 1976, and in revised form on November 23, 1976

Abstract

The paper elucidates a simple way of deriving the coordinates for drawing stereodiagrans of molecules. This method is an alternative, but not a substitute, to the ORTEP (suggested by C. K. Johnson) which is extensively used in the literature. Illustrations are given using a program which was written based on the method mentioned here. The program is also given in an appendix for practical help.

Keywords: Slereodiagrams; perspective vision.

1. Introduction

The chemical activity of a molecule depends, apart from other factors such as charge distribution on various atoms, upon its three-dimensional structure. Knowledge of this spatial distribution of atoms in a molecule is obtained by certain physico-chemical methods, one of the accurate approaches being the x-ray crystallographic technique. Together with the threedimensional structure so obtained, it would be of added interest and an aid to the imagination of a stereochemist to get a perspective vision of the molecule in two dimensions. Though the thermal ellipsoid program of Johnson [1] is widely used by crystallographers, for want of sufficient computer memory, and for reasons of the enormous amount of time a plotter would take, we had written a simpler program (see appendix), to draw perspective, but skeletal diagrams of molecules. This is achieved by obtaining the appro. priate coordinates of the atoms from the input data using the imagination of an architectural engineer [2]. The input data could be the atomic coordinates in a Cartesian frame of reference or in a cylindrical polar reference system or fractions of the unit cell as generally reported in crystallographic studies. They could also be the internal parameters of the molecule such as the bond lengths, bond angles and dihedral angles from which the Cartesian coordinates of the atoms could be generated.

[^0]
2. Theory

Due to the finite distance of separation between the eyes, the details of a 3-dimensional object seen by the right eye are different from those seen by the left. If two pictures as seen by the two eyes are printed with proper separation between them (corresponding to the separation of the eyes) and if the viewer focusses his attention at infinity, each eye sees its corresponding picture and these get "superimposed" in imagination to give a three-dimensional feeling of the object. The method adopted by Johnson to achieve this result is different from what the present author has used.

According to Johnson's program [3], a model of the molecule of sluitable size is imagined at a convenient distance of say $28^{\prime \prime}$ from the imaginary viewer. However this distance is adjustable. Then the model is given an additional rotation of about $2 \cdot 5^{\circ}$ to 3°, about a vertical axis, to simulate the difference between a central view and a left-eye view. The projection of the model is drawn by an incremental plotter. After completing this drawing the paper is advanced on the plotter and, after another appropriate rotation of the model, the right-eye view is drawn. It might be then reduced photographir cally.

The principle of the method used by the author is given below. Consider a picture plane (Fig. 1) at a distance ξ from the on-looker P (station point). Let this plane be the XY -plane of a right handed Cartesian coordinate system, the z-direction pointing towards the on-looker, and the x-exis being parallel to the line joining the two eyes. The molecular model of suitable size is

Picture plane
Fig. 1. Principle of getting the coordinates for stereodiagrams of molecules (using the imagination of an architectural engineer).
imagined to be behimd the picture plane. Consider an Atom A. The coordinates of this atom for perspective drawing, as seen by the left and the right eye, correspond to those of A_{1} and A_{r} respectively. The lines $P_{l} P_{\tau}$ $A_{1} O$ and $A B$ are parallel to each other. Hence

$$
\frac{P_{1} A_{1}}{A_{1} A}=\frac{P_{r} A_{r}}{A_{r} A}=\frac{P O}{O B}=\frac{\xi}{\left|z_{A}\right|}
$$

Let $P P_{1}=P P_{r}=\epsilon$. Since we know the coordinates for P_{1}, P_{r} and A, we can calculate the coordinates of A_{1} and A_{r}. Thus,

$$
\begin{align*}
& x=\frac{\xi x_{A} \pm\left|z_{A}\right| \cdot \epsilon}{\xi+\left|z_{A}\right|} \tag{i}\\
& y=\frac{\xi y_{A}}{\xi+\left|z_{A}\right|} \tag{ii}\\
& z=0 \tag{iii}
\end{align*}
$$

where the positive sign in the numerator of (i) is applicable for the right eye picture. A value of 72.0 cm and 3.5 cm for ξ and ϵ respectively have been found convenient. In case the diagrams are huge and overlap, they could be drawn at suitable separation and then photographically reduced to a convenient separation of about 6 to 7 cm between corresponding atoms. Alternatively, the images corresponding to the left and the right eye could be drawn with different colours (say red and blue) with a common origin. When this pair is viewed by a pair of transparent papers of the corresponding colours, the diagrams again seem to superpose in the imagination to give the stereoview [4].

3. Results

By way of example, we have shown in Fig. 2, the α-helical conformation of the backbone of a polypeptide chain [5]. The input data for this diagram were the cylindrical polar coordinates of the atoms. While it may be diffcult to see from the individual diagrams of the couple, whether the chain is in the right-handed or left-handed conformation, the stereovision clearly shows that this representation is in the right-handed helical conformation. Figure 3 gives the perspective view of a cyclic dipeptide, cyclo (L-pro-D-phe) [6]. The input data for this diagram were the fractional coordinates of the atoms taken from the literature cited. It might be seen from this stereo ${ }^{-}$ diagram that the phenyl ring of the side chain is stacking over the 2,5 -

Fig. 2. Stereo pair of a fragment of rolypeptide (back-bone) in the α-helicalconformation.

Fig. 3. Stereo pair of the molecule cyclo (D-Phe-L-Pro), showing the folded conformation,
diketopiperazine ring, which seems to be a common feature in many cydic dipeptides [7].

4. Acknowledgements

The author wishes to thank Prof. G. N. Ramachandran for his interess in this problem. This work was partly supported by a grant AM-15964 from the National Institutes of Health, U.S.A.

References

11] Johnson, C. K. \quad O ORTEP: A Fortran Thermal Ellipsold Plor Program for Crystal, Structure Illustrations, Document ORNL-3794, Oak Ridge National Laboratory, Tennessee, 1965.
$[2]$ Levens, A. S. .. Graphics in Engineering and Science, John Wiley and Sons, Inc., New York and London, 1961, pp. 149-151.
[3] Freeman, H. C. .. Crystal structure of metal-Peptide complexes. Advances in Protein Chemistry, 1967, 22, 257-424.

In The Enzymes, P. D. Boyer, Ed., Vol. III, Third Edition Academic Press, New York and London (1972), pp. 665-86. Johnison, L. N., North, A. C. T., Phillips, D. C. and Ruples, J. A.
[5] Pauling, L., Corey, R. B. and Branson, H. R.
[6] Ramani, R., Venkatesan, K., Marsh, R. E. and Hut Kung, W. J.
[7] Kopple, K. D. and Marr, D. H.

Conformation of cyclic peptides. The foldirg of cyclic dipeptides containing an aromatic side chain. J. Amer. Chem. Soc., 1967, 89, 6193-6200.
R. Ramani
C ORGAR IS FOR ORTHOGRAPHIC AND PERSPECTIVE DRAWING DIMENSION ANAME (100), XR $(3,100)$ co0es
DIMENSION ATOM (3), DC (3), AMAT (3, 3), X1 (3, 1), P(3), NROT (3), PHI (3) COR1
COMMON A, B, C, ALFA, BETA, GAMMA, NMAX, $x(3,100)$ C002?
CONEA $=0.01745329$ 0003
READ $(5,2)$ NSET 0005 0006
WRTTE $(6,2)$ NSET
WRTTE $(6,2)$ NSET 0007
2 FORMAT (2014) 0108
DO 999 NRAM $=1$, NSET
0009
0009
$\operatorname{READ}(5,1)$ 0010
write $(6,332)$
0011
0011
WRITE $(6,1)$ 0012
Write $(6,332)$ 0013
1 FORMAT (55 H .) 0014
332 format (//) 0015
READ (5, 2) NMAX, NRDCN, NTYPE, NVIEW 0016
Write (6, 2) NMAX, NrDCN, NTYPE, NVIEW 0017
C NMAX $=$ MAXIMUM NO. OF ATOMS, NVIEW $=$ NO. OF VIEW OF THE MOLECULE 0018
C \quad NRDCN $=1$ FOR FRACTIONAL, $=2$ FOR CARTECLAN, $=3$ FOR CYLINDRICAL POLAR 0019
C NTYPE $=1$ FOR ORTHOGRAPHIC AND $=2$ FOR PERSPECTIVE PROJECTION 0020
READ (5, 4) ZSP, EYE 0021
WRITE $(6,4)$ zSP, EYE 0022
C $\quad \mathrm{ZSP}=72.0 \mathrm{CM}, \mathrm{EYE}=3.5 \mathrm{cM}$. 0023
4 FORMAT (10F8-3) 0024
$\operatorname{READ}(5,3)(\operatorname{ANAME}(\mathbf{1}),(x(0,1), \mathrm{J}=1,3), 1=1, \operatorname{NMAX})$ 0025
3 FORMAT (A4, 3F8. 4) 0026
WRITE $(6,332)$ 0027
WRITE $(6,333)$ 0028
333 FORMAT ($2 x$, * COORDNATES ORIGINALLX GIVEN') 0029
Write $(6,332)$ 0030
WRITE $(6,31)$ (ANAME (1), $(x(\mathrm{x}, 1),(1=1,3), 1=1$, NMAX) 0031
31 FORMAT ($1 \mathrm{X}, \mathrm{A} 4,3 \mathrm{~F} 8-4$) 0032
C FRACTIONAL TO CARTECIAN COORDINATES 0033
GO TO (40, 41, 42), NRDCN 0034
$40 \operatorname{READ}(5,4) \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{ALFA}, \mathrm{BETA}, \mathrm{GAMMA}$ 0035
CALL RDCONS (NRDCN) 0015
GO TO 41 0037
42 CALL RDCONS (NRDCN) 0038
41 CONTINUE 0039
DO 998 NN $=1$, NVIEW 0040
read $(5,2)$ NZERO, NAXIS, NATOM, (NROT (1), $1=1,3)$ OMA
WRITE $(6,2)$ NZERO, NAXIS, NATOM, (NROT (i) $, 1=1,3$) 042
$\operatorname{READ}(5,4)(\mathrm{PHI}(\mathrm{I}), \mathrm{I}=1,3)$ 0042
WRITE (6, 4) (PHI (1), $=1,3)$ 0044
C ONE OF THE ATOMS IS KEPT AT THE ORIGIN 0047
If (nZERO) 43, 43, 44 0045
44 CONTINUE 0046
DO $424 \mathrm{~J}=1,3$ 0048
$\mathrm{ATOM}(\mathrm{J})=\mathrm{X}(\mathrm{J}, \mathrm{NZERO})$ 0049
Do $424 \mathrm{I}=1, \mathrm{NMAX}$ 0050
$424 \quad \mathrm{x}(\mathrm{J}, \mathbf{1})=\mathrm{x}(\mathrm{J}, \mathrm{r})$ - АТОМ (j) 0051
C ONE VECTOR IS PUT ALONG THE DESTRED AXYS 0105 0105
43 IF (NAXIS) 45, 45, 46 0053
46 Do $451 \mathrm{I}=1,3$ 0054
$451 \quad \mathrm{P}(\mathbf{1})=\mathrm{x}(\mathbf{I}$, NATOM $)$ 0055
DENOM=P(1) ${ }^{*} P(1)+P(2){ }^{*} P(2)+P(3) * P(3)$ 0056
DENOM $=$ SQRT (DENOM) 0057
GO TO (452, 453, 454), NAXIS 0058
$452 \quad \mathrm{~J}=2$ 0059
$\mathrm{IK}=3$ 0060
GO TO 45% 0061
$453 \quad \mathrm{IJ}=3$ 0062
$\mathrm{IK}=1$ 0063
GO To 455 0064
$454 \mathrm{JJ}=1$ 0065
$\mathrm{KK}=2$ 0066
455 continue 0067
 0068
TANW $=$ DENO/P (NAXIS) 0069
TETA $^{\prime}=A T A N$ (TANW) 0070
TETA $=$ TETA/CONFA 0071
DC (NAXIS) $=0.0$ 0072
DC (j) $=\mathrm{P}(\mathrm{IK}) /$ DENOM 0073
$\mathrm{DC}(\mathrm{IK})=-P(\mathrm{D}) / \mathrm{DENOM}$ 0074
CALL ROMAX (DC, TETA, AMAT) 0075
Do $466 \mathrm{I}=1$, NMAX 0076
Do $47 x=1,3$ 0077
$47 \quad \mathrm{xl}(\mathrm{J}, 1)=\mathrm{x}(\mathrm{J}, \mathrm{I})$ 0078
Call rmm (amat, 3, 3, x1, 1, x1) 0079
Do $48 \mathrm{~J}=1,3$ 0080
$48 \quad \mathrm{x}(\mathrm{J}, \mathrm{x})=\mathrm{x}=\mathrm{x}(\mathrm{J}, 1)$ 0081
466 CONTINUE 0082
45 CONTINUE 0083
rotation of the molecule abovt ani axis successivelx 0084
Do $1011=1,3$ 0085
bo $100 \mathrm{n}=1,3$ 0086
$100 \mathrm{DC}(\mathrm{B})=0.0$ 0087
IJK $==$ IABS (NROT (1)) 0088
IF (Nrot (I) 102, 101, 103 0089
$102 \mathrm{DC}(\mathrm{IJK})=-1.0$ 0090
GO To 104 0091
$103 \mathrm{DC}(\mathrm{IJK})=1.0$ 0092
104 CONTINUE 0093
$\mathrm{ANG}=\mathrm{PHI}(\mathrm{I})$ 0094
CALL ROMAX (DC, ANG, AMAT) 0095
DO $105 \mathrm{~J}=1$, NMAX 0096
Do $106 \mathrm{~K}=1,3$ 0097
$106 \mathrm{xl}(\mathrm{k}, 1) \mathrm{x}=(\mathrm{k}, \mathrm{J})$ 0098
CALL RMM (AMAT, 3, 3, x1, 1, x1) 0099
Do $107 \mathrm{~K}=1,3$ 0100
$107 \times(\mathrm{K}, \mathrm{J})=\mathrm{xl}(\mathrm{K}, 1)$ 0101
105 CONTINUE 0162
101 continue 0103
1052 PORMAT $(3(2 \mathrm{x}, \mathrm{A} 4,3 \mathrm{~F} 10 \cdot 4) /)$ 0104
GO TO (1050, 1060), NTYPE 01051050 CONTINUB
WRITE $(6,1053)$ 0106
0107
1053 FORMAT (10 x , 'COORDINATES FOR ORTHOGRAPHIC PROJECTION' 'i) 0108
WRITE $(6,1052)$ (ANAME (J$),(\mathrm{x}(\mathrm{I}, \mathrm{J}), \mathrm{I}=1,3), \mathrm{s}=:=1, \mathrm{MMAX})$ 0109
GO TO 998 0110
1060 CONTINUE 0111
Write $(6,1054)$ 0112
1054 FORMAT (IOX, ' COORDINATES FOR PERSPECTIVE PROJECTION'/) 0113
C MOLECULE IS SHIFTED TO-Z BY ZMAX. 0114
$\mathrm{n}=1$ 0115
$1012 \mathrm{ZCOR}=\mathrm{X}(3, \mathrm{JJ})$ 01.16
IF (zCOR) 1010, 1011, 1011 0117
$1010 \mathrm{JJ}=\mathrm{JJ}+\mathrm{I}$ 0118
GO TO 1012 0119
1011 CONTINUE 0170
$\mathrm{J} 2=\mathrm{JJ}+1$ 0121Do $1013 \mathrm{JJ}=\mathrm{J} 2, \mathrm{NMAX}$
012$\mathrm{zCORI}=\mathrm{x}, 3,5 \mathrm{~J})$
IF (zCORI) 1013, 1014, 1014 01240123
1014 contanue 0125
IF (ZCOR-ZCORI 1015, 1013, 1013 0126
1015 zCOR $=2$ ZOK 0127
1013 CONTINUE 012
DO $2010 \mathrm{JJ}=1$, NMAX 0129
$2010 \mathrm{x}(3, \mathrm{JJ})=\mathrm{x}(3, \mathrm{JI})-\mathrm{ZCOR}$ 0130
C CAlCULATE THE PERSPECTIVE COORDINATES 0131
1044 continue 0132
DO $1030 \mathrm{jJ}=1$, NMAX 0133
$Z_{A}=A B S(x(3, J J))$ 0134
DENO $=Z Z S P+Z A$ 0135
$\mathrm{XR}(1, \mathrm{~J})=\left(\mathrm{EYB}^{*} \mathrm{ZA}+\mathrm{X}(1, \mathrm{~J})^{\text {/ }}\right.$ ZSP $) /$ DENO 013 角
$\mathrm{XR}(2, \mathrm{JJ})=\mathrm{x}(2, \mathrm{JJ})$ * $\mathrm{zSP} / \mathrm{DENO}$ 0137
$1030 \quad \mathrm{XR}(3, \mathrm{JJ})=\mathrm{x}(3, \mathrm{JJ})$ 0138
IF (EXE) 1040, 1041, 1042 0139
$1042 \mathrm{EYE}=-\mathrm{EYE}$ 0140
WRITE $(6,332)$ 0141
Write $(6,1066)$ 0142
1066 FORMAT (10 x , 'COORDINATES AS VIEWED BY THE RIGHT EYE'/) 014
WRITE $(6,332)$ 014
wRITE $(6,1052)(\operatorname{ANAME}(\mathrm{s}),(\mathrm{XR}(\mathrm{r}, \mathrm{J}), \mathrm{t}=1,3), \mathrm{J}=1, \mathrm{NMAX})$ 0145
оо то 1044 0.146
1040 wRITE $(6,332)$ 0147
wrtte $(6,1067)$ 0148
1067 FORMAT (10 A, ${ }^{*}$ COOROINATES AS VIEWED BY THE LEFT EYE'/) 01.4
WRITE $(6,332)$ 0150
wRITE $(6,1052)$ (aNAME (J$),(\mathrm{xR}(\mathrm{r}, \mathrm{J}), 1=1,3), \mathrm{J}=1, \mathrm{NMAX})$ 0151
GO TO 998 0152
1041 WRITE (6, 332) 015
WRITE $(6,1068)$ 0154
1068 FORMAT (10X, ${ }^{2}$ COORDINATES FOR SINGLE PERSPECTIVE DIAGRAM'/) Q13
WRITE $(6,332)$ -0136

998

999
continue \quad.
STOP 0160
END 0161
SUBROUTINE RDCONS (NRDCN) 0162
dimension atom (3) 0163
COMMON A, B, C, ALFA, BETA, GAMMA, NMAX, X $(3,100) 0164$
$\operatorname{CONFA}=0 \cdot 01745329 \quad 0165$
GO TO (13, 11, 16), NRDCN 0166
13 Continue 0167
PALFA $=$ ALFA ${ }^{*}$ CONTA 0168
PBETA $=$ BETA ${ }^{*}$ CONFA 0169
$\begin{array}{ll}\mathrm{PGAMMA} & =\text { GAMMA } \\ \text { COONFA } & 0170\end{array}$
$C A=\cos$ (PALFA) 0171
$\mathrm{CB}=\cos (\mathrm{PBETA}) \quad 0172$
$C G=\operatorname{Cos}(\mathrm{PGAMMA}) \quad 0173$
$\operatorname{SG}=\operatorname{Sin}($ PGAMMA $) \quad 0174$
$\mathrm{CPSI}^{2}=\left(\mathrm{CB}-\left(\mathrm{CA}^{*} \mathrm{CG}\right)\right) / \mathrm{SG} \quad 0175$
$C R O=\operatorname{SQRT}\left(1.0-\left(\mathrm{CA}^{*} \mathrm{CA}+\mathrm{CPSI}^{*} \mathrm{CPSI}\right)\right) \quad 0176$
Do $14 \mathrm{I}=1$, NMAX 0177
$\operatorname{Arom}(1)=x(1,1)^{*} S G^{*} \mathrm{~A}+\mathrm{x}(3,1)^{*} \mathrm{CPSI}^{*} \mathrm{C} \quad 0178$
$\operatorname{ATOM}(2)=x(1, \mathrm{x})^{*} \mathrm{CG}^{*} \mathrm{~A}+\mathrm{x}(2, \mathrm{I})^{*} \mathrm{~B}+\mathrm{x}(3,1)^{*} \mathrm{CA}^{*} \mathrm{C} \quad 0179$
$\begin{array}{ll}\operatorname{ArOM}(3)=x(3,1) * \text { CRO }^{*} \mathrm{C} & 0180\end{array}$
Do $14 \mathrm{~J}=1,3 \quad 0181$
$14 \mathrm{x}(\mathrm{J}, \mathrm{I})=$ Атом $(\mathrm{y}) \quad 0182$
GO то 11 0183
16 continue 0184
Do $17 \mathrm{I}=1$, NMAX 0185
OMEGA $-x(2,1) \quad 0186$
OMEGA $=$ OMEGA*CONFA 0187
ATOM (1) $=\lambda(1, \mathbf{1})^{*} \operatorname{COS}($ OMEGA $) \quad 0188$
Атом $(2)=x(1, \mathrm{I})$ *SIN $($ OMEOA $) \quad 0189$
Do $17 \mathrm{~J}=1,2 \quad 0190$
$17 \mathrm{x}(\mathrm{J}, \mathrm{x})=\mathrm{ATOM}(\mathrm{J})$
0191
11 CONTINOE 0192
RETURN 0193
END 0194
SUBROUTINE ROMAX (DC, ANG, AMAT) 0195
dimension dc (3), AMAT (3,3) 0196
CONFA $=0.01745329 \quad 0197$
$\mathrm{ANG}=\mathrm{ANG}^{*}$ CONFA 0198
$c=\cos$ (ANG) 0199
$s=\operatorname{Sin}(\operatorname{ANG}) \quad 0200$
$\mathrm{CC}=(1 \cdot-\mathrm{c}) \quad 0201$
$\operatorname{AMAT}(1,1)=\mathrm{C}+\mathrm{DC}(1) * \mathrm{DC}(1) * \mathrm{CC} \quad 0202$
$\operatorname{AMAT}(1,2)=\operatorname{DC}(1) * \operatorname{DC}(2) * \operatorname{CC}-D C(3) * S \quad 0203$
$\operatorname{AMAT}(1,3)=\operatorname{DC}(1) * \operatorname{DC}(3) * \mathrm{CC}+\mathrm{DC}(2) * \mathrm{~S} \quad 0204$
$\operatorname{AMAT}(2,1)=\mathrm{DC}(1){ }_{\mathrm{DC}}^{\mathrm{DC}}(2){ }^{*} \mathrm{CC}+\mathrm{DC}(3){ }_{\mathrm{S}} \quad 0205$
$\operatorname{AMAT}(2,2)=\mathrm{C}+\mathrm{DC}(2) * \mathrm{DC}(2){ }^{*} \mathrm{CC} \quad 0206$
$\operatorname{AMAT}(2,3)=\mathrm{DC}(2) * \mathrm{DC}(3) * \mathrm{CC}-\mathrm{DC}(1) * \mathrm{~S} \quad 0207$
$\operatorname{AMAT}(3,1)=\mathrm{DC}(1){ }^{*} \mathrm{DC}(3){ }^{*} \mathrm{CC}-\mathrm{DC}(2){ }^{*} \mathrm{~S} \quad 0208$
$\operatorname{AMAT}(3,2)=\mathrm{DC}(2)^{*} \mathrm{DC}(3){ }^{*} \mathrm{CE}+\mathrm{DC}(1)^{*} \mathrm{~S}$ $\operatorname{AMAT}(3,3)=C+\operatorname{DC}(3) * \operatorname{DC}(3) * C C$ 0209 0210
RETURN
END 021
SUBROTINE RMM (A, K, L, B, N, C) 0212
DIMENSION A $(3,3), B(3,1), C(3,1), \times 1$ (3) 0213 0214
Do $10 \mathrm{I}=1$, N
DO $20 \mathrm{~J}=1, \mathrm{k}$ 0215
$\mathrm{xl}(\mathrm{s})=0.0$ 0216
$\mathrm{DO} 20 \mathrm{KK}=1, \mathrm{~L}$ 0217
$20 \times \mathrm{xl}(\mathrm{J})=\mathrm{x} 1(\mathrm{~J})+\mathrm{A}(\mathrm{J}, \mathrm{KK}){ }^{*} \mathrm{~B}(\mathrm{KK}, \mathrm{N})$ 0218
DO $10 \mathrm{~s}=1, \mathrm{~K}$ 0219 0219
$10 \quad \mathrm{C}(\mathrm{J}, \mathrm{t})=\mathrm{x} 1(\mathrm{r})$ 0220
RETURN 0221 0221
END 0222 0222 0233

[^0]: * Contribution No. 88 from the Moleculat Biophysics Unit, Indian Institute of Science, Bangalore.

