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" Abstract

We disciss the conveigence under Fourier conditions of the eigenfunction expansions asscciated with
the system

d?
— == T P{(X) g (x)

L = dz Je=iid
g (x) 2 +7 ()

together with the boundary conditions

A d(0)+ 4,6'(0)=0

where 4;2nd 4, are "2 X 2symmetric matiices with real constant elements and ¢ (x) is the column
vector with components u (x) and v (x).

Key words: Limit-2 case, botndary condition vector, self-zdjointness, Gieen’s matrix, eigenvalue,
eigenvector.

1. Introduction
The eigenfunction theory to be discussed is that associated with the differential system

—u (x) + p () u(x) + g(x)v(x) =2ux) }(0 P 1)
— v (x) + g(x)u(x) + rx)vx)=21vx)
together with the boundary conditions
ay u (0) + a;2 v (0) + a5 4’ (0) + ay v' (0) =0,
where

(1) p(x), g(x) and r(x) are real-valued, continuous and L
the interval [0, oo),

(i) —u'’(x) + p () ux) + g v) and
belong to L?[0, co0),

(j=12) (2)
ebesgue integrable over

— ')+ gx)ulx)+r (x) v (x)
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(iii) g = 1,25 k= 1,2, 3,4) are real valued constants,
(iv) the set {a;} is lincarly independent of the set {ax},

(V) Gyo @21 F (11 G2z — Gra 22 — G134 = 0, (3)
(vi) @138z + G1ady — @1 Geq — G223 = L. (4)
The system
H”(x)+;-u(x)=0} 0<x < o0
v () + v () = 0 ( ) )

whose solutions (i, v)T = fu, v} satisfy the boundary conditions (2) is called the « Fourier
System’ corresponding to the gencral system (1). The elements of this problem are g;.

tinguished from those of the original problem (1)-(2) by a superscript F,

Our object in the present paper is 1o show that the eigenfunction expansions of 5

vector function f(x) = {/f;(x), f2(x)} associated with the system (1) behaves z
regards convergence in the same way as the corresponding eigenfunction expansions

of f(x) associated with Fourier system ().

The minimum and maximum number of linearly independent Lebesgue square-
integrable solutions of the problem are 2 and 4 respectively. We assume that the
problem possesses two and only two linearly independent 12 solutions, i.e., our

problem is in the limit-2 case.

2. Notations and abbreviations

The eigenfunction theory associated with a pair of second-order differential system
has been developed among others by Chakravarty.! His notations will be adopted

here.

(1) For any two vectors
Y(x) = {yl (x), ¥y. (x)} and Z (x) = {31 (x), za (x)}.;
(Y, 2) =5 (020 +%:() 29, (Y, 20,,= ] (¥, D)L,

"YIIJ,::(YsY)n,, and "Y":"Y"o,m, (Y,Z)=(Y,Z>n,m-

(i) The boundary condition vectors ¢, (x, 1) = @, (0/x, ) = {, (O/x, 1), ¥ (0% A}
at x = 0 are thc solutions of (1) satislying

Uy (OIO: A) = -—4d4d,3, Hr’ (0[0; )'-) == lr
v, (0/0,4) = —a,,, v,’ (0/0, ) = a,, } (r=1,2)

The functions 0,(0/x, 2) = 0, (x, 4) = {x, (0/x, 1), y,(0/x, D)} solutions of (1) which
take real constant values independent of A at x = 0 are defined by the relaticns

[6:0)=6. and [0,0]=0, (r,s=1,2)

(6)

(7
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where [ YZ] stands for the bilincar concomitant
P 2y — N2y F yazy —yy z,

for any two solutions Y = {J’_UJ'z}, Z = {z,,2,} of (1). Itis well known that [YZ] is
independent of x. The relations (7) are satisfied if we take

x(0/0, ) = (= 1)V ay,  x/(0/0, 1) = (— 1)
n(0/0, 1) = (= 1) a3, 3/ (0/0, 1) =(—1) fri: }

[when k=l, 122 and When k=2, I=]]_

()

As usual to consider the problem (1)~2) in the interval [0, o0), we first consider it
in the interval [0, &], (to be referred to as the b-case) and then make b tend to infinity.
The two boundary conditions at x = b for the b-case are expressed in terms of the boun-
dary condition vectors

1 (O/x, &) = 3, (%, 2) = {tt,+2(b[x, 1), v, 42 (b/x, )}, (r = 1,2)
in the form

[Ux, D) 2 B/x, Al =0 (r=1,2) ®
where y,(b/b, 2) = {— b5, — b}, ' (b/b, ) = {b,;, b,,}, thereal valued constants,
by(i=1,2; j=1,2,3,4) satisfying

byobay + by bay — byg byy — b3 05 = 0.

Moreover the self-adjointness condition for the problem 1s
[, (x, 4) P2 (x, )] = [y (x, A) 12 (x,2)] = 0. (10)

In the singular case the boundary conditions (9) are replaced by the L° conditjons.

Now as in Chakravarty? it follows that the Green’s matrix G (b, x, £, 2) for the boundary

value problem (1)<(2) with (9)—(10) is given by

G 1 (b: X, 6: )'-) Gz], (b, X, f, ).,)
G (b: X, é: A) == Giz (b, Xy 6, )t-) Gza (bs X, é: )“) )

1 (.X', j') la (JC, j-') I1(,1] (b: ‘51 A’) l1{’12 (b! g: ’1) (O g x < 6)
- (:l (x: A) Vg (x: A)) ('1121 (b: 6: ;*) '\023 (b: é! j'))

b, 3 H‘- 21 (b: x! j') ul (é! ’1) l-’]_ (‘E: )") s < b)
N (ii: Eba ..':, 1; 522 (b: X5 A)) (“2 (f: 2’) Va (ér l)) (é i #

e st

(11)

where
!!I | (b: x‘! )') = {'Jlll (b: X, )"): l)[/12 (b: x: )“)}

o] 1 (BIX, A) — [téz_ﬁlhw (12)

Wb, A)
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¢2 (b: X, )') = {'1(,21 (b! X, ;')1 'p22 (b: X, ;{')}
- [duxa] 12 (b/x, 1) — [¢1 x2l X1 (B/x, 2)

W(b, 4) (13)
W (b, 2) being the Wornskian
[y 2] [bara] — [ 7:2] [r1a): (14
Also as in Chakravarty?
TR (b, x, A) = 0 (x, A) + f‘jl Iyy (A) ‘)bl (Ir A), (r=1,2) (ls)

where I" ("') s w’f (b! X, A) 98 (I- A')]# (!', & == 1: 2): [n (A) == llr (A) for all & and / and
when & tends to infinity,

g4y = B0 1) + ___2 e (2) G0 (%, A) 6

m,, (D) = m,, (A)= lim [,(4).
: p3c0

From Green’s formula

(A=Y (x, 4), Z(x,4) Do, 0 =[Y (x, 1) Z(x, 1)]=3

it then follows easily that

W B, D, a6, %, X, = L () @

whence taking A=A, (1 = u + iv) we have

1, B, %, 2) [o.5 = L [;' “) (18)
and
Wy (B, %, 2), Wa (b, x, X))o, p = — 11 ’;ﬂ 4 (19

3. The vector U, (b, x,Ap, p)

ltft;ollgws as in Chakravarty? and Everitt® that for each fixed b, the only singularitic®
"; EL (2) are S_Imp|e poles on the real axis. Let /4n, » be a simple pole of /,, (1) with residu¢
(0, n). Since I, (2) =/, (2) it follows that R, (b, n) = R,, (b, n).
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Now as v tends to zero, ivy, (b, x, 2, , + iv) (r —
converge in mean square to ) (r=1,2) (each belongs to L? [0, b))

Z' R" (b H) d). (x )‘ b) - U (b x )H b) — {Url (b, x: )"!I, B)a IUr2 (bs x: ;{n b)}

ge=]

. (r=1,2). (20)
The proof follows in the same way as Chaudhurj 3

R, (b,
e (5, %, 1) Uy (B, %, Aa, ), » = 7228 ;.,:1) (A n, ). (21)

Next putting 4 = Zm, 5 + v in (21), we obtain on making v tend to zero .

(U, (b, x, A, 3)s U, (b, x, Ay, 8))0, 8 = O, n Rpe (B, 1) (22)

where d,, » is the Kronecker delta.

4, Preliminary results

It is well known from Chakravarty! that the eigenvalues 4, ; of the boundary- value
problem in the finite interval [0, b] are either simple zeros or double zeros of W (b, 1)
and corresponding to a simple zero there is only one eigenvector U (b, x, 4,,,) and
corresponding to a double zero there are two eigenvectors U (b, x, 24 3),(r=1, 2)

which are orthogonal to each other.

It is easy to prove that if 4, ; is a double zero of W (b, 2)
U D (b, x, A, ») = RT'2(B,n) U (b, X, An, v)

R bH)U(bl, n,)"'Rl"(bn)U(bx! n,b)
U @ (%, 2n,) = st (5, ) [Ros (o) Rs o) — R Gyl @)

B
* -

whereas if A, , is a simple zero of W (b, )

U (b x’ n, 1') = R—1l2 (b n) U]. (b x! n, h) T R‘-HZ (b!' ﬂ) UE (b:l A, )hn, l)- (24)

W (b, If Ry, (b,n)= Re (b,n) = — 0, then clearly the
For, let A,, 3 be a double zero of W ( A). 12 e () U b T, (el 2]

two normalised orthogonal eigenvectors are given
But if R,,(b,n) = Rg21 (b, n) # 0, the two normalised eigenvectors can be represented

das
U W (b, x, An, 3) = RTM2 (b, n) U, (b, x, An, »)

U@ (b,x, 2, ;) = A; U, (b, x, Au v} T A Us (b, X, An, )
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where the constants A4,,
(U (b, x, 24, 3), U @) (b, x, An, 2)00, 5 =0 and " U@ (b, x,) i) ”u 1L

A, are to be determined from the relations

It follows easily that
Ay = — Ry R (Ry Rae — R?2) 12, » = RiY* (Ry; Ryp — Ri,)-12

and (23) follows.

On the other hand if 4, , 1s a simple zero of W(b, 1), let U(b, x, 2, 4) be "
eigenvector corresponding 1o the eigenvalue 4, ,, then ¢

R;ﬂz (bs H) Ur (b': x& }-n..b)-r (!' = ] ) 2)
are eigenvectors. We show that

R (b,n) U, (b, X, 7n,0) = — R (b, n) Us (b, x, 24, 3)

If [ar]# 0
[Ds7.] U-n, 3) X1 (% 2n, ) — (&2 x1] (}*n, ») Yo (X, An, »)
=k {[¢2 Xo) (;'*'-n, s) &, (x, )-n, ) — [P 11] ()—n, y) @a (X, j'n, b)} (29)

[Compare Chakravarty!]

whcr_c k.is a ﬁnite_constant not equal to zero. Now replacing 4 in (12) by 4, » + iv,
multiplying both sides by iv, on making v tend to zero, it follows, on using (25) that

: 5 : 1
1y 'I’l (b: x: “'-n, b + ”’) — Wr (b, )m b) {[¢212] (An_, l) XI (xs )'-ﬂ, b)

— [¢211] (A, ») X2 (x, I, 5))
k
R W' (b, )a,., b)q {[ﬁbg;{gl (;{n, b) qbl (x! )“-ﬂ: b)

— [D1x2] (A, ) P2 (x, Aa, »)} (26)

The accent denotes differentiation with respect to . Again we have from (15)as .
tends to zero

VY (b.x. 20,5 + 1Y) > Ryy (B, 1) ¢y (x, A, 5) + Rys (b, 1) ba (X, A, »). 2N
Compa}'ing the coefficients of ¢, and ¢, in (26) and (27) we get
K [¢215] (Va, 2)
R —_— 2A2 a,
Wi B v 'Il(bs_")_; Wr(b’ Aﬂ, b;
and
Ria(b,ny=— klhyits] (A, ) ¢ ! | (28)

W,(b:}“n,h). ..11. j
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imifarly from (13), it follows that as v tends to zero

- ) : 1
iV (b, x, A , + iv) = VB A ) {[d:x:] (s, 3) %2 (x, An, 1)

— [P122] P, ») 21 (x, An, »)}

- .1 [dixad (An, »)
- W' (br AH, b) [¢2X2] (ln, b)_ {[Qsﬂ,’]] (An’ h) A2 (x’ l"' b)

— [P 2x2] (4s, 0) 23 (x, An, 0}
Since

[P11] ()-n. 5) [Paia] ()m, ») — [¢)2] ()-n, ») [P2x1] ()-n, ») = 0]

— k Dy x>

— [P122] (As, ») P2 (x, 24, )} - (29)

Also from (15) as v tends to zero

iv '1’2 (b1 X, An, » + ”") = R'.!'l (b* J?) ‘ﬁl (x, An, b) : Rza (b& H) ¢’2 (x: )*ﬂ, b)' (30)

Comparing the coefficients of ¢, and ¢, in (29) and (30) we obtain

Ry (b,n) = :fV [F’(ﬁ%. (A:) )
and
—_ k {[h1x2] (4, »)}2
Rgo (b, n) = W (b’ A ) [‘35212] (}m, b) . a31)

From (28) and (31) it follows that
Ry, (b, n) Rzz (b, ) = R, (b, n). (32)

Now multiplying both sides of (20) by R;'?(b, n) and making use of the result (32)
we get

R7H2 U, (b, x, 24, 0) = RIZ (b, n) &, (x, 2, ) — RIZ (D, 1) Ps (X, 2a, 2)
RIHE Uy (b, X, A, 0) = — RI2 (b, n) by (x, 2, 1) + RIZ (B, 1) P2 (X, 2n, 0):

Hence
R;llz UI (b? X, Aﬂ; b) TS R;;H# U! (br X, ’1": i"i')*'
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5. Asymptotic formulac

Let ¢ (5 1) = {4/ (0/x, 4), vt (0/x, 2)}, (r =1, 2) be the boundary conditjop v&t
for the system (5)—(2) satisfying the initial conditions 0Fs

'y :
Hf (0/0’ A) = — d,3 . H (0/0: 1) Tt le } (r = ], 2)'

oF(0/0,2) = — @ > ¥ (0/0,2):=a, (3)

By considering the most general solution of the system (5) and the relations (33
can easily deduce that We

1 a 1 1
Hf (x, )..) = § (-—— (e n ’_L") P — ,_j (ars o fj;ll p—tuse

1 a 1
oF () =3 (—au+ -’_;f) v — . (ay, + ) g~
J

A= where u=o0 +it, t > 0.

Similarly for the vectors 0 (x, 2) = (x5 (0)x, A), yr (O /%, )} r =1,2) which take the
initial conditions

x; (0,4) = (— 1) ay, xXr (0,2) =(—1) a,
yr (0, ) = (— 1) au, ye 0,4) =(~1)ya, } &
[When r=1, s=2 and when r=2, s=1]
it follows as before that .
xF(x,2) = (= ;]!)r-l [(a._; — %) e'he 4 (aﬂ + ‘iﬁ) e*“"':’
(36)

F I mad Vi a,
v 2) = T2 (a — ) ge 4 (4 %) -]

i

[when r=1, s =2 and when r =2, s =1].

If
Wi (x, 1) = lim yf (b, x, 2)
b0
and
mp () = lim I (3)
b-» 00 '
we have

by (x, 2) = 07 (x, ) + miy (1) ¢7 (¥, A + m%s (4) & (x,.4).
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Hence
~ 1 ”
I!Ifl (I! "‘“) 9 [{(aﬂl - ar_-) ehe + ((124 -+ cfiﬂ e‘”‘“’}
= I} I
+ fHy, ()\.) j{(— a,a + iltl) etHe (613 + n ) e-.{,u.l}
-+ f?lf«_: (j.) {(— doa 4 a.ﬂl ) f‘#r A= (623 — F—EL E'_'"u'
I fﬂ (37)

with a similar expression for Yip (x, A).

Since ¥; (x +) belongs to L2[0, 00) and im u > 0 it follows that the coeffici
L] & : L eﬂ?l I
e~ should vanish. Thus cients o

1 dao l a F I as
A 'E) —3\%s T _11_;) My (4) — 5 (523 T .f;tl) myz () =0

1 a 1 a | a
i “'2" a23 + _2] ) "2“ a“ + ]2) mIFI (/1) s 2‘ (a24 + 'Iffl‘g“ !Hfz (/1) — 0

i I
leading to
mys (A) = — (U2 A, + 2ipd, + Ag) M7
and (38)
. My, (A) = — (U2 E, + ip Ey + Eg) M7
where,

Ay = G35 — a3,, Ay = as503 — Q3 A3, Az = Qi3 — a3

E, = ayy Gy — a3 dgs, L= a130d3 + a1y a3 — )5 093 — Gy4 Ay
Es = ay, ay; — @15 ds0, By = G13ds; — Gy Qag, |

B = diz Qs + Qg3 QGog— Gyg dgy — Aj4Qs;,

=]

BS = a]ﬂ azl — an 6122 and Ml — 1#2 S f.ﬂBg + Bg. (39)

Similarly since

s (x, ) = 0 (x, 2) + my, (A) @7 (x, ) + mz2 (1) ¢ (x, 2)
belongs to L?[0, o), it follows that

maz (A) = — (2 Cy + 2ip Cy + Co) MY,

where

2 2 — P S
C, = Aig — d:4, Co = Ayolyy — 1033, Cg = Ay — aiy (40)

£ ]
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also
mf:: (A) = mi (2)

Substituting the values of m (). mye (4) in (37), 1t follows on slight reductjop that

¢11 (x,4) = 5"__ [( aﬂﬂ) (“13 )(#214 + 2ipAs + Ay)

+ (aaq o “_) (WP E, + ipEy + E) M ]

2 (8, s i By + B + (1~ 22)
=, M [(6’24 it (B, 1 it By + By) + | a5 — i

a .
X (2 A, + 2ip Ay + Ag) + (%3 - 'I:;l)(ﬂz E, +ipE, + Es)]

(41)
-] 12] .
=0 (EW) , provided a;;A4; + anE; + as.B, #0. 42)
It follows in a similar manner that
E F E et 1o
V02, Wi ), V(2 are cacho( ) @4

where I =1 if a;,4; + as,B, + as.E;, a,C; + a11.E; — a;.B; and a,,C; — a,, B, + a,:k,
are all non-vanishing and / > 1 when all of them vanish. Therefore from (11)using (34)
and the triangle inequality, we have for x < ¢§

Gr(x, &, A) =1 (x,4) wf‘; () + uz (x, ) Ph (&, 4) ®)

A[{(-oee ) o)
(o 22 00 — (s 9) e}
T

with similar expressions for the other Gi(x, &, 1), (i,j = 1, 2) and hence

Gﬂ(x,f, l)=0( _| ”T _') ’ (f:j= ],2) (44)
Lemma 1: Let p (x), ¢ (x) and r (x) ali belong to L [0, co), then™'
—tia-$|
Gﬂ(x:é:l) Gu(x 5 /1)+0(e Iﬂ‘ ) . (f,j=],2) (45)
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where Gy, (x, &, A) and Gﬂ (x, &, A) are the eleme;

of the system (1)~(2) and GF (x, &, 1) of the Sylts of the Green’s matrices G (x, & A)

stem (5)~(2) respectively.
ProOF: We consider the differential system
(L il j.) U(x) o~ P(X) GIF (x: 6! ;')

where

(46)

U ={u(x),v(®)},  GF (&4 ={Gn(x,&2),Gh(xE N, I=1,2
and

p(x) g(x)

PO = rm/:

Since both G;} (x,&,4) and G;’f (x, ¢, A) considered as functions of x, have singularie
ties at the point x = & of the same order with the same saltus, {G; (x, &, 1) — GF (x, ¢, )}
is continuous and satisfies the system (46), (2) and

o0

G (x,£.2)=Gf (x,& 72) + o.[ G(x,y,4) P(y) Gf (y,&,4) dy, (47)

the integral on the right being convergent by (ii) of § 1.

To solve this integral equation we define a sequence of vector functions {G" (x, ¢, )}
by the relations

Gim (x: 6: ;‘) = GF (Jf, (:: ‘;')
G (x, &) =G (x, &) + | G (x,5,7) PO) GF(».& ) ay.
0

From (44) it follows that
|G (x, 4) — G (x, &, )]

2 o0
S‘-{:Tz f e—tteie w0 {| p(3)| + 2[g )| + [r O [} @
0

with similar expression for | Giz' (X, £ ) —GR (x4, ) |, K being an absolute constant.

Again since e—fUr-r!+1w-8 < o—t1s-4!1 by the triangle inequality, we get

o0

K2 E'”'“{' "
G (x, &, ) — G (1, & D | < T4 [Uro)|+2190)] +]rO)

AKe="* 72 (cav) . (48)
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where, 4=K T {lpo)|+21a |+ |rO) ]} dy <005 p(x),9 (), r(x) being iy,

grable in [0, o0): with similar results for ‘ G\ (x, &, A — G2 (x, £, ) |

Using (47) and (48)
|G (x, & A) — G (6, &, ) |

;;;li‘ﬁ: f ete v+ W=t ([ ) | + 2| () | +]r B) [} dy

0

AgKe_tu_gl
— |af

with similar resuits for
G2 (v, &, ) — G (%, & D).

Now let

n Ko—tln-4l
|68 (%, &, ) — 68 (6, & D | <77 7oy )

for some fixed positive integer n.

Then from
G5 (5,6 ) — G (v & )| < T {] G (o H— G5 (x 3D | Fa0)]

+ | GR(x, 3,4 — G5V (x, 3, ) || Fa () | } Y
where
Fiy (x) = p () Gi, (x, », 2) + q (%) Gi; (x, y, 4)
and
Fia (x) = q (x) Gy (x, 3, 4) + r (x) G (x, 3, 2)
we get

G+ (x, &, 2) — G (x, £, 1) I < 4n+1 K#—ill—gl
| o[+

Thus (49) holds by induction, for all integral values of n. The uniform converges®
of the sequence {G" (x, &, 1)} to the limit G, (x, £, A), as ntends to infinity follows easilf-
The functions Gy, (x, ¢, 2), (;, j=1,2) satisfy all the properties of the Green’s.m‘“m]
ks th?' system (1), (2) and are therefore the elements of the Green’s matrix; the integ®
equation (47) therefore possesses a solution,
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Also,

| Gy (x, &, 4A) l = lLm | G (x, &, A)‘
n—>»00

=lim |G (&) + 2 {GY (x, & 1) — G§= (x, &, 1} |

=00 r=1
< lim [KA"’_“H' +zﬂ éLKe“_'":f‘]
n300 ‘ J7] I L | i |r+1
Hence,
. . AKe-te-b
Gi! (x! Cs A') < - ‘fi“u l‘— : (50)

It then follows from (47) that

—t)r 41

Gie & D =GF (&) + oy [ o (20)] +2140)]
+[r()])et-# dy}
—t 1z ¢l
=GF(x,E )+ 0 (?—Iﬂ 5 ) (51)

Lemma 2 : For any fixed complex 42 and A’

[, (x, ), ¥,(x,2)] >0 as x— oo. (r,s =1, 2). (52)

PROOF : We consider the integral equation

V) =yF )+ | GEGLpA) PO) YO, D dy (53)

where YF (x, 4) is the L? solution of the Fourier system. To solve the integral equation
(53) by iteration we define the sequence of vectors {Y™ (x, 2)} as follows:

Y (x, 1) = ¥F (x, 4)
YW ) =P (D) + T GF(x,p, A PO) ¥ (A dy.

Now

g _t(a—v) -V P | & S
'l‘m""'lfw_’=0{f P(y)f?lﬂl. lﬂdy}+o{fl (J)I |p| IH
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=o (527 ﬂ,) + o(l;i; fmlp(y)ldy)
= o(F77). sincer (q(9,7 () are L0, oo
Put
yor —ye b =o(| o)
Then

w=of [1pm)|E . g
(n21) __ Rl = p f e v - y}
¥ v { ARV s

+ o{ f P3| © ;,] -|z_i1dy}=°(| ;|)

Now comparing with the geometric series Y |u|~"+1 we conclude that

3 Y™ (x, D) — "D (x, 1)}

fax]

converges for | ul > 1. Hence arguing as before and making » = co we obtain

W (x, ) = lim [y (x, 1) + 2 P (x, ) — Y1 (x, H}]

n->»o0

We have from (34), (41) and (43)
0 d
ax GiFf (x: g: }") =0 (e—”l-fl), “Ji lle (x, /'{.) = 0 (e 'f')

By virtue of these relations the integral

oo

2 GF (6,3 D POIVF (0, M) dy

is uniformly convergent with respect to x and hence differentiating (53) with respect
to x we obtain

d d s
ZVED =@+ [ L wnNPOEG DD
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from which it follows that

YD =0l

Now for A"= (')}, p' = o' + it’,

t"> 0, we obtain from 1 1t 13

e t’)"’ - “\g
[wr(x: /1) l[/.(x,/l')]_-:o ._er N __) +0(L€ “j‘i)
| #] [
[see Titchmarsh,” Pt. I, p. 26 and Chaudhuri,? p. 263].

The result follows by making x tend to infinity.

6. The matrix k,g (A)
Following Everitt,” we have

myy (A) mos (£) — i, (A) 20 iml #0. (54)

Hence (m, (1)), (r,s = 1,2) is a non-singular matrix. Eachm,, (1), (r,s = 1, 2) has
singularities on the real axis and that m,, (+) are analytic functions of A regular in either
of the half planes im 2> 0 or imA < 0.

Lemma 3 : The functions
A
ky(MH)= lim [ —imm,(y+id)dy, (r,s=1,2) (35)

=0 O

exist for ail real A; each k,, (A) is a function of bounded variation and

k (2) = 4 {kpy (2 + 0) + kpy (A —0)} (56)
and
lai_!;l I)k —imy, (x,y + i0)dy = Zi' j b, (x, ¥) dk ¢ (¥) (57)

[see refs. 8 and 3].

Leniima 4 :Let 7, (x,4) = f’ jh b (x, v) dkn (), (r =1, 2); A real then x, (x, A)
I > =~
belong to L2 [0, oo).
ro of Wi(b; 4A), we obtain from (21), (24) and (32),

rlrl:! (b, 1) _ . (58)
“Ilr (b: X, iq-), U(b, X, /1,,' b))a, p = /1 — ;{“J . ’ (I’ 1, 2)

ProoF: If A, , is a simple ze
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If 4, » be a double zero of IV (6, 2)

R, (b,m) R} (b, n) ‘
(U (b, X, A, 8)s We (D, X, Mo, 5 = - 1 o )1;; ~ = A,,, say

(U[ﬁ (bi X, )Hl, b): llbf (b: X, ‘;'-))#, b

R Ry (bm) =Ry (Bm R (bm)
- Ri'Z (b, n) {Ri; (b, n) Re2 (b, n) — R;i, (b, n)}”“" (4 — ),n' ) e say,

Clearly,
R:? (b, n)
2 azfg . e & 1)
(Aar + Bur)l s = Z )-u, .

Thus in any case

R2 (b, n)

)- — /-.." b

is the Fourier coefficient of ¥, (b, x, 2). Following Titchmarsh? [Pt. I, p. 54] we haye
from (53)

A
/ [ sy = o(BE B ) 4y
U(bn X, ;'-'H, b): m d’r (ba X, ¥y + I(s) d?/n, " o 1 F Aflh ; / finite.

N\

Hence by Parseval’s theorem? § 7

A oo

” f “m wr (b, X, ¥ + 3(5) d}’ " = 0 ( Z 'Err_(é_!_"_)

v a3 1 + A:'ﬁ
1] =00

Making b tend to infinity through a suitable sequence, we obtain

A
" Jimy,(b,x,y + id)dy || = o(1).
L1
Finally making 6 — 0 and using (57) we obtain

2 A
“ .‘?16‘. ¢, (x, y) dk,, (7) II =0(1)

so that x, (x,4),(r=1,2) belong to L2[O0, o)

7. Expansion theorem

Lemma 5 : Let f (x) = {f, (x), f2(x)} belong to L2[0, c0) and

FMN=00o:Nf0) =12 (9)
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y real, then for any fixed x
i . Ej"‘a i . 3 2 R
b T e A== T [ 4 )dF(), A=y+i8) (60)

where F,(y) 1s a function of bounded variation.

PrOOF: Since x, (x, y) and f (x) both belong to L2[0, o0), F, () exists, now as in
Chakravarty? and from (11)

oo

Q(x,)= [ G'(x,y, ) f (y)dy

0

— 'E__,: [l/l, (.Y.. A) (Q!’r (O, ))a f (y))n,;- + ¢, (x, A W, O, ’1): f (-y))l,ﬂﬂ]-

Therefore

R+i0

im [ ®(x. D) di]

—-R41

R-I-ia o

= im [ I& ds. r£ ()br (xs }) (d/r (.V:+ ))a f(y))]

—I4i

R3id

vim[ | d2 z J (W (x, 2), e (0, )

—R4i

— (@e (. D), ¥, (1, D)} (D) dy)
=1, + [,, say.

Now

= im i‘ [( 22,‘ My, (;‘[.) ¢’, (x, /1) o Br (xr A)! ¢" (y’ 1’))

=1

(b, (. 7). 2 m, (D) b, D+ 6,(7, D)]

=1

—im 5 [(6, (x, 1), 6. (1 A)) — (¢ (x: D, 0, 0> D)]

r=1

= 0(d), as 6 = 0, for x, y in fixed intervals.

It therefore follows that I, = o0(d), as 6 0.
Again,
5 :
L=im T 5 W0, SO

- E’+Ea g |

~ ] 3 mun(ny + i), fONReG 5y + D

—R =l

1.1.S¢c.—2
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+ [ 2 (Rey, .y + i0), f O im &, (x, 7 + id) dy
-R =]
'= I]] + 112! Say"
Then

7, = 0(5) f dy? | (0, i, + 8), £ () | dy
—o@[ [T |0y +i0) 1 ()|}t ol

On applying the Schwartz inequality for vectors and noting that fact f (x) e I2 [0, o0)

R L
he=0@L | ¥y +id) | dy}™
= 0 (8'2), by (18).

Slmllarly [11 — 0(5”2)-

Since 8, (x,y) and ¢, (x,79), (r=1,2) are real for real y, im0, (x,y + i0) and
¢, (x. y+ i9), (r =1, 2) are 0(9), uniformly with respect to y over a finite interval,

So that
R+¢0
[ ®(x,A)di=1, + o0(5") as 6 — 0. (61
~R+id
We also have
11 - % -
uj d?ﬁ[ (—imy,. (v, v + i5), f () dy
<O K
= (oj —imy.(y,y + id)dy, f (y))dy
(62)

{1 (.0, f ()= F,(n), as 6 > 0.

The change in the order of integration being permissible, since ¥, (3, y + i9), (r=12)
are continuous in y and y and | ( — imy, (y, y + i5), ()| < co, by the Schwartz

inequality for vectors.

For the validity of the limiting process under the sign of integration, we note that
[See ref. 7, Pt I, Lemma 24, 27]

m
{ —imw, (y,y + i0)dy = x, (y, n + i6) € L2 [0, o0),

0 =0y,0s,03, ... and as §d = 0
L (vom + i) > y, (v, p) € L2 [0, o).
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Integrating by parts we obtain from (61) using (62)

' R440
lai-ri im (_ !7;_&;{; d(x, ) d)‘.)
2 i -
- GILT ;r Z [{tf),(x ¥) f dy’ f (imp, (3, y' + i5), f(_y))}:-R
= 0 0 -—R

Cc

R ) ¥ i N
- f E,ér(x,r)drf ay’ f(—-fmnp,(y,y+fc5), f(y))dy]

On integration by parts the integral on the right we obtain

] R+i0 " 2 R
lim im (— - f O (x, 2)d2 ) = ..].. Z f o, (x, y) dF, (y).
830 T T
—R+i9 r=1 —R

Finally, if F,(y), (r=1, 2) is of bounded variation, the required result (60) follows.

8. The convergence theorem

TueorReM : If all the conditions given ;in §1 are satisfied and f (x) is both
L[0, o0) and L2 [0, oo), then the expansion of f (x) = {f; (x), f(x)} correspondingto
the system (1), (2) converges under the same conditions as the corresponding expansion

of f (x) when the differential system is replaced by (3).

e PROOF : Let C a closed semi circular contour in the upper half of the ﬁ.—pl?fle be wit.h
base the line joining the points — R + i5, R+ i6 (6 > 0). As ®(x,4) {is analytic
inside and on this closed contour, applying Cauchy’s theorem

R+i0 .
[ o(x,)dr+ [ P Adi=0
c ~R+440
and hence by (60)
B o (x, 2) dA
1 ] = — I n !
Igi)vn:u Imc':r fD(x, A) o4 R-:-El I —R410
0->0 30
_ 5 T . ndE . (63)
r=1 =—00O
Similarly, iy
. . S &F (x, A) dA
;Ln; im g dF (x, ) dr. = — ;_Lrga im -RI-I-fs (
5—)0 G0
— 5 TorndEFG) (64)
p=1 —9

LI.Sc.—3
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The extreme right-hand side of (63) and (64) give rise to thf: expansion of f (x) COrTes
ponding respectively 1o (1). (2) and to (5), (2). To establish the theorem we hav;

therefore to prove that

;Ln; im éf ®(x, 2)d) = LT‘!W im é[ ®F (x, 2) d/. -
d-»e 30

Multiplying the transpose equation of (51) by f7(y) and integrating with respect g
over the interval [0, o). 1t follows that ¥

~Tle-¥I

(D(x.}.)=¢”(x,£)+o( fmf 7] lf(y)ldy),

Finally integrating. on the part of the upper semi-circle of centre ié (6 > 0) ang radius

R, of the contour C, we get

O
—flz_¥I

f O (x, ) di = f ¢F(x,i)di+0( f|d,1| [ elll -\f(y)ldy)(as)

Now

éf ||Ci/|| ;fne_ru_.rr l f(y)ldy

_ | d2 |
I

— II o = 12 + ]3 4 }.“ Sa}", Where C > 0-

c+6

{ ofpc..t. [+ [+ [lemnisoa

l—; F ‘_}, C

Since f(x) belongs to L [0, 00), we can choose { so that jlr | /() | dy < € and
—&

e+§
.‘I | /() |dy <&, where £> 0 is small but arbitrary. Then

. [ 4

J L[ ey 6y |y < f ,‘“' [ 17 0| d.=00)

I,

- L2 7]
Similarly I3 = o (1).
We put 4 = i§ + Re'l,

Then

—G
4
Il = f J-l—)?—ll f e—’l:-#llf(y)l dy
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—¢

il
< flmetgflf(y)ldy«‘:](f[ile—ff
& 0 [ &4 |)h '
e—4§
[where oj | )| dy < K]
=0 ( } g 8w 2f2 9 ) £ds).
0
Proceeding as in Titchmarsh® p 104, it follows that

.
b o [ e imuze it g
0

can be made arbitrarily smal] by making R tend to infinity. Similar conclusions
follow for /;.

Hence

. a(f ld).] fenh;:l_ulf(y)ldy):o(]) as R - oo.

The theorem therefore follows from (66).

L.
b
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