
(x) 

d 2  q(x) 	- deT2 +r(x)  
L#= 

p (x), q (x) and 
the interval [0, 00% 

(ii) 	u" (x) + p (x) u (x) + (x) v (x) and 

belong to L2  [0, 00), 

r (x) are real-valued, continuous and Lebesgue integrable over 

v" (x) + (x) u (x) + r (x) v (x) 
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Abstract 

We discuss the conveigence under Foul ier conditions of the eigenfunction expansions asscciated with 
the system 

together with the boundary conditions 
AI  # (0) 4- A s  ' (0) = 0 

where Ai  and 13 are  2 x 2 symmetric maniocs with real constant elements and # (x) is the column 
vector with components u (x) and v (x). 

Key words: Limit-2 case, bot ndary condition vector, self-adjointness, Green's matrix, eigenvalue, 
eigenvector. 

I. Introduction 

The eigenfunction theory to be discussed is that associated with the differential system 

x coo) 
v" (x) 	q (x) u (x) 	r (x) v (x) =---- v(x) 

together with the boundary conditions 
(2) 

where 

 

(ii BRARY' 
A .  1 
dd 
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(iii) tz,k  (j = 1, 2; k = 1, 2, 3, 4) are real valued constants, 

(iv) the set {an} is linearly independent of the set {a 24, 

(V) an a24  + an  a23 	(114  a22 	a13  a21  --7--- 0, 
(3) 

(vi) a13 a22  + a14  a23  — a11  a24  -- a32  a23  = 1 • 

The system 	
(4) 

u" (x) + Au (x) =-- 01 	(0 	< oo) 
v" (x) + Av (x) =- 03 	 (5) 

whose solutions (u, v)T = {u, v} satisfy the boundary conditions (2) is called the " Fou rier  
System" corresponding to the general system (1). The elements of this problem are dh- 
tinguished from those of the original problem (1)—(2) by a superscript F. 

Our object in the pt. ( 
vector function (x) = 
regards convergence in 
of 1(x) associated with 

'sent paper is to show that the eigenfunction expansions of a 
{A (x), 12  (4} associated with the system (1) behaves as 

the same way as the corresponding eigenfuncticn expansions 
Fourier system (5). 

The minimum and maximum number of linearly independent Lebesgue square- 
integrable solutions of the problem are 2 and 4 respectively. We assume that the 
problem possesses two and only two linearly independent L2  solutions, i.e., our 
problem is in the limit-2 case. 

2. Notations and abbreviations 

The eigenfunction theory associated with a pair of second-order differential system 
has been developed among others by Chakravarty.' His notations will be adopted 
here. 

(i) For any two vectors 

Y (x) ={yi  (x), y2  (x)) and Z (x) = {z, (x), z 2  (x)} ; 

( Z) 	(x) (x) + y2 (x) z2 (x) ( Y, Z)0, = ( Y, Z) dt, 
0 

Y 0, 2 = ( Y, no, ,7 	and 	11 	( Y, Z) 	Y, Z) 

(ii) The boundary condition vectors (/), (x, A) = 4', (0/x, A) = {u, (O/x, 1), v, (0/x, 11)} 
at x = 0 are the solutions of (1) satisfying 

u, (010, A) = 	ar3) 	ur i  (010, A) == ari  
(r = 1,2) 	 (6) 

v,(0/0, A) = 	am , 	v r i (010, A) =I a, 2  

The functions 0, (04, A) = 0, (x, 	{x, (01x, 1), y„ (01x, 2)} solutions of (1) which 

take real constant values independent of A at x =- 0 are defined by the relaticns  

(7) [0, O s] = 5,„ 	and 	[0, Os] 	0, 	(r, s== 1, 2) 
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where ( YZ] stands for the bilinear concomitant 

3,1 	— 	+ )9 2 Z2'  — yil z ?„ 

for any two solutions Y = {y„ y 2 1, Z = {2 1 , 2 2} of (1). It is well known that [n] is 
independent of x. The relations (7) are satisfied if we take 

xl,(010, 2) =- (— 	(14 , 
(0 10, 2) = (— 1) k-1  a13 , 

xk ' (0/0, .1) r--- (— 	an I 
y,' (0/0, A) 	(- 1)ft  asi  

[when k = I, 1 = 2 and when k --= 2, / = 1]. 

As usual to consider the problem (1)---(2) in the interval (0, Do), we first consider it 
in the interval [0, b), (to be referred to as the b-case) and then make b tend to infinity. 
The two boundary conditions at x b for the b-case are expressed in terms of the bonne 
dary condition vectors 

(blx, A) = x, (x, 2) =-- {u, 2 (b/X, 	Vr  4- 2 (b/X, A)}/ 	= 1,2) 

in the form 

(x, A) z, (b x, A)] = 0 	(r = 1, 2) 
	

(9) 

where xr  (bM, A) = {— b,3, — bpi}, xf (bib, 11) = {bib b,3}, the real valued constants, 
bli  = 1, 2; j = 1, 2, 3, 4) satisfying 

b12  b24 	Lou  b 23 — b13  b 21  = 0. — 1'14 b22 

Moreover the self-adjointness condition for the problem is 
L. 	

[95  1 (X/ A) 02 (X, ))] = (7.1 (X, )) Xs  (X,A)] =0. 

In the singular case the boundary conditions (9) are replaced by the 1,2  conditions. 

Now as in Chakravarty' it follows that the Green's matrix G (b, x, A) for the boundary 

value problem (1)-(2) with (9)410) is given by 

G„(b, x, 2) Gn (b, X, tl A) \ 
G (b, x, A) = 

( G12 (bp XI  )4) 	/ 

(x, A) u 2  (x, A)) On (b, A) 012 (bt e, ID) (0 X < 	(11) 

k v, (x, 	v2  (x, /1))  

0110, x, 	21 (b, x,( (e, A) vs (e, A)) 

(b, x, 4122 (bt X, AV ku2(4, 
 

where 

IP 	x, = 
 

(12) 

W (b, 
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IP 2 (b, xp 	ay: Ofr21(b,x, 	lfr22 (b, xl A)} 

[Chi X2(blx, 1) —  [01 x2,] Xi (b/x, 
W (b, A) 

W (b, A) being the Wornskian 

Pi X21 [Odd [ch2 Z2] Dad- 

(13) 

(14) 

Also as in Chakravarty2  

• 	tfr,(b,x, A) 	Or  (x, A) ± 
s=3. 

1 „ (A) 	(x, A), (r = 1 , 2) 	
(15) 

where In (A) -= 	(b, x, A) 8  (xi A)], (r, s = 1, 2), l,,  (A) = lar (A) for all b and A and 
when b tends to infinity, 

(x, A) = 	, A) + sit  in, (A)  &(x, A) 	 (16) 
S .  

m„ (A) = in,, (A) =--- lilt In (A). 

From Green's formula 

(A — A') ( Yx, A), Z (x, A'))0, b = [ Y (x, A) Z (x, 21)g 

it then follows easily that 

/,„ (A) — i rs  (2')  
(41,(13, x, A), 	(b, x, A')), b 	 (17) 

whence taking A = °A, (A = p + iv) we have 

ii tfrr (b, x, 	ilo. b 	 (11)  
V 	

(18) 

and 

(b, x, 	*2 (b, 	 m 112 (A) 	 (19) 
V 

3. The vector Ur  (b, x, An, b) 

It follows as in Chakravarty 2  and Everitts that for each fixed b, the onlyari 
residue of I „ (A) are simple poles on the real axis. Let A,,, b be a simple pole of!,, (2) with 

R,4  (b, n ). Since 1„ (A) = 1„ (2) it follows that R„(b,n) =--- R„ (b, n). 	

singulties 
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Now as v tends to zero, iv I4r, (b, x, 	b 	 I, 2) (each belongs to 1. 2  [0, b]) converge in mean square to 

E R„(b,11)  q5, (x,  A 	= Ur (b, x, 1 , b) == (U (t) 	, b) U,2(b,x, 2b)) 8.1 

(r 	1, 2). 	(20) 
The proof follows in the same way as Chaudhuri. 3  

Put = An, b 	iv in (17), multiply by iv and then make v tend to zero, so as to 
obtain 

111 

RA „ (b n) 
O r (b, x, A) US (b, XI AR, WO, b 	 (20  An,0. 	

- 	(21) b 
• 	• 	• 

Next putting A-= Am, b ± iv in (21), we obtain on making v tend to zero . 

(U, (b, x, 4„ b), Us  (b, x, An, b))0, b 	3m, n Rn  (b, n) 	 (22) 

where 6„„„ is the Kronecker delta. 

4. Preliminary results 

It is well known from Chakravartyl that the eigenvalues 2 , e of the boundary value 
problem in the finite interval [0, b] are either simple zeros or double zeros of W (b , A) 
and corresponding to a simple zero there is only one eigenvector U (b, x, A„, b) and 
corresponding to a double zero there are two eigenvectors Ufrkb, x, An, b) (r =-- 1, 2) 
which are orthogonal to each other. 

It is easy to prove that if A„, b is a double zero of W (b, 2) 

U (1) (b,x, 2„, == R11 12  (b, n) U (b, x, 2n, b) 

U (2) (10, x, ) b ) 	
R11  (1,  , n) U2 (b, 	b) 7 Ri2 (b, n) U (b, x, An, b) 
— 112 R ii  (b, n) [R11  (b , n) R22 (b, 	— R12 (b, n)]112 	

(23) 

whereas if A n, b is a simple zero of W (b, A) 

U (b, x, „, = R7,112  (b, n) U1 (1 , x, A,, b) 	RV I2 	n) U202  X 2  An, e). 	(24) 

For, let A., 5 be a double zero of W (b, 2). If R12  , n) == R (b, n) = 0, then clearly the 

two normalised orthogonal eigenvectors are given by 
R 112 ('5, n) U,(b,x, A„, b), (r 1, 2) 

But if R12  (b, 	R21  (b, 	0, the two normalised eigenvectors can be represented 

as 

U (1) (b, x, A, 	=.. 71.12 A 	(b,n) U1 (b, X, 2n, a) 

U (2) x, 	7,) =-- A7 U1 (bl x, A„, b) + A 3  U 2(b, -141 A n, b) 
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where the constants ,4 1 , /42 are to be determined from the relations 

(U "I (b, x, 2„ b), U (2)  (1), Ae, 1,,,00/ b= 0 and II U (2)  (b, x, 2.„, b) II 0,  -az:  1 .  

It follows easily that 

A1 	R12 R71"2  (R11 R22 — R2) -1”, 
	A 2 -= R1 112  (R11 R22 R72) -112  

and (23) follows. 

On the other hand if 2„, b  is a simple zero of W (b, 1), let 	11(b, x, I 	i 
I', bi 

eigenvector corresponding to 	the eigenvalue 	A„, bp then 	i 
ha k 
La- the 

R7r112  (b, n) U, (b, x, A...6). (r 	1,2) 

are eigenvectors. We show that 

.R712  (b, ii) 	(b, As, 2„, 71) 	— R71 12  (b, ii) U2 (b, x, A„, 

If Pfr2A0 0 

[02X2] (4, b) XI. (X, 211, b) 	(02 7.1] 	b) X2 (X, An )  b) 

k ([02 X2] 	0 01(x, An, b — 	2 	(A• b) 	(X, 11-n, 
	 (25) 

[Compare Chakravartyl 

where k is a finite constant not equal to zero. Now replacing A in (12) by A,,, b iv, 
multiplying both sides by iv, on making v tend to zero, it follows, on using (25) that 

1 	 
iv 	x, An, b 	iv) 	 It02X2i (An, b) 	(x, An, 0 W (b, Ali, 0 

— Pal] (A., b) x2 tx , 4a11, bn 

I (b 2  2,,,

b) {(02X2] (An, 0 (fii (xs An, 0 

D1X2i (An, b) 02 (x, 	b)) 	 (26) 

The accent denotes differentiation with respect to A. Again we have from (15) as V.  
tends to zero 

iv th (b. x. ).., b + iv) 	R11 	n) ifr 1  (x, 	+ R12 (b, n) 024x, A„, b). 	 (27) 

Comparing the coefficients of 0 1  and 02 in (26) and (27) we get 

R 11  (bp n) k [02X2i (21e, b) 
—Ink An, b) -• ' 	- 

and 

R12 (b, ri) 	k DiXoi  (A, 
 b  

n ) 
I" (bp -An, b) 	

(28) 

' 	• 	Is 	.% 	• 	• 
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imilarly from (13), it follows that as v tends to zero 

1  
{(01X11 (An, 6) X2 (1,4 An, b) ivifr 2  0. A a, 	b -I- iv) —4  jr 	2„, 

[01 x21 (zip 	(x, Ant  b) } 

• — 	(b, 2., b) 
[95  X2] n b) 
[02X2] (An, b) 

{[#2x11 (An, 6) X2 (xf 	b) 

— [#2X21 (An, b) x1 (x An, 01. 

Since 

[Oat] (An , 6) [02X2] (An, 	NUJ 	b) [02 Xd (4, 11) 7= 0] 

k 	[Odd (An, 	f 
V ' (b, A., b) [02X2i 	el t[02X2] (2n•  b) 01 (x 2„, b) 

— Dad (An, b) 	(x, 4 , b”.  • 	 (29) 

Also from (15) as v tends to zero 

iV 	O f  X, 4, b 	iv) 	R21 (b./7)01 (x ,  Ant b) 	R22(b. n) 02(x, 	6). 	(30) 

Comparing the coefficients of 4), and 02 in (29) and (30) we obtain 

, 	k [4) ix2i (An, b) 
R21 (b, n)  

and 

k {Pat] Rs. 	 (31) R220, n) 	141-ta An, to) (02X21 Vs, b) • 

From (28) and (31) it follows that 

R 11  (b, n) R22 (b, n) = 	(b, n). 	 (32) 

Now multiplying both sides of (20) by R°,712  (b, n) and making use of the result (32) 
we get 

'^-12 i Ail 	(b, x, 2„, 6) = R1 112  (b, n) Ø (x, Aft, b) 	n) 03(x, 2, 6) 

Re2t°  U2 (h, x, 2,„ b) = — Ri? (b, n) 01 (aa, 	b) 	RV: (bp n) 02(x, An, b). . 

Hence 

Rii 12 	(b, x, Ash b) 	
R;s:12 U2 OP xl AN?) , 	a 
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5. Asymptotic formulae 

g (x, A) = fur (0/x, A), yr (0/x, ))1, (r = I, 2) be the boundary condition 
n vectors 

for the system (5)-(2) satisfying the initial conditions 

urF  OA A) = ars 	ucir  _(010, A) 	an 	r- 1, 2). 
(0/0, A) = 	$ 	vr E  (0/0,2) 	a,2 	 (33) 

By considering the most general solution of the system (5) and the relations (33) We  
can easily deduce that 

1 ( 	 1 
+ ait) 9 422 	a + 9' 1 ) e --4" urF  (x, = s'j k —  ars - fp 	2 ( r3  

1  
Dr CV, A) = (

an) alga 	 ± ar) ps — ari + Fit  e 	2  (ail -Fp e -f 
 

2 =u2  where p = + it, t > O. 

(r = 1, 2) 	(34) 

Similarly for the vectors or (x, A) =--- 	(0 I x , A), y,F  (0 x, A)} (r =-- 1,2) which take the 
initial conditions 

x,! (0, 2) = ( — I)' a,4 , 	 xt:(0, 2) = (— 1 )' ;2 

.Yr (0, = (a I)'1 a93, 	 irF 	A) 	 ail 
	 (35) 

[when r = 1, s = 2 and when r = 2, s = 1] 

it follows as before that 

9 (x )) 	 
(_ Or —1 I ( 

	

as 511  ) 	+ (a, + —as2 ) e -onj 2 	 4 

W el  if 
Yr frs = 	Lkass 	e4" + (a. 3  + q-41-1) e ip 	 ip 

[when r = 1, s = 2 and when r = 2, s = 1]. 

If 

(x, )) = Lim 	(b, x, A) 
b-000 

and 

,.(2) 	lim 1,Pis  (A) 
be)°, 

we have 

çk7 (x, 2) 	Or (x, .1) 	M (Ai 4)7.1( 	mr2 -(2) g (rp:A)• 

(36) 
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Hence 

thFl. ( r , A) 
j 	a al 

93  2 L I ka24 	42  + (a24 	1-11-412) eaffiz I 

4-  inci (A) K_ a13  + 	) 	 (a33 an ) 
1/1 fit 

4- inc., (A) f(s a23 + a2t 
)

C iPT 
	(a23 	C-3/40 e--44811 	(37) ip 	 ip  

with a similar expression for 072 (X, A). 

Since 07 (x, A) belongs to L2  [0, oo) and Fm p > 0 it follows that the coefficients of 
e'in should vanish. Thus 

.1- (224-1-
a22) 	I 	a il 	F i 1 	I 
.---- (ais  ± —) in i kA) — -- (art + all nl/F2 (A) = 0 /it 	2 	iii 	i. 	2 	.... 	- tp 

1 	a2, ) 	I  1 	- (C123 + — — - (114  + )  2 	OA 	2 	i,u 	 ip 

leading to 

niri  

and 
	

(38) 

a 	1412 ()) == — (le 	E2 E3) Mr 

where, 

A 1  = 	44 , A 2 = a22  a 24  — a21  a23 , A3 -7= 	— 

E2 	a21 	a23  — = a14 a24 -m-  (213 a23, 	 — a14  a22 

Es = an  an  — al 2 ac•21 B1  =a, 3 a24  —a14  a23, 

	

B2 = a1 3 an  -I- a11  a 23 — al 2 a24 	ai4a2,, 

B3 = aj  2  am 	a22 and Mi  = B1 p2  ipB 2  B3. 	 (39) 

Similarly since 

g (x, A) = (x, 2) + 	(A) 44 1  (x, A) + :42 (A) Of' (x, A) 

belongs to L2  [0, 00), it follows that 

tn2  2 (A) — Q12 	2ip C2 + C3 ) Mr, 

where 

a = aTma  a?4, C2= a1 2a14  align, C3 a — ai 	 (40) 
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also 

mr (A) 	:6  tt 1 (2)8  

Substituting the values of inft (A). rnl; (A) in (37),  it follows on slight reduction th at 

eiP.  rt
a 	642 \ ± (n Lin  — q..0) (112 A i  + 2ipA 2 + A2) en (la* A ) 	I. 2  4 	 rp 

-- 
a2t ) r  .2 r 	E2 E3) "rib  I (a23 k14  

cilia A 

2 	[ (124 
a22) ( B 112 	B2 + B3) + (a13 Fp 

x (it 2  A l  2ip A 2 + A 3) + (a23  — 921  ) (p2 	/11E2 + 
IP 

(41) 
e -iti izi 

1 P 1 
	) provided anAi  + anEi  + a22,81  0. (42) 

It follows in a similar manner that 

(e-Iti 1st\ 

lfrn (r, 2), qt2F1(x, 	OF22(X, A) are each o 	 
!Pi

t 
) 

(424) 

where I = 1 if a 12A 1  + a21/31  + a22E1 , a21 C1 	— a12B1  and a2 	— anBi  + an; 
are all non-vanishing and I > 1 when all of them vanish. Therefore from (1 1) using (34) 
and the triangle inequality, we have for x < e 

A) = uf 	eel 	A) + 147 (x, A) çt4 (& A) 	 (43) 

1 .i{{( 	a 
ai3  + 

1/2 ) 

	

e 	(a  + 
 i
an) 

	

els 	Pt 
p 

+ 1( 23  + 21 ens (aos 	) r4t tl 

	

a 	a \ 
ip 	 ip 

;i 	-ti 
X 0( reit' 	e

t is 
s.' 	

I P 1 	
) --

I P

T = 0 

with similar expressions for the other Gri  (x, 2), 	= 1,2) and hence 

	

= 0  ( eansalei 	, (4 j = 1, 2). 	 (44) 
ifil 

Lemma 1: Let p (x), q (x) and r (x) all belong to L (0, co), then? 
eatia—t I 	 (45) 

, 
11  I 
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where G 4 , (x, e, A) and G "P; (x e, A) are the elements of the Green's matrices G(x, of the system (I)-(2) and GE (x, A) of the system (5)-(2) respectively. 

PROOF: We consider the differential system 

(L — A) U .  (X) P(x) GP (X A) 

where 

 

(46) 

U (x) = tzt (x), v 

and 

1 = 1, 2 

 

p (x) 01(x) q (x)\ 
(x) r (x) 

Since both Gi; (x, e, A) and Giir (x, A) considered as functions of x, have singularis 
ties at the point x = c 	the same order with the same saltus, {G I  (x, A) GP (X, e, A)) 
is continuous and satisfies the system (46), (2) and 

G (x, y, A) P (Y) 	(y, A) dy, (47) 

the integral on the right being convergent by (ii) of §1. 

To solve this integral equation we define a sequence of vector functions {a" (x, ç,  A)} 

by the relations 

Gl("(x, c , A) = Gf (x, c , A) 

(x, e l  A) = G1° )  (X, e, A) 4- 0 G (11-1)  (x, y, A) P (Y) GP CY, e, dy, 

From (44) it follows that 

I G11 )  (x, A) — Gil (X e, A) 
co 

K 2  

I PI2 
f e -t (1 . -11 + /%41)  {I p (y) I ± 2 I q (y) I + I r (y) 1} d y , 

 0 

with similar expression for I G' (x, 	Gg )  (x, e, A) I, K being an absolute constant. 

Again since e -to.--#14- 1 Y-to 	e -ne-gi by the triangle inequality, we get 

00 
K2 	r ei 	I 	1 	0\ I 

tiPW1+21q ker) 1 
I P 12 	0  

+ r COPY 

AKe' 1" 1  (say) 	- =_- 	p  
(48) 
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where, A =K 	{1 P 	I ± 2 I q (3)1 ± 1 r (y)1} dy coo;  

grable in [0, oo): with similar results for ortd) (x, 	— Gip (x, 2)1. 

Using (47) and (48) 

I 	(x, e, A) — 	(x, 5,1)J 
00 

AK2  

f 
e —t( l e—Y1+ 11141 ) {I p 	I 

c  I P  
+21q(y)1+1r(y)l}dy 

A2  K e a-41  

awith similar results for 

Gg' (x, c,  A) — 	(x, e, A) Is 

Now let 

A" Kr"'  

	

Cr"(x, e, A) I < 	 (49) 
lit 1'1+1  

for some fixed positive integer n. 

Then from 

	

Gri" (x, e, A) — Grin (x, A) I < 	{ CS (x, y, A) —(x, A) I I Fs, (A I 

+ I  G(x,y,A)— G 1 ' ) (x, y, A) II F12 (y) I dy 

where 

(x) p (x) 	(x, y, A) + (x) 	(x, y, A) 

and 

	

Fs2(x) =-- q (x) Gr. (x, A) r (x) 	(x, y, A) 
we get 

Asa" Kr' 4 ' "
- - 

* 

Thus (49) holds by induction, for all integral values of n. The uniform convergfl? 
of the sequence {G:"' (x, 5 ,  A)} to the limit G I  (x, e, A), as n tends to infinity follows east 
The functions Gil  (x, A), (i, j = 1, 2) satisfy all the properties of the Green's maul 
for the system (1), (2) and are therefore the elements of the Green's matrix; the Integ ra  
equation (47) therefore possesses a solution. 
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Also, 

I G41 	2)1 = lim 
n-)oo 

I 	(x, g , 2)1 

= iim  1 GW )  (x, 4 A) ± 	{G (x, 	— 	 6Z)} I ft-003 	 r=1 

Pt 

< 	KAe is -g' 	Ke -"' 
"°3  I 

 
IizI p  

Hence, 
• 

AICe -ne t", 2) 	--
1

-
Pi

- — 
6 

It then follows from (47) that 

c°  -thr _gi 
Gi (x, A) =-- Gel (x, A) ± o 

I in 0 

(50) 

(11200 1 + 2 lq W 1 

-Or Urn e a4 ' dy} 

ea t 'a 
= G IP (x, )) o 	) • (51) 

Lemma 2 : For any fixed complex A and A' 

Pr (X, ID, gls (X, 2f)] —> 0 	as 	x -+ co. = 1, 2). 	 (52) 

(53) 

PROOF : We consider the integral equation 

111 (X, 2.) = 	(X A) 4-  
0 

where e (x, A) is the L2  solution of the Fourier system. To solve the integral equation 

(53) by iteration we define the sequence of vectors Wo (x, A)} as follows: 

111 (° )  (x, A) = 	(x, A) 

tit (x, A) 	(x, A) ± 
	

GF (x, y, A) P (y) lfr (nel)  (y, A) dy. 

Now 

tp(') 0(0) o lf p 
0 

on 

e _wiato e -tv dyl off IP WI — I PI ) 	I PI 	a 
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e _In 
=-- 	+ 

( I P12)  
f P dy 0 (e171 -2 	I W1 ) 

re. \ 
0 5711 

since p (x), (x), r (x) are L [0 , 00). 

Put 
( r t.  \ 

on) _ 	-1) 	0  ,
p  3 

 

I  

Then 

0,4" 	= off lny) 

0 

_tv  
dy  

1 P la +1  

e-41 	 -49 
+ °If IP WI 	 • II 	I P I n+1 dy} = o (—e \ 

I 

Now comparing with the geometric series 2 I P h"" we conclude that 
00 

{e )  (x, A) — 	-1)  (x, A)} 
tat3 

converges for I I > 1. Hence arguing as before and making 	oo we obtain 

0 (x2  A) = lira [0 (0)  (x, A) + ii {O m 	— (F -1)  (ex 
rs—).0cs 	 r=1 

We have from (34), (41) and (43) 

a rp  
aX 	 = 0 (e-gre-ti) -__d

° 
F dx (x,)= 0 (e -1 

By virtue of these relations the integral 

is uniformly convergent with respect to x and hence differentiating (53) with resPol 
to x we obtain 

00 d 	d 	 a Fa i til (X, ID = aari OF  (X I  A) ÷ .1.  — G (x, y, 01,)/2  (y) OF (y, A) dy ax 
0 



CONVERGENCE OF EIGENFUNCTION EXPANSIONS 
	 103 

from which it follows that 

Now for 2' =-- (02, it' r-r- a' + it', t ' > 0, we obtain from the definition of bilinear 
concomitant 

e -( ' -fna --= o (----) + o ('-=---(---,-
1 I 

) 
I it I 

[see Titchmarsh, 7  Pt. I, p. 26 and Chaudhuri, 3  p. 2631 

The result follows by making x tend to infinity. 

6. The matrix krs  (A) 

Following Everitt, 5  we have 

mu  (A) m 22  (2) — nii2  (A) 0 itn). 0. 	 (54) 

Hence (m y, U0), (r, s = 1, 2) is a non-singular matrix. 	Each m„ (A), (r, s = 1, 2) has 
singularities on the real axis and that inn  (A) are analytic functions of A regular in either 
of the half planes im A > 0 or im A < 0. 

Lemma 3 : The functions 

x 
k„ (A) = lim f 

894 o 
— im m„ (y + i(5) dy, (r, s = 1, 2) (55) 

exist for all real A; each k,, (A) is a function of bounded variation and 

k r, (A) = + {k n  (A + 0) + k r. (A — 0)1 

and 

. 	X 	 2 	X 
hirn .1 — lin I /I , (x, y + JO) dy re Ler I Os (x, y) di c ra 0) 
6—>o 0 	 si-1 o 

[see refs. 8 and 3]. 

(56) 

(57) 

. 	 2 	X 

Lemma 4 : Let z,, (x, A) =-- E I 08 (x, y) dk a (y), (r = 1, 2); 
8=10 

belong to L2  [0, co). 

A real then X, (v, A) 

PRGDE: If An, b is a simple zero of W (b; 2), we obtain from (21), (24) and (32), 

R1rg 2  (b,n) 	fr  = 1 ,  2) . 	 (58) 
(tii r  (b, x, 2), U (b, x, 2, b ) ) 0 1  b = = ---Cticr b  1  ‘ 
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If 1,, b be a double zero of IV (b, 2) 

1
(11(1)  (1), X, 	h) 111, , 	01 	

Rr (b 1 11) Rr at i2  (b, n) 
01))0, b 	it -- 	 An, say 

(U (2)  (b, x, A, b ), tp, (b, x, A)) 00  h 

R 1 2 (b, n) R rt  (b, a) — R tt  (b,  n) .142  (b,  n)  

— R1 112  (b, {R 1 , (b, n) R22 (b )  n) 	kie  2 0 O ) PP 1 2 	Ano —b ) 	Air, say. 

Clearly, 

(Mt 	Air)112 	:Rr12  (b, ii) 

2 01, 1; 

Thus in any case 

.RU 2  (b, n) 

is the Fourier coefficient of tk r (b, x, 2). Following Titchmarsh7  [Pt. 1, p. 54] we have 
from (58) 

X 

(b X 2n , 6) f fin 11/ r (b, x, y 	i6) dy 

0 

= 02.11:t0\ 

/ es b 	\ 1 + p 2  finite. 

Hence by Parseval's theorem 2  § 7 
00 

f int 	x, y et- lb) dy 	0  ( 

Z. 

 R,, 

0, b 	 4 I -I-  lett b 
0 	 11--00 

Making b tend to infinity through a suitable sequence, we obtain 

11 	tp, (b, x, y 	i6) dy 11 = o (1). 

Finally making 6 0 and using (57) we obtain 

1-10 
(1). (x, y) dk ra (y)  1=0 ( 1 ) 

so that x, (x, A), (r == 1,2) belong to L2  [0, co) 

7. Expansion theorem 

Lemma 5 : Let f (x) = I (r) f 2 (9} belong to 1.2  [0, 00) and 
(59)  Fr (Y) = (xr (y1 Y)If 0 1)) 	= 1  92) 
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y real, then for any fixed x 

R-H8 
M iM 

3-*o 	—11+16 Jt Or (X, y) dF (y), 
—R 

(A = y + (6) 	(60) 

where F, (y) is a function of bounded variation. 

PRooF: Since xy  (x, y) and f (x) both belong to L2  (0, 00), F 1, (y) exists, now as in 
Chakravarty2  and from (11) 

00 
GT (x, y, f (y) dy 

0 

-= 	 (x, A) (0.(.} 1, A), I (y)),. + 4) r (x, A) (0, (y, A), f 
=1 

Therefore 

n+is 
im [ S 	1) (x. A) di.] 

n+,5 
[ I dA E Of (x5 2) Ofr I (y,  A), RA] –mho 	r= i.  

P4 1 5  
[ 	d2 	.1 {Or (x, 2), Or(y, A)) -R+ia 	sr: 

(Or (x, 2), tfrr (Y, in)} f (Y) dYi 

± /2 1  say. 

Now 

--= im 	'12,, (A) 0.(x, A) + 0, (x, A), 4), (y, A)) 
1=1 

— (Or (x, A), E m.(2) 0 1 (y, ID+ 0, (y , A))] 

= imRor  (r, A), (y, A)) — (Of (x, A), 0, (y, A))] 
r=3. 

--= o (ö) , as 5 	0, for x, y in fixed intervals. 

It therefore follows that /2 	o (5), as (5 -+ 0. 

Again, 

R4-18 	2 

= 	 Z (CU 	f (y)) (x, A) dA. 
- R+15  r— 1 

7 1: (im (y, y io), f (y)) Re 0, (x, y iS) dy  

—R 

1.1.Sc.--2 
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± (Re th (y, y + i6), f (y)) O f  (X, + i6) dy 
rat 

= 11 , ± 4 2, say. 

Then 

11 2 I=  ° (5) 	dY cle  I Or (Y, + M), f (y)) dy 

= 0 (a) [ I ts op. CY, + h5), f (y)) I dY} 2  dy1" 2  i   

On applying the Schwartz inequality for vectors and noting that fact f (x) e L2  (0, co) 
' 

42 =  0 (S)1 1 11 , 071 V + 	11 dyi 112 
-R 

-r= 

 

0 (51(2), by (18). 

Similarly In = o&W2). 

Since 0„ (x, y) 	and 	O r 	(x, y), 	(r ::---- 1, 2) are real 	for 	real 7, 	Fin 0, (x, 7 + 15) and 
0, (x. y+ 15), (r = 1, 2) are o (6), uniformly with respect to y over a finite interval. 

So that 
R-H5  

f 	(130(x, 	d). 	111  + o (5" 2) as 	0. 
-R+0 

We also have 

dy er (— lin Or (y9  Y 	13) , f (y)) dy 
0 	0 

= 7 ( — ini Or (y5  Y + M) dYt f (Y)) dY 0 	0 

as 6 -+ O. 

(61) 

 S. . 

( 62) 

The change in the order of integration being permissible, since tfr y (y, 7 4- 	= 1,2) 
are continuous in y and y and I ( urn tfr, (y, y + 15), f (y)), < 00, by the Schwartz 
inequality for vectors. 

For the validity of the limiting process under the sign of integration, we note that 
[See ref. 7, Pt I, Lemma 24, 271 

— ini (y, + i6) dy t= x, (y, + i6) e L2  (0, 00), 
Ii 

= 61 , 6 2, 53, . . . and as 5-o 
z. (y, q + i5) --> L  (y, e L 2  [0, 00). 
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Integrating by parts we obtain from (61) using (62) 
• R-1-16 

Jim in; C._ 	 (x,  ;.) 	) 
6 40 7r 

–R4-18 
2 	 fly oo 

Ji m 	[10*, y) f dy' f Um* (y, y' + M), f ()))) 1 74.R  8-oo 
"Ym—R re; 	 0 

R a  

-4; (x, y) dY f 	f 	'Pr (.111 + f6), f 	dd Cy 

On integration by parts the integral on the right we obtain 
R 

Jim inz ( — -I 	7 (13  (x, ).) dil ) = --.1  2 f 0,
1 
 (x, y) dF,.(y). 7r 	 Ir 840 

—R4-03 	 r=3, —R 

Finally, if F (y), (r = 1, 2) is of bounded variation, the required result (60) follows. 

8. The convergence theorem 

THEOREM: If all the conditions given in §1 are satisfied and I (x) is both 
LN, 00) and L2  [0, oo), then the expansion of f (x) = {f, (x), 1 2  (x)) corresponding to 
the system (1), (2) converges under the same conditions as the corresponding expansion 
of f (x) when the differential system is replaced by (5). 

PRooF : Let C a closed semi circular contour in the upper half of the )-plane 
base the line joining the points — R + 16, R + to (5 > 0). As 0:1;1(x, A) [is 

inside and on this closed contour, applying Cauchy's theorem 

be with 
analytic 

R+48 
(1) (x, A) dA + -R+io 

and hence by (60) 

lim Fm f (130(x, A) di% ---= — Jim
4. R-)00 00 

03-n) 	
c 	 R.  

45-043 

2 -00 

=--- E I . 
r=1 —00  

= 0 

R4-45  

irn 
—R+i8 

(x, A) d A 

(x, 2s) df",. (A). 
	 (63) 

lim itn 
R-oco 

15-3■ 0 

to 
f 4F (x, A) dA 

2 too 

= E f 
at —oo 

Sim i larly, 

Jim fin j 
Mice 
a-to 

(64) 

It Sc.-3 
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The extreme right-hand side of (63) and (64) give rise to the expansion of .f (x) con  
ponding respectively to (1). (2) and to (5), (2). To establish the theorem w e  1, esave, n 
therefore to prove that 

lirn int 	(x, 2) dA = lirn mu  

	

R400 	c 	 Re+co 	C 	 (65) 
et-)e 	 5-30 

Multiplying the transpose equation of (51) by f (y) and integrating with respect t o  
over the interval [0, oo). it follows that 

—11r-111 

(X, A.) 	(X, /7.) + o 	f e 	I f 	dy), 
I Al 0 

Finally integrating, on the part of the upper semi-circle of centre (6 (6 > 0) and radius 
R, of the contour C, we get 

r i 
ICD (XI  A) = J r(x2)d2+O( f 1d21 	 I f(Y)IdY) () 

s 	IAI 
0 

Now 

r  
[c/Al r 	f (Y) d 1 2 1 0 

,-- 4 	 c-i-G 	0 

I 
	f Ian er + f +  0 

	

f+ 	 dy 
61 	1 2 1 .4, 

= +12 + + /4 , say, where C >0. 

Since (x) belongs to L [0, oo), we can choose C so that fg I  f (y) I dy < e and 
r-4 

c-1-4 S 1 Ay) dy < c, where e> 0 is small but arbitrary. Then 

c 

	

idA 	I J12 '4= 	

I A! 	
ea"' n" 11(y) dY 	

121 

	

< 	f If WI 4Y. ° ( 1)  
c-t 

Similarly 4 = (1). 

We put A = 15 + Re40 . 

Then 

ea"' f (y) dy 
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Is [c/AL 

C I 2 I 

8  [where 14 
0 

r- 

I fWidy < K r Ldes21 r4  

C  0 	 si  

fiyndy < Ki 

0 
( 	es_R112 15111 112 9 1  r d0) .  

Proceeding as in Titchmarsh 6  p 104, it follows that 
7r 

I 	( f e
-R112 I sin 112 6 r  dO) 

0 

can be made arbitrarily small by 
follow for 14- 

making I? tend to infinity. Similar conclusions 

Hence 

f e _steal 

f (y) 
Aft I 

0 

dy) 	o (1) as R ---> oo. 

The theorem therefore follows from (66). 
I . 
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