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Abstract

Under appropriate conditions on a partially known function f : [0, co) X R¥ — RN we establish the
existence of a wide class of stochastic dynamical systems with a closed loop relation so that tke input
X (*) converges to the unknown root o of the equation f(¢,) =0. The output Y(-) of the dyna-
mica] system is a nonlinear transformation of the input X () involving f, and which is corrupted by
additive noise terms modelled by Ito differentials. By martingale arguments we demonstrzte conver-
gence in mean and with probability one. The procedure may be considered as a contintvous-time
analog of the Robbins-Monroe scheme for discrete-time piocesses.

Key words : Stochastic approximation, Ito integrals, martingales.

1. Introduction

Stochastic approximation procedures in continuous-time consist in generating sto-
chastic processes {X(¢); t= 0} that converge to « as ¢ — oo where a is a zero of a
partially known function f. The discrete-time case has been studied extensively since
the pioneering paper of Robbins and Monroe® appeared in the early fifties. The conti.
nuous time case has been investigated by, among others, Driml and Nedoma® and
Krasulina® (see also refs. 1 and 4). M. T. Wasan’s monograph'® has a fairly complete

bibliography of the work prior to 1969.

| - In this paper we establish the existence of a wide class of stochastic dynamical systems
with a closed loop relation between the input X () and the output Y (') and such
that X (¢) converges to the desired value as ¢t - co. The dynamical system is such that
the output Y(*) is a nonlinear transformation (via f) of the input X (*) and is corrupted
by a multidimensional ‘ white > noise term. The output is hence modelled via an Ito
differential equation. This gives the dynamical system a reasonable degree of flexibility
from the point of view of applications and also makes available the tools of martingales
and Ito calculus to establish the desired convergence. The precise model is described

in section 2, especially by equation (4).

An important aspect of the theory that does not seem to be adequately treated in
some of the applied literature is the closed loop relation (see Fig. 1) between the out.-
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put and the input. Whereas in discrete-time situatif)ns the nput X, ., at time
'« a function of the input X, and output ¥, at time », the situation in contin

time is not so simple. We clarify this [3’0511t and show here that the input Process y
is adapted to the output process up to time I {Y(s), s<t}. A precise Statemeyy 3
this is given in Theorem I

(1)

L

As regards applications, we mention that our results can be extended to be useq ;
the problem of establishing asymptotic state estimators for stochastic dynamica] sym:;
in the realm of estimation theory. Several results in this direction have beep Obtaineg
and will be published in detail elsewhere, and arc also available in the first author

(P. S.) doctoral thesis.”

2, The problem and results

We are given partial information on a function f, namely that it maps [0, 00) XR¥ pr
is Borel measurable and satisfies

(I) For every 0 << T < oo there is a 0 <<K; < oo such that
sup "f(f:- x1) —f (1, X2) " < Kr " X; — Xs

(2) There 1s a unique (unknown) « in R¥ such that

f(t, ) =0 for every t > O.
(3) For each ¢> 0 we can find b,> 0 such that

illf T r
i (X =T f(1, %) > b
where RY is Euclidean N-space, " . || is the Euclidean norm, and superscript ‘o

denotes transpose. [Also in the following, the matrix norm used will be || 4 [*=Tr (A4")
where Tr = trace.] ’

In addition to the a priori information given above, the only additional information
about f is available in the following form. A stochastic dynamical system involving f
exists, or can be designed, such that for any input {x(w,t), ¢t=>0}, the outpu!
{y (w, 1), > 0} satisfies .'

(4) dy(w,t) = f(t, x(w, 1)) dt‘+ G(w,8)db(w,t)

where y and x are RY valued, & is R™ valued and G is N X M matrix valued, an:
are all measurable stochastic processes defined ona probability space (W, B P) ::r
arc adapted to an increasing family {F,, t >0} of sub-sigma algebras of 8. g

{b(w, 1)} is a Wiener process which is also non-anticipating with respect 10 the famil
{3} G(w, 1) satisfies

() Sip E | G(w,2) [ < 0o for each T < o
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and equation (4) s to be interpreted in the Ito sense.®*  The problem now is to find «.
We solve this problem by producing an input process {x (w, t), ¢ >0} which is adapted
to the family of o-algebras {Q,, t >0} generated by the corresponding output process
y(w,t) (e =0 y(w,5), 0<s<¢}), and is such that x(w,t) = a almost surely as
t = oo. In other words, we will be able to close the loop in Fig. 1 in such a way that
the required convergence holds.

At
INITIAL =0 -

INPUT OUTPU
CONDITION o\, . SYSTEM .
N\ k'3 o ¥ ,

N \!.

— ——-l PR OCESSOR ,-———-

Fig. | )

Remark: Only separable versions of all processes will be considered.

Theorem | below constructs a candidate for such a solution, while Theorems 2 and 3
prove the desired convergence.

Theorem 1: Let g : [0, oo) = [0, co) satisfy

T (1) dt = oo (6)
L]
j'rgz(f) dt < oo for each T < oo, (7)
L

and
T EWEfGw 1) |? di < co. (8)
L]

Let x(w,0) be a random variable such that
E | x(w,0) |7 < o 9

Then there exists a unique almost sure sample continuous process {x(w,¢); >0}
adapted to {F.}, which satisfies the Ito equation

X (w, 1) = x (,0) — | g()f{u, x (w, 1) du ——j g (u) G (v, u) db(w,u).  (10)

Moreover with this x(*,*) in (4), x is recoverable from y in the sense that

% (w, 1) = x (w, 0) -—j g (1) dy (w, u) (1)
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where the integral on the right is meant in the mean-squarc sense.

Remark - Notice that (4) and (I1) provide a c_opplete description of the Closeq
loop relation between the input and output t!‘lLIS providing a mathematical basjg for the
claim implied by Fig. I. Also, the definition of the mean-square integral yields the

right side of (11) and hence x (w, ?) to be adapted to F,.

Theorem 2 : Under thc conditions of Theorem 1, the process {x(w,r) . £>0)
converges to « with probability one as 7 — oo,

Theorem 3: If-in addition to the conditions of Thcorem 1 we have the stronger

conditions

T g2(1) (E " G(w,t) "")“"" dt < oo, (84)
and

E|x(w0) [} < oo, (94)

then E([| x (w,7) — oo )= 0 as # — oo for every 0 < r < 4.

o e

3. Proofs

(a) Proof of Theorem |: ExXistence and uniqueness of a solution to (10) are proved

by the usual iteration argument® and we’shall only sketch the same here. Without
loss of generality we restrict £to [0, T], T < oo, Define

xo(w,t)=x(w,0), and for n >0 : - (12)
Xaa 0 1) = X (1,0) — | g &) S (1%, O, ) dit — [ g(u) G (w, 1) db v, ).

Observe that the Ito stochastic integral on the right side in (12) is well defined because
of (8) whereas the Lebesgue integral exists in view of (1), (2) on £, (7) on g, (9) on x,,
and the easily proved relation that

ay = sup [ x,(w,1)[* < o
0=;=<<T

with probability one implies the same for dyiq.

Now by the Schwartz inequality (1) and (7) we obtain an integral inequality for
| xa (W, 8) — x,—; Ov, £) 2 from (12), iterating which leads to

ba(W) = sup | xpy (w, £) — x, (w, 1) 12 < 4 (w) C"¢[n! (13)

O=H<T
where C; < oo and

A(w) = 2K.2( j g (u) " x{(w,0) — ” du)?

2 (14)

+ 2 sup || f g(u) G (w, u)db(w, )

o=<T
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That the first term on the right of (14) has finite cxpectation can be seen by an appli-
cation of the Schwartz inequality, (7) and (9). For the second term we need (8) and a
special property of the Ito integral as given in ref. 3, (p- 20, Theorem 1), to establish its
finite expectation.  Thus E(4 (w)) < co and since A is non-negative

A (w) < oo with probability one. . (15)

Then from (15) and (13) we have

2 by(w) < oo with probability one. | (16)

nw()

It is now standard that with probability one x, (i, .) is a Cauchy sequence in C[0, T7],
the space of continuous R¥-valued functions on [0, T]. and that the limit x (w, .) will
be almost surely in C[0, 7). and will be a solution of (10). Also, from (12),
Gronwall’s lemma and the above convergence, we have,

sup E || x(w. 1) |2 < oo. | (17)

os¢<T

We omit the proof of uniqueness, which is again standard, and proceed to establish the
important relation (11).

Let

{t™: i=0,1, 2, .., m)}
be a sequence of partitions of [0, 71]. Define

g, (s) = g (t,™) for t,m <5 < 1§, (18)
Lw= 5 g™ Dyw, 1) —yw, tM)]
i=0

From the definition of y (w, s) in (4) we may re-write I, as
Lo = 8 () f(s.x(wm ) ds+ | &OGOn)dbOrs), (19
L) 0 . ' ]

where the linearity of the integrals involved and the step nature of g, have been used,
Setting 7 (w) = x(w, 0) — x(w, ¢), from (10) and (19) we obtain after using (1), the

Schwartz inequality (17), (5) and Ito’s formula
t
E " I, —1 "2 < constant | lg,, (s) —g(s) F ds. (20)
. 0 ,

By (7) g is in L2 [0, t] for each ¢ < oo and hence, there always exist sequence of parti-
tions {#,™} such that the g, defiried by (18) converge to g in L, [0, t]. This together
with (20) implies that 7(w) is the mean-square limit of I, (w). The mean-square limit
of the I, is, by definition of the mean-square integral, the integral on the right of (11)

and from the definition of 7(w), (11) follows, .
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(b) Proof of Theorem 2: The following is a key step in the proof.
Proposition 1: Under conditions (1) through (9) we have

(i) For 0 <5 <1 <00
E(fx(w,t)—a 2| F) < [xOms) —aff

+ j g ECGwu [*|F)du ()

with probability one.
(11) There is a constant C independent of s, 7 such that

0<E } g @) (x(w,u) — )T f(u,x(w,u)) du < C < co. )

(iii) If in addition (8 A) and (9 A) are satisfied then
sup E (] x(w, 1) — e |4 ::oo (23)

We defer the proof of this proposition and proceed to prove the convergence results
Define

a(w,1)= ] g2 E(|G (w, u) || F.) du (24

c(w,)=a(w, t) + ﬂ x (w, t) — o "2
The integral is well defined due to (8) and the assumed measurability conditions on G.
Since F, C F, for s <t we have

E(@w, )| F,) <aw,s) (29)
with probability one for s < 1.
Combining (21), (24) and (25) we obtain for s < ¢

E(z(w,0)|F,) < z(w,s) (26)
with probability one.

(25) and (26) together with the non-negativity of a and z from (24) yield the fact that
the families

{zw,1); F; >0}
and
{G(W,I) : T 12 0}

: : : ¢
are both non-negative supermartingales, thus ensuring their almost sure cr.:-uw:rg':ll‘;s
as t -+ 00 Call these limits Z (w) and a (w) respectively. By (8) E (a(w, 1)) decre®
tO ZZro as ¢ — oo, forcing a (w) to vanish almost surely and we thus have

| x G, 1) —a [t - Z (w)
ajmost surely as ¢ — oo.

To finish the proof of Theorem 2 we have to show that Z vanishes almost surely.

(27)
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Suppose

P{w: Z(w)> 0}> 0.
Then by Egoroff’s theorem, there exist €> 0, &> 0, 1, < oo such that P(A)> g,
where

A={w: g < " x(w, 1) — «

*<gl for 1> 1)

But by (3), for we 4 and u > ¢,, we must have
(x (W: ") o Et)rf(u, X (W.i H)) = ﬁrl >0
and again by (3)
(x(w,t) — a)'—"f(r, x(w,t)) =0 for all w and t, making

$ !
E :‘[ gy (x(w,u) — )7 f(u, x(w, 0)) du > ¢, B, | g (1) du
3 to
- coas t > co by (6). This obviously contradicts (22). Hence Z (w) = 0 almost surely.

(c) Proof of Theorem 3: By Proposition 1 (iii), we know that under (8 A) and (9 A),
(23) holds making the family

{lx(w, ) —e|; t=0}
uniformly integrable with respect to expectation, for each 0 <r < 4% This with the

almost sure convergence of || x (w, 1) — « || to zero from Theorem 2 [(8 A) = (8), (9 A) =
(9)] yields the desired conclusion. ' -

(d) Proof of Proposition 1: For proving (i) and (i1) directly via Ito’s lemma we would
require E (|| x(w,?) —« [|¥) < oo for each ¢, and in order to prove (iii) via Ito’s
lemma and an integral inequality proved in the appendix we would need

E(|x(w,t) —a[) < oo | |

for each ¢, Both of these are a priori unverifiable and so we consider a sequence of
truncated processes, apply the preceding ideas to each such process and then take
limits to complete the proof.

Define a sequence of stopping times with respect to {J,} by
T.(w)=1inf {: x(w,t)> N}, N=1, 2.... (28)

and a related sequence of stopped processes by
Xy (w, t) = x(w, tA TN(W)): N=1,2,...
where @ A b = minimum of a and b.

(29)

By appec;iling to a standard result on stopped Ito integrals (ref 7, p. 24) we obtain the

important relation
X (W, 1) = Xy (w, 0) — [ Tey, (i) g () £t Xy (9, 1))

— § Tey (w) G (w, ) db (i, ) (30)
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where Ig, denotes the characteristic function of the set £y and
Ey=1w: Ty (w) 2 ”}- (3”

Also it is obvious from (28) and (29) that
xy O, 0) = x (w, 0) for cvery N.

(32)
The process x (w, ¢) is finite vaI}xed and has continuous samplep aths, with probabiliq
one, and hence is bounded for 7 in [0, T] almost surely for each T < oo, Thys
Ty (w) = oo almost surely as N = oo (3)
and using (29)
xx (w, 1) = x (w, t) with probtability one, as N — oo, ()

Applying [to’s differentiation rule to

By (w, 1) = " xy (W, 1) — « "2 (35)
we get for 0 L<s <t -

By (v, 1) = By (w,5) — 2 f Isy (1) g (u) (.x,, (w, u-) — )T - f(u, xy O, u)) du
=2 1 Iy () 0 (o (9, ) — )7 + G O, )b
+ Jj Iey (1) g% (1) “ G (w, u) ||" du. (36)

Notice that for each N, xy (w, ¢) is uniformly bounded by N and so using (8) the Ito
integral on the right side of (36) is a zero mean martingale. Also the assumptions on
fand g imply that the integrand of the second term on the right of (36) is non-negative,
Taking expectations conditioned on ¥, in (36) then yields,

E (P 0, )| F) < Bu(w,5) +§ 82 E(] G (w1 [¢] 5.) di o7
Also by the non-negativity of f,, we get from (36) and (37)

0 <2F ‘J' Tey (1) g () (xy (W, u) — )T - f (u, xy (w, ) du

< Efy(w,0)+ E jag'" () || G (w, u) ||? du (38)

Now letting N — oo, we use (34), (35) and Fatou’s lemma to get part (i) of Pfﬁposf‘i*’“
I from (37). For part (ii), using (29), (31) (33) and the non-negativity of Ehe m.te-
grand, we apply the monotone convergence theorem to (38), noticing that the right side

of (38) is finite independent of s, 1, N by (8), (9) and (32). Now for part (iii) we app!
Ito’s formula to

oy (W, 1) =382 (w, 1) (3%)
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and obtain from (30) setting s =20
t
(0,1 = 00 04,0) = 4 1 L () g (1) By (w, 1
(e Oy, 1) — a)T f (1, xy (o, w)) du — 4 f Tey (4) g (1)
0
* B (9, 1) (xg (W, u) — )T G (w, u) db (w ,u)

+ 2 1 Tey (1) g2 ) {By (v, 1) | G (o, ) [

+ 2 [ (x(w,u) — )T G (w, u) |[?} du (40)
Arguing as for By we get by taking expectations
E(ay (w, 1)) < E(ay (w,0)) + 6 0} gE(W) E(By(w,u) | G(w,u) [|?) du (41)
Using the Schwartz inequality on the integral in (41) we obtain
my (1) < my (0) + J! ¢ (my (W) dH (u) (42)
where
my (1) = E(ay (w, t)), my(0)=E || x(w,0) —a ”“
o (x) = x12 |
H(t)=6 [ g2(u) (E(|G (w,u) [9)" du (43)

Now by (8 A), (9 A) and choosing > E (|| x(w,0) — o [|*)

we get from Corollaries 1 and 2 of Lemma 1 and Lemma 2 of the Appendix applied
o (42)

my(t) <m(t, B) <sup m(t,f) < oo (44)

Taking limits and using Fatou’s lemma we have (iii) of Proposition 1.

4. Concluding remarks

I. The noise term in the observations, in differential form G(',") db, is fairly g:e-nera}l
to allow for wide variety in the underlying dynamic systems, and at the same time 1S
in a form enabling the use of the powerful tools of martingale and ;to calf:ulus. In
particular, though arising from ‘ white noise ’, the noise terms could :Stl“ admit corre!a-
tions among the components due to the presence of the G (*,") matrix. Also the noise
is in general non-Gaussian due to the random elements in G. Such models are widely

used in estimation and control theory.
generalized in a straightforward manner to

2. The results of this paper could be -
ty=G(w,t) + H(w t,

some situations when G (w,?)depends on x(w,t), e.8, G(w,
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x (w, t)) where G satisfies the same conditions as the earlier G and H is globally b,

and uniformly Lipschitz in the third argument. This can be seen to widep Consideray
the class of dynamical systems 1O which the results are applicable. ly

3. The truncated process need not be considered at all and the proofs coylg be sim ; :
fied a great deal if the noise factor G (w, 7) is also either uniformly bounded Grnpl-
random and bounded, for compact t-intervals. Also for (8) ((8 A)) to holq it Suﬂion'
that g (*) belongs to Ly (0. o) and G (w, t) has finite second (fourth) momentg that:::

bounded in 7. For example g(¢) = 1/(z + 1) will satisfy (6), (7), (8) ((8 A) i Gha
bounded second (fourth) moments.

4. The models proposed in refs. 1,2,4, 5 for continuous time stochastic approximatiog
do not consider Ito differential systems and are hence not suitable for the application
to estimation theory which we have in mind (see Introduction).

5. If the noisc term were absent (e.g., G = 0) we would be in the purely determi
nistic case and our result would reduce to the following stability result in the theory of

ordinary differential equations :

Theorem 4: Let {x(¢), t =0} be a solution to
t
x(1)=x(0)— [ g@)f(u, x () du,
0

where f obeys (1) to (3) and g >0 (6) and (7). Then x(¢) = « as ¢t - oo,

Thus our main result should be thought of as a stochastic version of the above result

Appendix

The following lemmata were used in the proof of Proposition 1. Since no convenient
reference seems to be available, we supply the proofs,

Lemma 1: Let H be a non-atomic Lebesgue-Stieltjes measure on the Borel sets of
[0, 00), ¢ 2 Borel measurable map from (0, oo) to (0, oo) and Ba finite positive number.
Assume

w(z) = ﬁjﬂ (¢ (x)) ! dx < oo for each 2z < oo, (43)
O
H{0,00) < [ (¢ (¥)dx =4 < oo
0
and H[0,t] < 2 for each ¢ < oo. (40)
Then the nonlinear integral equation
4
m(t)= B+ [ ¢ (m@) H(du), t>0 (41
0
has a finite valued, continuous, non-decreasing solution on [0, o).
(45)

P::oof : The function w (.) clearly maps [B, o) onto [0, 1), is continuous [from s
and is strictly increasing (since ¢ is finite valued). All this implies that w is an invert!
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map, i.€.,
| w-1: [0, ) = [B, o0) exists. Now set
m(t, ) =wt (H[O, 1)) (48)

By the definition of w and the first part of (46), /m is well defined for allz > 0. Also
by (45) and the second part of (46) m is finite-valued for all finite 7. Since w is
strictly increasing and H {0, ¢) is non-decreasing from (48) we have m to be non-
decreasing in #. Hence /m can have atmost dis-continuities of the first kind, and since
w is continuous, by (48), H [0, r) will have the same at the corresponding points
But H is atomliess and so H [0, t) is continuous. Hence we have m (¢, ) to be
continuous, finite-valued and non-decreasing on [0, oo). We will now show m satisfies
(47) to complete the proof.

From the properties of /m proved above and (48) it is clear that 72 maps the measure
space ([0, 1), B [0, 1), H) onto ([B, 4/), B[B, 4'), ¥), where R [a, b) is the s-algebra

of Borel sets in [a, b), w is the Lebesgue-Stieltjes measure generated by w(') and
' =wl(HIO, t)). Then by the change of variables formula for integration with
respect to Lebesgue-Stieltjes measures [see e.g., ref. 6]) we have

{ & (7, D) H (d) = "E’ﬁ ' 6 ()% (dy)

m (t. B)
= [ o0 gmv=n@.N-F (49)
F

thus showing that m solves (47).
Corollary 1: 1If (46) is replaced by
?(af’ (x)) ! dx = oo, (46 A)
Lemma 1 holds.

Proof: We have only to note that in this case any Lebesgue-Stieltjes measure
satisfies (46).

We also have the following obvious.

Corollary 2: If H [0, oo) < oo in Lemma 1 or Corollary 1, then
50

Sup ﬁi(’&ﬁ)SC‘(OO: (50)
$

where C is dependent only on f, ¢ and H. Actually C= w1 (H [0, c0)). (The resuit

follows from (48) and the definition of w).
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Lemma 2. Lot H, ¢ and B be as in Lemma 1. Assume further that d is i
decreasing. [If m (") 1s any non-ncgative locally tounded Borel measurable map
[0, oo0) such that P

t
m(t) < m(0) + oj ¢ (m(w) H(du), t =0 (51
and if m(0) < f. then m(r) < m (¢, f) for all finite £ > 0, where m (1,B) is 3 solutioy
of (47), given by (48).

Proof : Let T=inf {t=0: m@p)=m(t, B)}. If T=oo, there is D.Othing to
prove. Suppose T < oo. Thensince mu) < m(u,a) for 0 <u < 7T, ¢ is non-decrege.
ing and H is atomless, we must have

m (0) + j ¢ (m@)) H(du) < f —a + j ¢ (m (u, B)) H (du)
where (%)
a=f—m(0)> 0.

Now as 110, [T, T + A} decreascs to [T], a set of H-measure zero, since H is atope
less. Then, since m is locally bounded and ¢ is finite valued and non-decreasing, yiek-
ing ¢ (m (1)) to be integrable, there exists an ¢ > 0 such that for all0 <k <.

T ¢ m) 1@ < ap2 )
From (51), (52), (53) we conclude

m(T+h) < B+ § ¢ (muB) H(du) — a2 (54
By Lemma n |

B+ § & (7 P) H(di) = (T, f) <5 (T + b P 59

Combining (54) and (55) and using @ > 0 we have
m(T+h<m(T+hp)foralllgh<ce
thus violating the definition of T, which contradiction forces T to be oo.

The following corollary is included as a point of interest, though we do not need it

Corollary 3. Under the hypotheses of Lemma 2, m (¢, f) (defined by (48)) is tht
unique solution to (47).

Proof: Let m (") be another solution to (47). Clearly m (0) = f, and by Lemma 2

m(1) <m(t, ff + &) for all ¢+ and each ¢> 0.
Henc¢

(56)

But m (¢, B + ¢) converges to 7 (¢, f) uniformly on compact f-intervals as &4 0.

m(t) <m(s, B) for all ¢.
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e solution m (*) of (47) being nccessarily continuous, the proof of Lemma 2 could

adapted to show lh%}t m(t1)> m(t, f —¢) for all + and 0< ¢ < f. Again taking
aits as € L O we get m (1) =m (4, ), for all t, combining which with (56) we obtain

= corollary.
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