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Abstract 

Under appropriate conditions on a par tially known function : [0, co) x e 	RN we establish the 
existence of a wide class of stochastic dynamical systems with a closed loop relation so that the input 
X (. ) converges to the unknown root cc of the equation f (t 	== 0. The output Y() of the dyna- 
mical system is a nonlinear transformation of the input X (. ) involving f, and which is corrupted by 
additive noise terms modelled by Ito differentials. By martingale arguments we demonstrate conver- 
gence in mean and with probability one. The procedure may be considered as a continuous-time 
analog of the Robbins-Monroc scheme for discrete-time processes. 

Key words : Stochastic approximation, Ito integrals, martingales. 

1. Introduction 

Stochastic approximation procedures in continuous-time consist in generating sto- 
chastic processes {X(t) ; t 	0} that converge to a as t —* 00 where a is a zero of a 
partially known function f. The discrete-time case has been studied extensively since 
the pioneering paper of Robbins and Monroe appeared in the early fifties. The conti_ 
nuous time case has been investigated by, among others, Driml and Nedoma 2  and 
Krasulinas  (see also refs. I and 4). M. T. Wasan's monograph" has a fairly complete 
bibliography of the work prior to 1969. 

* In this paper we establish the existence of a wide class of stochastic dynamical systems 
with a closed loop relation between the input X() and the output Y( -  ) and such 
that X(t) converges to the desired value as t —0 co. The dynamical system is such that 
the output Y( - ) is a nonlinear transformation (via f) of the input X (-) and is corrupted 

by a multidimensional white ' noise term. The output is hence modelled via an Ito 
differential equation. This gives the dynamical system a reasonable degree of flexibility 
from the point of view of applications and also makes available the tools of martingales 
and Ito calculus to establish the desired convergence. The precise model is described 
in section 2, especially by equation (4). 

An important aspect of the theory that does not seem to be adequately treated in 
some of the applied literature is the closed loop relation (see Fig. 	I) between the out- 
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put and the input. Whereas in discrete-time situations the input X„, 1  at time 4 

is a function of the input X n  and output Y„ at time ii, the situation in contin 
time is not so simple. We clarify this point and show here that the input process Aro 
is adapted to the output process up to time t: Y(s), 	t}. A precise stateme nt  oft'  

this is given in Theorem 1. 

As regards applications, we mention that our results can be extended to be used 
the problem of establishing asymptotic state estimators for stochastic dynamical systems 
in the realm of estimation theory. Several results in this direction have been obtai ned 
and will be published in detail elsewhere, and arc also available in the first auth or's  
(P. S.) doctoral thesis? 

2. The problem and results 
• 

We are given partial information on a function f, namely that it maps [0, co) x./2" -0 RR 
is Borel measurable and satisfies 

(I) For every O< T< co there is a 0 <K T  < co such that 

sup II f (I, xi ) — f (i, x2) 11 	KT II 	— X2 11 oci<T 

(2) There is a unique (unknown) • a in RN such that 

f(t, a) = 0 for every t > 0. 

(3) For each c> 0 we can find be > 0 such that 

inf 
c<flx—all<C1  (x — 	1(1, x) be  

where Rif is Euclidean N-space, 11 . II is the Euclidean norm, and superscript tr.' 

denotes transpose. [Also in the following, the matrix norm used will be A 11 2=Tr 
where Tr = trace.] 

In addition to the a priori information given above, the only additional information 
about f is available in the following form. A stochastic dynamical system involvingf 
exists, or can be designed, such that for any input {x (w, 	t > 0), the outPut 
{31  (w, 	0} satisfies 

(4) dy (w, t) = f (t, x (w, 	+ G (w, db (w, t) 

where y and x are RN valued, b is Rm valued and G is N X AI matrix valued, and  

t 	 13 

and 

are all measurable stochastic processes defined on a probability space (ciPt 43 / 11 all
orfsl are adapted to an increasing family {g t , 	0} of sub-sigma algebras of (. Meon; 

{b (w, 0} is a Wiener process which is also non-anticipating with respect to the 	
y 

 
tEt}. G(w, t) satisfies 

(5) sup EJJ G (w, t) 11 2 < co for each T< 00 
0.5_157 
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and equation (4) is to be interpreted in the Ito sense.; 7 	The problem now is to find a. 
We solve this problem by producing an input process {x (is', t), t ...>, 0} which is adapted 
to the family of a-algebras {g„ t _>.- 0} generated by the corresponding output process 
y(w, t) (g, . a (.3,  (w, s), 0 Cs < t}), and is such that x (w, 1) —0 a almost surely as 
t —, oo. 	In other words, we will be able to close the loop in Fig. 	1 in such a way that 
the required convergence holds. 

At 
INITIAL t=0 INPUT I 	 I OUTPUT CONDITION 0 \ 	 SYSTEM 

\.A 	x 	 Y 	I 

PROCESSOR 

FIG. I 

Remark: Only separable versions of all processes will be considered. 

Theorem I below constructs a candidate for such a solution, while Theorems 2 and 3 
prove the desired convergence. 

Theorem 1: Let g [0, co) [0, oo) satisfy 

g (t) dt 	co 	 (6) 

JPT g2(t)d(< oo for each T < co, (7) 

and 

g2  (t) E G (w, 0 11 2 di <00. 	 (8) 
0 

Let x (w, 0) be a random variable such that 

E x (w, 0) 11 2  < oo. 	 (9) 

Then there exists a unique almost sure sample continuous process {x (w, 1) ; t 0} 
adapted to {g,}, which satisfies the Ito equation 

x (w, t) 	x (w, 0) — I g (u) f (u, x (iv, u)) du — f g (u) G (iv , u) db (iv, ii). 	(10) 
0 	 0 

Moreover with this x(-,•) in (4), x is recoverable from y in the sense that 

x (w, t) x (w, 0) — g(u) dy (w, u) 



138 
	 PRODIP SEN AND K. B. ATHREYA 

where the integral on the right is meant in the mean-square sense. 

Remark : Notice that (4) and (I I) provide a complete description of the closed" 
loop relation between the input and output thus providing a mathematical basis for th e  
claim implied by Fig. I. 	Also, the definition of the mean-square integral yields the 
right side of (11) and hence x (w, t) to be adapted to gg . 

Theorem 2 : Under the conditions of Theorem 1, the process 
{ x (w, ; t>0) 

converges to cx with probability one as I –) cc. 

Theorem 3: If-in addition to the conditions of Theorem 1 we have the stronger 
conditions 

g2 	(E II G (w, 	119'12  di < co, 	 (8A) 

and 
E 11 x (w, 0) Ili < o0, 	 (9A) 

then E x (w, t) cc 11') 0 as I .4 00 for every 0< r< 4. 

3. Proofs 

(a) Proof of Theorem 1: Existence and uniqueness of a solution to (10) are proved 
by the usual iteration argument 3  and we' shall only sketch the same here. Without 
loss of generality we restrict t to [0, 	T < co, Define 

x. (w, 0 = x (w, 0), and for is > 0 	 . 	 (12) 

	

g 	 t 
x,“.1  (w, t) = x (w, 0) — f g (u) f (1, x„ (w, u)) du — f g (u) G (w, u) db (w, u). 

	

0 	 0 

Observe that the Ito stochastic integral on the right side in (12) is well defined because 
of (8) whereas the Lebesgue integral exists in view of (1), (2) on f, (7) on g, (9) on xot 
and the easily proved relation that 

a„ = sup II x„ (w, t) 11 2  < 00 
0.4.5,57 

with probability one implies the same for a 0i.1 . 

Now by the Schwartz inequality (1) and (7) we obtain an 
11 xis (w , 1 ) — _rare '  (w, t) 11 2  from (12), iterating which leads to 

ty,, (w) = sup IIx 4  (w, t) x„ (w, r) 112  A (w) Can! 

integral inequality for 

(13) 

where CT < oo and 

A (w) 2IC T2  ( 75.  g (u) x (w, 0) — II du) ?  0 

2 sup 	f g (u) G (w, u) db (w, 	112- ostsr 0 
(14) 

• 
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That the first term on the right of (14) has finite expectation can be seen by an appli- 
cation of the Schwartz inequality, (7) and (9). For the second term we need (8) and a 
special property of the Ito integral as given in ref. 3, (p. 20, Theorem 1), to establish its 
finite expectation. Thus E (A (w)) < coo and since A is non-negative 

A (w) < co with probability one. 	 (15) 

Then from (15) and (13) we have 
00 
Eb (w) < oo with probability one. 	 (16) wal•O 

It is now standard that with probability one x„ Or, .) is a Cauchy sequence in C[0, 72 
the space or continuous RN-valued functions on [0. TJ, and that the limit x (w, .) will 
be almost surely in C[0, Tj, and will be a solution of (10). 	Also, from (12), 
Gronwall's lemma and the above convergence, we have, 

sup E x (lc t) 11 2  < oo. 
OS<T 

(17) 

We omit the proof of uniqueness, which is again standard, and proceed to establish the 
important relation (11). 

Let 

{ti ( n ) : 1 = 0, 1, 2, ..., ma} 

be a sequence of partitions of [0, t]. Define 

. g„ (s) = g (On) ) for 0 ) 	S < 
as-1 

in  00 = 	g (i i (" )) ( i47, /14.11) — y 	001 
1=0 

From the definition of y(w, s) in (4) we may re-write 4 as 

4 (w) = f g„ (s) f (s, x (w, s)) ds 	f g„ (s) G (w, s) db (w, s), 
0 	• 

(18) 

(19) 

where the linearity of the integrals involved and the step nature of g„ have been used, 

Setting 1(w) = x (w, 0) — x(w, 1), from (10) and (19) we obtain after using (I), the 
Schwartz inequality (17), (5) and Ito's formula 

. E 4 — J 02 	constant I g„ (s) g (.012  ds. 
0 

(20) 

. 
By (7) g is in. 1.). [0, tj fol each t coo and lienee,th.ere always exist sequence of parti- 

tions {4 (19 } such that the g„ defined by (18) converge to g in L2 [0, t]. This togethe r  

with (20) implies that (w) is the mean-square limit of 4 (w). The mean-square limit 
of the h is, by definition of the mean-square integral, the integral on the _right of (11) 
and from the definition of 1(w), (11) follows, . 
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(b) Proof of Theorem 2: The following is a key step in the proof. 

Proposition I: Under conditions (1) through (9) we have 

(I) For Ost<oc:. 

E(11 x 	— ce 11 2  ig 	11 x (wi 	r 
s if g 2  (u) E (JIG (iv, u) 112 1 gj du (21) 

with probability one. 

(ii) There is a constant C independent of s, t such that 

0 < Ef g (u) (w, u) — ar 	x (w, u)) du C < co. (22) 

fr in addition (8 A) and (9 A) are satisfied then 

sup E x(tv, t) 	a 1) < 00. 	 (23) 
$>0 	 ••• 

We defer the proof of this proposition and proceed to ptove the convergence results, 
Define 

a (w, t) = f g2  (u) E (liG (w, u) 11 2  1 g t) du 	 (24) 

(w, t) = a (w, 	x (w, t) — a 11 2  

The integral is well defined due to (8) and the assumed measurability conditions on G. 

Since 9, c gs  for s <t we have 

E(a(w,01g,) ,a(tv,$) 	 (25) 

with probability one for s 	t. 

Combining (21), (24) and (25) we obtain for s t 
E (w, 	 z ov, 	 (26)  

with probability one. 

(25) and (26) together with the non-negativity of a and z from (24) yield the fact that 
the families 

(w, ; gt ; t 

and 

{a(w,t), g i ; 10) 

are both non-negative supermartingales, thus ensuring their almost sure convergence 
as t -+ co" Call these limits Z (w) and a (w) respectively. By (8) E (a (w, t)) decreases 
to zero as t 00, forcing a (w) to vanish almost surely and we thus have 

x (w, t ) 	ec 11 2 	Z (w) 
	 (27) 

almost surely as t 	00. 
To finish the proof of Theorem 2 we have to show that Z vanishes almost surely. 
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Suppose 

P {w : Z (w)> 0} > 0. 

Then by Egoroff's theorem, there exist 

where 
€0> 0, 	> 0, to  < oo such that P (A)> co, 

A = {it' ti < x Or ,  - cc 11 2  < 
	

for 	}. 

But by (3), for w c A and u t o , we must have 

(w, u) - 	f (u, x (w, u)) 13, 1 > 0 
and again by (3) 

(w, — 	(t, x (w, 1)) 	0 for all w and t, making 

Ef g (u) (w, u) 	f x (w, a)) du e n 	f g (u) du 
to 

-4 00 as r oo by (6). This obviously contradicts (22). Hence Z (w) = 0 almost surely. 

(e) Proof of Theorem 3: By Proposition 1 (iii), we know that under (8 A) and (9 A), 
(23) holds making the family 

{il *toy, 	— ce 	; t 	o} 
uniformly integrable with respect to expectation, for each 0 < r < 4.6  This with the 
almost sure convergence of 11 x (w, t) - a 11 to zero from Theorem 2 [(8 A) (8), (9 A) 
(9)] yields the desired conclusion. 

(d) Proof of Proposition 1: For proving (i) and (ii) directly via Ito's lemma we would 
require E x (w, t) - a 11 4) < oo for each t, and in order to prove (iii) via Ito's 
lemma and an integral inequality proved in the appendix we would need 

E(fl x (w, t) —cx11 6) C oo  
and so we consider a sequence of 
each such process and then take 

for each t. Both of these are a priori unverifiable 
truncated processes, apply the preceding ideas tic 
limits to complete the proof. 

Define a sequence of stopping times with respect to {g,} by 

(w) = inf {t : x (w, t)> N}, N- 1, 2.. . . 	 (28) 

and a related sequence of stopped processes by 
xN  (w, 	x (w, t A TN (w)), N 	I , 2, . . . 	 (29) 

where a A b = minimum of a and b. 

By appealing to a standard result on stopped Ito integrals (ref 7, p. 24) we obtain the 

important relation 

xN  (w, t) = xig  (w, 	f JEN 	g 	f (u, Asiv  (w, a)) du 
0 

- I IEN  (u) G (w, u) db (w, 	 (30) 
0 



142 
	 PRODIP SEN AND K. 11. ATIIREYA 

where /EN  denotes the characteristic function of the set EN and 

E N 	{11 : T N  (w) 10. 

.
tY  

Also it is obvious from (28) and (29) that 

xN  (w, 0) x (w, 0) for every N. 
(32) 

The process x (w, t) is finite valued and has continuous samplep aths, with probabil 

I  one, and hence is bounded for I in [0, 11 almost surely for each T < oo. Thus  

TN  (10 oo almost surely as N 00 
(33) 

and using (29) 

xN  (w, t) --) x (w, t) with probability one, as N 	oo. 	
(34) 

Applying Ito's differentiation rule to 

fiN (w, 	xN  (w, 	— a 1121 	 (35) 
we get for 0 s t, 

fiN (w, t) = fix (ir) s) — 2 1 'EN  (u) g (u) 	(w, — ay • f (u, x x  (w, u)) du 

–2 f ./EN (U) g (u) (xN  (w, u) art - G (w, u)db (w, u) 
• 

115N  00 g2 	G (w, u) 11 2  du. 	 (36) 

Notice that for each N, xN  (w, t) is uniformly bounded by N and so using (8) the Ito 
integral on the right side of (36) is a zero mean martingale. Also the assumptions on 
f and g imply that the integrand of the second term on the right of (36) is non-negative. 
Taking expectations conditioned on g, in (36) then yields, 

E 	(w, 01%) 	(w, + 5  g2  (u) E (JJ  G (w,u)11 2 1g j du. 	 (37) 

Also by the non-negativity of /IN , we get from (36) and (37) 

t  0 2E i ars N  (u) g (u) (x N  (w, 	- f Of, 	u (w, u)) d s   

E f IN  (w, 0) 	E r g2  (a) G (w, a) 11 2  du 	 (38) 
C!
5   

Now letting N oo, we use (34), (35) and Fatou's lemma to get part (i) of Proposition 
1 from (37). For part (ii), using (29), (31) (33) and the non-negativity of the mte- 
grand, we apply the monotone convergence theorem to (38), noticing that the right side 
of (38) is finite independent or s, t, N by (8), (9) and (32). Now for part (iii) we  aPPlY 
Ito's formula to 

aN (w,  I) =,13.  N2  (w, 1) 	 (39) 
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and obtain from (30) setting s = 0 

N (" = aN  (W1  0) —4 f 'EN 	g 	fig N  w  ti) 
0 

• (xN  (w, u) 	xN  (w, u)) du — 4 f 'EN (u) g 
0 

• fl,, 	 u) (xlv  (w, u) 	cOr G (w, u) db (iv ,u) 

+ 2 	'EN 	g2  (u) {fib, (w, u) 11 G (w, u) 11 2  0 
± 2 II (x (w, u) 	G (w, u) Ill du 	 (40) 

Arguing as for fiN  we get by taking expectations 

E VA, (w, 1) 	E (aN  (w, 0)) ± 6 f g2  (10 E (fiN  (w, u) J  G (w, u) 11 2) du 	(41) 
0 

Using the Schwartz inequality on the integral in (41) we obtain 

MN (1) Lc. MN (0) 	f 4' (tnN  (u)) dH 	 (42) 
0 

where 

int!  (t) = E (aN  (w, 0), in N  (0) = Eli x (w, 0) .— a II 4  
(x) = 12  

HO) = 6 ft  g2  (u) (E(IIG (w, u) 11 4))'/2  du 	 (43) 
0 

Now by (8 A), (9 A) and choosing /3> E a x (w, 0) — a in 

we get from Corollaries 1 and 2 of Lemma 1 and Lemma 2 of the Appendix applied 
to (42) 

niN 	trz(t, fi) 	sup rri (t,  13) < co 	 (44) 

Taking limits and using Fatou's lemma we have (iii) of Proposition I. 

4. Concluding remarks 

1. The noise term in the observations, in differential form G (. ,•) db, is fairly general 

to allow for wide variety in the underlying dynamic systems, and at the same time is 
in a form enabling the use of the powerful tools of martingale and Ito calculus. In 
particular,, though arising from 'white noise ', the noise terms could still admit correla- 
tions among the components due to the presence of the G C ,•) matrix. Also the noise 

is in general non-Gaussian due to the random elements in G. Such models are widely 

used in estimation and control theory. 

2. The results of this paper could be generalized in a straightforward manner to 

some situations when G (w, t) depends on x (iv, /), e.g., G (w, t) d'(w, 0 H (w, t, 
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x (w, 0) where at  satisfies the same conditions as the earlier G and H is globally botwdm  
and uniformly Lipschitz in the third argument. This can be seen to widen consideract. 
the class of dynamical systems to which the results are applicable. 

3. The truncated process need not be considered at all and the proofs could be slum'

i  fled a great deal if the noise factor G . (w, t) is also either uniformly bounded or Ron
. 

. 
random and bounded, for compact t-intervals. Also for (8) ((8 A)) to hold it suffi ces  
that g() belongs to L2 (0, co) and G (w, t) has finite second (fourth) moments that are 
bounded in I. For example g (1) = 11(t ± 1) will satisfy (6), (7), (8) ((8 A)) if Gilts  
bounded second (fourth) moments. 

4. The models proposed in ref's. 1,2,4, 5 for continuous time stochastic approximation 
do not consider Ito differential systems and are hence not suitable for the application 
to estimation theory which we have in mind (see Introduction). 

5. If the noise term were absent (e.g., G = 0) we would be in the purely donna 
nistic case and our result would reduce to the following stability result in the theory of 
ordinary differential equations : 

Theorem 4: Let {x(t), 	0} be a solution to 

x (t) = x (0) —f g (1) 	x 00) du, 
0 

where f obeys (1) to (3) and g 0 (6) and (7). Then x (t ) a as t co. 

Thus our main result should be thought of as a stochastic version of the above result, 

Appendix 

The following lemmata were used in the proof of Proposition 1. Since no convenient 
reference seems to be available, we supply the proofs, 

Lemma 1: Let H be a non-atomic Lebesgue-Stieltjes measure on the Borel sets of 
[0, oo), cb a Borel measurable map from (0, oo) to (0, oo) and fl a finite positive number. 
Assume 

w (z) = 5 °  (4) (x)) dx < co for each z < oo, 	 (45) 

H CO , co) 	(42+ (4) dx = < oo 
0 

and 	[0, ti < A. for each 1< oo. 	 (46) 

Then the nonlinear integral equation 

m (t) = ± I 4 ) 	(1)) H (du), t 0 	 (47) 
0 

has a finite valued, continuous, non-decreasing solution on (0, 00). 

Proof: The function w (.) clearly maps [11, 00) onto [0, 2), is continuous (from 
and is strictly increasing (since 4) is finite valued). All this implies that w is an invertil* 
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map, i.e., 

w -4  : 10, 2) -+ [13, oo) exists. Now set 

in (t, it) =-.. w -1  (H [0, 0) 
	

(48) 

By the definition of ii ,  and the first part of (46), iii is well defined for all t 	0. Also 
by (45) and the second part of (46) in is finite-valued for all finite t. Since w is 
strictly increasing and H [0, t) is non-decreasing from (48) we have fit to be no 

 in t. Hence rii can have atmost dis-continuities of the first kind, and since 
w is continuous, by (48), H [0, t) will have the same at the corresponding points 
But H is atomless and so H [0, 0 is continuous. Hcnce we have th (t, /3) to be 
continuous, finite-valued and non-decreasing on [0, 00). We will now show fit satisfies 
(47) to complete the proof. 

From the properties of th proved above and (48) it is clear that A maps the measure 

space ((0, 0, ce [o, 0, H) onto (C/3, 2/), ice [fl, 2 t 1), CO, where cB (a, b) is the a-algebra 

of Borel sets in [a, b), w is the Lebesgue-Stieltjes measure generated by iv(*) and 
AI= w-4  (H [0, 0). Then by the change of variables formula for integration with 
respect to Lebesgue-Stieltjes measures [see e.g., ref. 6]) we have 

_ 
I 0 (rn (u, II)) H (du) -= 	Pi  0 (y) (dy) 

0 	 P 

= 	f 0 (Y) 4-7.i,-)  dY =-- fil ( 1  ) fl) — 13  2 

P 

thus showing that th solves (47). 

Corollary 1: If (46) is replaced by 

700(x), --i dx 

(49) 

(46 A) 

Lemma 1 holds. 

Proof: We have only to note that in this case any Lebesgue-Stieltjes measure 

satisfies (46). 

(50) 

Where C is dependent only on /3, 0 and H. 
follows from (48) and the definition of iv). 

We also have the following obvious. 

Corollary 2: If H [0, oo) < oo in Lemma 1 or Corollary 1, then 

sup th (t, /3) C < 00, 
I 

Actually C = w-,  (11 (0, 00)). (The result 
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Lemma 2. 
decreasing. 
[0, oo) such 

Let If, 0 and 13 be as in Lemma 
a in ) is any non-negative locally 
that 

1. Assume further that 	is nopi 
bounded Borel measurable map oil  

in (z) < (0) + f 	(in (u)) H (du), t 	0 
0 01) 

and if in (0) < /1, then in (I) < 	fl) for all finite t 	0, where in ,I) is a solution 
of (47), given by (48). 

Proof : Let T== inf t 	0 : in (t) 	(t, 13)}. If T co, there is nothing to  
prove. Suppose T < co. Then since m (u) < fir (u, a) for 0 u < T, 0 is non-decreas. 
ine and If is atomless, we must have 

7' 
in (0) + I  4 ) (in (u)) II (du) 13 —a+ f 	(u, fin (du) 

0 

where (52) 
a 	— in (0)> O.  

Now as h 0, [T, T + decreases to [1], a set of H-measure zero, since I/ is atom- 
less. Then, since in is locally bounded and 0 is finite valued and non-decreasing, yield- 
ing 0 (in (u)) to be integrable, there exists an c > 0 such that for all 0 h < e. 

7.44 
f 0(in (u)) H (du) < a/2 	 (53) 

7' 

From (51), (52), (53) we conclude 

in (T + h) < fl + 0 (in (u, 13)) H (du) — 	 (54) 
0 

By Lemma I 

fit + 	4) 	(u, 13)) H (du) -= (T, 11) 	rIt (T + h, f3) 	 (55) 
0 

Combining (54) and (55) and using a > 0 we have 
m (T + h) < tit (T + h, fl) for all 0 C.  < 

thus violating the definition of T, which contradiction forces .  T to be 00. 

The following corollary is included as a point of interest, though we do not need it. 

Corollary 3. Under the hypotheses of Lemma 2, rn (t, /3) (defined by (48)) is the 
unique solution to (47). 

Proof: Let In e) be another solution to (47). Clearly m (0) 13, and by Lemma 2  

m 	< fir (t, + c) for all t and each 6>0. 

But 771(t,# + e) converges to flu (t, (3) uniformly on compact t-intervals as e 0. Hen ce  

m 	rin (03) for all t. 	4 	 (56) 
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t solution in (4) of (47) being necessarily continuous, the proof of Lemma 2 could 
adapted to show that tit (0> in (i, fj 	e) for all t and 0< c < 13. Again taking 

las as a 4. 0 we get rn (1) > fit , 13), for all t, combining which with (56) we obtain 
e corollary. 
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